

THE RADIOACTIVE TARGET OF ⁴⁴Ti

M.Fišer, P.Hanč, M.Honusek, A.Kugler, J.Mrázek Nuclear Physics Institute of the Academy of Sciences of the Czech Republic 250 68 Řež near Prague, Czech Republic

The fusion-evaporation reaction is a promising tool to study ¹⁰⁰Sn nucleus. To date, the ¹⁰¹Sn rate obtained by using fusion-evaporation reactions at the GSI ISOL is one to two orders of magnitude higher than that reached by nuclear fragmentation at GANIL and GSI, respectively [1,2]. The measurement of the atomic mass of ¹⁰⁰Sn, performed by using [3] ⁵⁸Ni(⁵⁰Cr,2p6n) fusion-evaporation reactions, seems to support this conclusion [2]. The corresponding cross-section was estimated as 0.4 μ b [2], which could be compared with cross-section 11 pb of the GSI fragmentation experiment [4]. The possible use of GSI ISOL system to study ¹⁰⁰Sn in the reaction ⁵⁰Cr(⁵⁸Ni,2p6n) was discussed in [2]; the serious disadvantage is a strong contamination of A=100 samples by isobars of lower Z.

The radioactive target of ⁴⁴Ti ($T_{1/2} = 47.3$ y) could open new possibilities to produce and to study the ¹⁰⁰Sn nucleus and other rare nuclei using the fusion reactions with the stable beams like ⁶⁴Zn or ⁵⁸Ni (e.g. ⁴⁴Ti(⁵⁸Ni,2n)¹⁰⁰Sn). Much higher cross-section could be achieved in comparison with above mentioned reaction.

We prepared the ⁴⁴Ti atoms using reaction ⁴⁵Sc(p,2n) at the parasitic beam of our cyclotron with proton energy of 20 – 25 MeV and intensity ~ 8 μ A. The maximum cross-section of this reaction is at 25 MeV. The original proton beam with energy of 30 MeV and intensity of 80 μ A irradiated a production target (Tl or Zn) for radiopharmaceuticals at small angle of 1°. The parameters of parasitic beam (protons scattered from the production target) were calculated using Monte Carlo simulation (code GEANT) and verified experimentally using Cu foils. The reactions 63 Cu(p,2n)⁶²Zn and 65 Cu(p,n)⁶⁵Zn were identified by the methods of γ - ray spectroscopy. The optimum position of the Sc foil - the highest energy and intensity of the production target.

Scandium foils 2.5 cm \Leftrightarrow 5 cm \Leftrightarrow 0.2 mm were placed in cyclotron chamber on the water cooled holder and irradiated during two years. We obtained the amount of ⁴⁴Ti ~2 $\Leftrightarrow 10^{16}$ atoms in the scandium foils.

We followed and modified chemical procedures described in [5,6]. The yield of 44 Ti atoms obtained was 50 %.

According the tests, we are able to obtain in short time radioactive target of 44 Ti on thin (1 µm) Ta backing containing ~10¹⁶ atoms for experiments at heavy ion beams.

[1] Rykaczewski K. et al., Phys.Rev. C52 (1995) R2310.

[2] E.Roeckl, GSI preprint, GSI-95-71, 1995.

[3] G.Auger et al., Nouvelles du GANIL 56 (1995) 9.

[4] F.Heine et al., GSI preprint GSI-95-39.

[5] D.Frekers et al., Phys.Rev. C28 (1983) 1756.

[6] D.Grzonka et al., Nucl.Instr.Meth A250 (1986) 573.