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I. INTRODUCTION

The 4He three-atomic system is of considerable interest in various fields
of physical chemistry and molecular physics. Studies of the helium dimer and
trimer represent an important step towards understanding the properties of
helium liquid drops, superfluidity in 4He films, and so on (see, for instance,
Refs. [1-3]). Besides, the helium trimer is probably a unique system where a
direct manifestation of the Efimov effect [4] can be observed since the binding
energy ej. of the 4He dimer is extremely small (~ —lmK [5-7]) even in the
molecular scale. For this reason, the helium trimer is certainly of interest for
nuclear physicists, too. Moreover a theoretical study of the 4He trimer is based
just on the same methods of the theory of few-body systems that are used in
solving three-body nuclear problems.

From the standpoint of the general theory of few-body systems, the 4He
trimer belongs to three-body systems that are most difficult for a specific in-
vestigation, first, owing to its Efimov nature, and second, because it is neces-
sary to take into account the practically hard core in the interatomic He - He -
interaction [8-11]. At the same time the problem of three helium atoms can
be considered as an example of an ideal three-body quantum problem since
the 4He atoms are identical neutral bosons with zero spin and the analysis
of this problem is complicated neither by separation of spin-isospin variables
nor by taking into account the Coulomb interaction.

There is a great number of experimental and theoretical studies of 4He
clusters. However, most of the theoretical investigations consist merely in com-
puting the ground states energies of clusters of that sort, mainly on the basis
of variational methods [12-16]. Besides, the methods based on hyperspherical
expansions of the Schrodinger and Faddeev equations [17-19] in the coordi-
nate representation were used. Also, the Faddeev integral equations in the
momentum representation were employed in Refs. [20,21] while the results of
Ref. [22] are based on a direct solving the two-dimensional Faddeev differential
equations in configuration space. From the experimental studies we would like
to mention those of Refs. [5-7,23] where clusters consisting of a small number
of noble gase atoms were investigated.

Though much effort was undertaken for studying molecular clusters various
problems related to the 4He trimer remained beyond the scope of thorough



consideration. In particular, the elastic scattering phases of a helium atom
on a helium dimer and breakup amplitudes (at ultralow energies) have been
calculated only recently [24-26]. These computations were preceded only by
the computation of characteristics of the He-He2 scattering at zero energy [20]
and estimation of the recombination rate (1 + 1 + 1 ->• 2 + 1) [27].

As a matter of fact, we have already pointed out basic reasons for compu-
tations of excited states and scattering being especially difficult in the 4He3

system. First, this is a low energy of the dimer ej which necessitates to con-
sider very large domains in the configuration space with a characteristic size
of hundreds of A. Second, a very strong repulsive component in the He-He
interaction produces large errors in the standard approximation of the three-
atomic Hamiltonian at short distances between atoms. The capacities of mod-
ern computers do not yet allow one to reach dimensions of grids that would
remove both the above-mentioned reasons and would provide stable results
with the use of the conventional methods.

The present paper is a sequel of studies of the 4Hea system undertaken
in the papers [24-26] within an approach that is capable, as we think, to
resolve both the above-mentioned numerical problems. In these papers the
repulsive component of the He-He interaction at short distances between atons
is approximated by a hard core. This allows one to investigate the 4rle3 system
within a mathematically rigorous method of solving a three-body problem in
the Boundary-Condition Model developed in [28,29]. An important advantage
of such an approach that essentially diminishes computational errors is the
necessity to approximate, inside the core domains, only the Laplacian operator
instead of the sum of this operator and a huge repulsive components of the He -
He-potentials (see [26]). In [24-26], such an approach has been successfully
applied for calculating not only scattering but also binding energies of the
ground and excited states of the helium trimer. Investigation made in [24-26]
has shown that the method proposed in [28,29] is well suited for performing
three-body molecular computations in the case where repulsive components
of interatomic interactions are of a hard core nature.

There is a series of works [18,21,26] showing that the excited state of the
4He trimer is initiated indeed by the Efimov effect [4]. In these works the
various versions of the Aziz 4He-4He potential were employed (HFDHE2 [8],
HFD-B [9], and LM2M2 [10]). However, the basic result of Refs. [18,21,26]
on the excited state of the helium trimer is the same: this state disappears
when the interatomic potential is multiplied by the "amplification factor" A of
order 1.2. More precisely, if this potential is multiplied by the increasing factor
A > 1 then the following effect is observed. First, the difference Q(A) — E\ (A)
between the dimer energy Q(A) and the energy of the trimer excited state
Et (A) increases. Then the behavior of this difference radically changes and



with further increase of A it monotonously decreases. At A « 1.2 the level E\
disappears. It is just such a nonstandard behavior of the energy Et (A) as
the coupling between helium atoms becomes more and more strengthening,
points to the Efimov nature of the trimer excited state. And vice versa, when
A slightly decreases (no more than 2%), the second excited state E) appears
in the trimer [18,21].

This paper is aimed at elucidating the fate of the trimer excited state upon
its disappearance in the physical sheet when A > 1 and at studying the mech-
anism of arising of new excited states when A < 1. As the interatomic He- He
potential, we use the potential HFD-B [9]. We have established that for such
He-He-interactions the trimer excited level E, merges with the threshold
Q at A « 1.18 and with further decreasing A it transforms into a virtual level
of the first order (a. simple real pole of the analytic continuation of the scatter-
ing matrix) lying in the unphysical energy sheet adjoining the physical sheet
along the spectral interval between Q and the three-body threshold. We trace
the position of this level for A increasing up to 1.5. Besides, we have found
that the excited (Efimov) levels for A < 1 also originate from virtual levels of
the first order that are formed in pairs. Before a pair of virtual levels appears,
there occurs a fusion of a pair of conjugate resonances of the first order (sim-
ple complex poles of the analytic continuation of the scattering matrix in the
unphysical sheet) resulting in the virtual level of the second order.

As it will be clear from the further exposition (see Sect. Ill), the above-
mentioned resonances are not, generally speaking, genuine resonances of the
4He3 trimer since they are situated outside of the energy domain for which
we can rigorously prove the applicability of the method we are using for com-
puting the resonances. We will call the resonances found outside the range of
guaranteed applicability of the method the (quasi)resonances.

The paper is organized as follows.
In Sect. II, we describe the method of search for resonances in a three

body system on the basis of.the Faddeev differential equations. The idea of
the method consists in calculating the analytic continuation of the component
So(z) (see formula (6)) of the scattering matrix corresponding to the (2+1 —»
2+1) process, in the physical sheet with the use of these equations. A particular
attention in this section is paid to the description of the parabolic domain on
the physical sheet where one can analytically continue the function So(-r) by
numerical solving the coordinate space Faddeev partial equations. For the
potentials we use, the three-body resonances (including virtual levels) lying
in the unphysical sheet of energy z plane adjoining the physical sheet along
the interval (td,0) are the roofs of the function So(c) in the physical sheet.
We have earlier employed this method for computing resonances as roots of
So(s) in the three-nucleon problem [30].



In Sect. III. we first briefly describe the numerical method we use to solve
the (2 + 1 ->• 2 + 1; 1 + 1 + 1) scattering problem for the ''Hes system with
going out into the domain of complex energies. Then we describe the results
of our calculations.

Some notation used throughout the paper is as follows: by C we denote the
complex plane; y/z stands for the main branch of the function z1/2, tm sfz > 0
for any z 6 C; the symbol R̂_ is used for the quadrant x > 0, y > 0; by
£2(1^) we understand the Hilbert space of complex-valued functions which
are integrable on JRjj. with the absolute value squared; the symbol 2 stands for
the complex number conjugated to z.

II. METHOD FOR SEARCH OF RESONANCES IN A
THREE-BODY SYSTEM ON THE BASIS OF THE FADDEEV

DIFFERENTIAL EQUATIONS

A. Faddeev partial differential equations in the case of smooth
potentials

In this paper, we will consider the 4He.3 system in the state with the total
angular momentum L = 0.

First we consider the case where the interatomic interactions are described
by conventional smooth potentials that include no hard-core component. In
this case, the angular partial analysis reduces the initial Faddeev equation
for three identical bosons to a. system of coupled two-dimensional integro-
differential equations [31]

y) = -V(x)yl(x,y). (1)

Here, x,y stand for the standard Jacobi variables, x > 0 and y > 0, and

(2)
y.'/

for the partial component of the kinetic energy operator. Functions from the
domain of Ho,i are assumed to obey the boundary conditions

which are quite standard when the expansions over bispherical basis are used.
The potential V(x) is assumed to be central. In our paper, the energy z can
get both real and complex values. At L = 0 the partial angular momentum /
corresponds both to the dirner and an additional atom. The momentum I can
assume only even values, / — 0,2,4, . . . .



The partial wave functions $i(x,y) are expressed through the Faddeev
partial components Fi{x,y) by the relations

tf/ >( T 1f) — FliT ? / ) - ! - ? / HT> h miT ?/ T?l FJI(T 111 (A\
* i \ x i y i — 1 ly^iy) i / , / _ <*'/ "-wy^-iyi 'i) ^VK^ ^ y } \^j

where

\/3

and —1 < ?] < 1. The explicit form of the functions hn< can be found, e.g.,
in Refs. [31,32] (see also [26]). Here we only deal with a finite number of
equations (1), assuming that / < lmax where /max is a certain fixed even number,
l m x > 0. The condition 0 < / < /max is equivalent to the supposition that the
potential V(x) only acts in the two-body states with I = 0 ,2 , . . . , / m a x . The
spectrum of the Schrodinger operator for a system of three identical bosons
with such a potential is denoted by oafi.

It is well known (see, e.g., Ref. [31]) that if the potential V(x) is smooth
and decreasing as x —> oo together with its derivatives not slower than x~3~*,
e > 0, then the asymptotic conditions as p —> oo and/or y —> oo for the
partial Faddeev components of the (2 + 1 —> 2 + 1; 1 + 1 + 1) scattering wave
functions* for z = E + iO, E > 0, read

o(1)]}

We assume that the 4He2 dimer has an only bound state with an energy Q ,
ed < 0, and wave function ^(a;) . This function is assumed to be normalized so
that for all x > 0 values of ipd(x) are real. The notations p, p = \Jx2 + y2, and

0,6 — arctg - , are used for the hyperradius and hyperangle. The coefficient

z =• i? + i0, for E > cd is the elastic scattering amplitude. The functions
,0) provide us, at E > 0, the corresponding partial Faddeev breakup

amplitudes. Note that for z — E+iO the correction terms o(l) in coefficients of
outgoing waves exp(iy/z — ejy), E > td, and exp(\y/zp)/-^/p, E > 0, in (5) are

'Here we speak about the wave functions usually denoted by sign "(+)"• The as-
ymptotics of these functions in the total three-body configuration space K6 contains,
apart from the incident wave, only the so-called outgoing spherical waves (see, e.g.,
[31]).



of the form, respectively, o(y 1|/2) and o(p 1/<2). This property ensures unique-
ness of the solution of the boundary value problem (1-5) for real scattering
energies E > tj, [31].

The (2 + 1—>2 + 1) component of the s-wave partial scattering matrix for
a system of three helium atoms is given for real z = E + iO, E > Q , by the
expression

S0(z) = 1 + 2iao(z) (6)

while the ( 2 + 1 —*• 2 + 1) scattering phases read

&o(p) = x lm lnSo(Q + p2 + i0), p > 0,

where p stands for the momentum conjugated to the Jacobi variable y.

B. Holomorphy domains of the Faddeev components Fi(z) and
scattering matrix S0(z)

Our goal is to study the analytic continuation of the scattering matrix
So(^) into the complex plane (the physical sheet). As it follows from the re-
sults of Refs. [33,34], roots of the function So(z) in the physical sheet of energy

•z plane correspond to the location of the three-body resonances situated in the
unphysical sheet connected with the physical sheet by crossing the spectral
interval (Q, 0). This statement is a particular case of more general statements
regarding the three-body resonances obtained in [33,34] for the case of two-
body potentials decreasing in the coordinate space not slower than exponen-
tially. We assume that V(x) is just a potential which falls off exponentially
and, thus, for all x > 0

|V(a;)|<Cexp(-/tt;), (7)

with some positive C and p.. For the sake of simplicity we even assume some-
times that V(x) is finite, i.e.;, V(x) = 0 for x > r0, r0 > 0. Looking ahead,
we note that, in fact, in our numerical computations of the 4He3 system at
complex energies we make a "cutoff' of the interatomic He-He-potential at
a sufficiently large radius TQ.

It is well known that different representations of the same holomorphic
function (for instance, either by a series or by an integral) allow one to describe
this function only in some parts of its Riernann surface. The description [33,34]
of the holomorphy domains for different truncations of the total three-body
scattering matrix in the physical sheet was based on the use of the Faddeev
integral equations in the momentum representation. In this paper, we make use
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of the Faddeev equations in the configuration space. Therefore it is necessary
to perform an investigation, independent of [33,34], of domains in the physical
sheet where we can analytically continue the Faddeev components Fi(x.y\~)
and the amplitudes ao(s) and Ai(~,9) just with the use of the configuration
space techniques.

Let us list briefly the main results of this investigation obtained by us
for the 4He3 system under the assumption (7). To formulate these results we
distinguish the following three domains in the complex plane C.

1°. The domain II'*' where the Faddeev components F)(x,y;z) (and.
hence, the wave functions $;(j\y;:)) can be analytically continued in z so
that the differences

$i(x,y;z) = Ft(x,y\z) - 6iO4>d{x)s

at z € II'*' \ cr-iB turn out to be elements of
described by the inequality

/z - edy) (8)

domain II'*' is

T / . f \/3 R r—\
Im \jz - td< mm < —r-ft, vS\J e</| > . (9)

For fixed .r,y the functions $/(:r.y; c) are continuous in z up to the rims of
the cut along the continuous spectrum [ê , +00).

2°. The domain 11^' where both the elastic scattering amplitude ao(r)
and the Faddeev breakup amplitudes Ai(z,6) can be analytically continued
in z, z <£ <73B, provided that the functions Fi(x,y;z) obey the asymptotic
formulas (5). This domain is described by the inequalities

Im \fz + Im \Jz - f,y < —/it.

(10)

(11)

3°. And finally, we distinguish the domain II'5', most interesting for us,
where the analytic continuation in z, z $ er3g, can be only done for the elastic
scattering amplitude ao(s) (and consequently, for the scattering matrix So(^));
the analytic continuabilty of the amplitudes Ai(z,0) in the whole domain
IT'5' is not required. The set Il 's ' is a geometric locus of points obeying the
inequality

mm
1 \/3

(12)



For the domains II'*', II''4', and IT'5', the following chain of inclusions

is valid.
Note that the type (9) or (12) condition,

Im \/z - a < Vb, a e K, b > 0,

is equivalent to the inequality

a-b+T(\mz)2.
46

(13)

(14)

Therefore, for ji < 2*J\id\ the set n '* ' is the domain bounded by the parabola

(15)

For fj, > '2J\cd\ this set coincides with the domain

Rez> -
12M

(Imzf. (16)

Analogously, if /u < | \ / | Q | then the domain fl ' s ' is described by the inequal-

ity (15); whereas for //••> I V / | Q | by the inequality

(17)|

As to the curves bounding the domains (10) and (11), we only notice that their
order with respect to the variables Re2 and Imz is higher than the second
order. It is easy to check that each of these curves is connected, symmetric with
respect to the Re z axis and crosses the latter only once. For the first curve this
intersection occurs at z — |c<;, the slope angle of the tangent at the-point of

intersection being independent of dRe
din

. As Res -)• +oo, the
Im*=±0

boundaries (10) and (11) are asymptotically approximated by the type (14)
parabolas with coefficients a and 6 which can be computed explicitly.

To prove the assertion 1° concerning the domain II'*' we note that the
functions <t>[(x,y;z) given by the formulas (8) satisfy the equations

8



[H0j + V(x) - z] <S>t(x, y; z) + V(x) £ / dr, hw(x, y, tj) $,,{x',y\ z)
v J~1

= Xi(x,y;z) (18)

where

Xi(xiy,z) = -V(x) J d-qhiO{x,y,r))ipd(x') sm

Obviously, for z € 11^*' the functions xi{x-,y\z) fa-H off exponentially as p
oo. Moreover, for all the directions 0 < $ < TT/2 the uniform estimate

Xi{x,y\z) =coOlexp(-ap)

is valid with a = m in i^ / i - lxay/z — ed, ^J\td\ — § Irn •*/? — edj . Conse-
quently, if the condition (9) holds then the inhomogeneous terms Xi{xiy'iz)
considered as functions of the variables x and y at fixed z, are elements of
£»2(1R+). At the same time, the vectors Xi{z) turn out to be holomorphic func-
tions of z € IT'*' with respect to the ^(R^) norm.

In the problem under consideration, the spectrum of the Faddeev matrix
operator defined by the l.h.s. of Eqs. (18) and by the boundary conditions
(3) in the Hilbert space constituted of the vectors $ = ($0, $2, • • •, $imax),
$i € Z/2(IR .̂), coincides with the spectrum O^B of the corresponding three-
boson Schrodinger operator with two-body potentials V(x) only acting in
the states with / = 0,2,. , . , Zmax. This means that for any energy z £ TL^
lying outside of the spectrum a^s, the inhomogeneous system (18) is uniquely
solvable in the class of the functions $i(z) £ L2(E+), I = 0,2,...,Zmax. Since
outside of the set a^B the resolvent of the Faddeev operator is a holomorphic
operator-valued function of the variable z, each of the components <&i(z) of
the solution of Eqs. (18) also is a holomorphic function of z £ ![(*' \ <JZB- The
bound-state energies of the three-boson system under consideration turn out
to be poles of the first order for §i(z). Thus, the Faddeev partial components
Fi(x, y; z) admit the analytic continuation in z in the form (8) into the domain

The proof of the assertions of 2° and 3° regarding the domains II^5' and
is rather cumbersome. This is why we here only outline its main steps.

Note that the proof is based on the integral equations method and it is quite
standard (see, for instance, Ref. [31], Chapter V). First, the equations (18) are
rewritten in the form of the Faddeev partial integral equations. To do this, it
suffices to reverse the operators HQJ + V — z in (18). Since the variables x and
y in HOti are separated, the kernels R^(X, X'; z), X = {a:, y}, X' = {x1, y'}, of

9



the respective resolvents B${z) = (Ho,i + V — z) l are explicitly expressed in
terms of the two-body problem. Analytic properties in the variable z and coor-
dinate asymptotics of the kernels R^(X,X';z) are well known (see Ref. [31],
Chapters IV and V). Iterations first "improve" and then stabilize the as-
ymptotic properties of the iterated kernels and inhomogeneous terms of the
Faddeev equations. (In the case under consideration, this stabilization requires
only three iterations.) Further, it turns out that, for z $ [td, +00), the iterated
kernels are represented by sums of exponentially decreasing terms admitting;
in certain domains of the configuration space, an explicit asymptotic factor-
ization with respect to X and X'. Since we are working in the domain where
Xi{z) £ ^2(R+)> the corresponding asymptotic factors of these terms, along
with the asymptotics of the iterations of the inhomogeneotis term, determine
the coordinate asymptotics of the functions <$>i(x, y; z). Therefore, finally we
are able to determine the geometric locus of the points z in the complex plane
for which there exists a (non-empty) set in the configuration space such that
the leading term of the coordinate asymptotics of the function $i(x,y;z) in
this set represents a term of the form zo{z)i>d{x) exp(iy/z — e<jy), and thus, for
these z the scattering matrix So(z) is well defined. This geometrical locus is
just the domain I l ' s \ In this domain, as y —» 00 and/or p —> 00, the functions
<$>i(x,y\z) admit the asymptotic representation

$i{x,y; z) = SioMx) { e x p ^ - idy) M ^ ) + o(l)] + fo(y, 2)} ' (19)

+ exp(yP) ;

with

io{y1z)=tx>0{e-a"^) and Yu(x,y-z) =^O {e~
a^)!>) (20)

where

,/3 r— 1
ao(z) = y V M - y Im V* - Q , (21)

f F\ 1
. OL\{Z) = min< ao(z), — /j, - Im \/z — ed , Imyfz > . (22)

I ^ J
In a parabolic neighborhood of the y-axis, the functions F1j{x,y; z) are also
subjected to the asymptotic estimates

= O\ exp{-ao(z)y)) (23)
y -» 00

10



where v is an arbitrary fixed number smaller than unity, v < 1.
As to the domain fl'^', the leading asymptotic term of each of the functions

Fu(x,y; z) for z £ II''4 ' is a spherical wave exp(iv/Fp)/v//? with the amplitude
Aui(6) being a differentiable function of the angle 9. Therefore, for z 6 fl (s ) the
term Fi,;(a\y; z) in the r.h.s. of the formula (19) can be added to the asymp-
totic term with a spherical wave preceding Fj,;. In the domain II'S ' , and hence.

in a narrower domain H*'4' the condition fo(w; z) = o\ ex\>{\Jz — Qy )
y->co y J

holds. Consequently, for z £ II'"4'. the Faddeev components Fi(x.y.z) do
obey the standard asymptotic conditions like (5).

Therefore, for any v < 1 the dominant term of the asymptotics of
the function <&o(x,y;z), z € n ( i ) \ 0-35, in the domain x < y" reads as
&®{z)ii'd(x) exp(i>/2 — Q y) as y —> oc>. This means that, for z G fI'5'\(T3B, it is
always possible by solving the equations (1) to separate explicitly the elastic
scattering amplitude a.o(s) and, thus, to construct the analytic continuation
of the scattering matrix So(s).

Outside of the domain II '5 ' the numerical construction of So(-i) by solving
the Faddeev differential equations is. in general, impossible since for ,r < y"
and v < 1 both functions fo(2/;~) and Fi,o(a;,t/;r), z £ Yl^s\ include terms
decreasing slower than exp(i>/c — <:</</) as y —> CXD.

B. The partial Faddeev diflferential equations in the case of potentials
with hard core

In the case of potentials with hard core, the partial Faddeev differential
equations for a system of three identical bosons at L — 0 acquire the form

where c, c > 0, is the core size. The partial wave functions $>i[:i\y) are ex-
pressed via. Faddeev partial components Fi{x,y) by the formulas (4). The
components Fi{x,y) satisfy the standard boundary conditions (3). The two-
body central potential V{x) acts only beyond the core domain, i. e. only where
x > c. We assume as before that V(x) falls off not slower than exponentially
as x —> 00 and, hence, it satisfies the condition (7) for some C > 0 and // > 0.

A main difference between the model with hard core and those with smooth
potentials is that the functions F[(x,y) in this model satisfy the auxiliary
boundary conditions

fi(c,y) + £ / dvhw(c,y,i]) /•'/'(•<•',.</) = 0 (25)

11



requiring that the wave functions $/(.!', y) vanish on the boundary ;r = c of the
core domain. It can be shown that in fact the conditions (25) force the wave
functions (4) to vanish also inside the core domain at all energies except for a
certain countable set of real values of z (see Ref. [26] and references therein).

Asymptotic conditions for the partial Faddeev components Fi[x,y\z) of
the ( 2 + 1 - ^ 2 + 1 : 1 + 1 + 1) scattering wave functions as p -> oo and/or
y -> co are again of the form (5). The only difference is that the dimer wave
function 4>d{x) is considered as zero in the core domain, i.e. for 0 < x < c.

In the hard-core model, all the assertions of Sect. IIB regarding the holo-
morphy domains of the functions $i(x,y;z) and the scattering matrix So(z)
in z still hold true.

I\ Resonances and virtual levels as roots of the scattering matrix S0(z)
in the physical sheet

We have already noticed that the roots of So(z) in the physical sheet of
energy z plane correspond to the location of the three-body resonances in the
unphysical sheet adjoining the physical sheet along the spectral interval (ej, 0).
In the case under consideration, this statement is an immediate consequence
of the unitarity of the scattering matrix So(^) for z = E + iO, ed < E < 0,

Indeed, as we have established, the functions $i(x, y; z) are holomorphic func-
tions of z 6 II'*' \ a^s- Since the boundary value problem (1 -5) is uniquely
solvable, one easily verifies that the boundary values §i(x,y\ E + iO) and
$>i(x,y;E — iO) for these functions on the rims of the cut along [ed,+oo) are
related to each other as

since, on the one hand, their asymptotics (19) as y —> oo and/or p —> oo has
the same structure and, on the other hand,

Xi(*,y; E + iO) = -xi(x,y\ E - 10) = -Xi(x,y\ E - ifl),

since

/E -ed + \0y) = -sin(y/E-ed-i0y) = -sin(y /£ - ed - iOt/).

Consequently,

~T0) (28)

12



and

S0(E + iO) = So(£ - iO), E>ed. (29)

Therefore, it follows from Eq. (26) that for ed < E < 0

So(5 + iO) = [S0(£-iO)]-1 and S0(E - iO) = [S0{E + iO)]"1.

This means that the function So(-E+iO) is continued through the cut [ed, 0] into
the domain Imz < 0 as SjJ"1^). In a similar manner, S0(E — iO) is continued
into the domain Imz > 0, again as S^1^). All this signifies that the scattering
matrix So{z) admits analytic continuation at least into the domain Il's^ of the
unphysical energy sheet connected with the physical sheet by crossing the
interval [ê , 0], the value of the continued function SQ(Z) at z € II '^ in the
unphysical sheet coinciding with the value of SQ 1(Z) at the same z but in the
physical sheet.

Recall that those points z on unphysical sheets are called resonances where
the analytically continued scattering matrix possesses poles. The resonances z
with zero imaginary part Imz = 0 and Re2 < Cd are called the virtual levels.

Thus, we have here presented a simple proof of the fact that the resonances
including the virtual levels corresponding to poles of the analytic continuation
of the scattering matrix So(-z) in the unphysical sheet connected with the
physical one by crossing the spectral interval [td, 0] are the roots of this matrix
in the physical sheet. At the same time, the poles of the function So(z) in the
physical sheet correspond to bound states of the three-boson system under
consideration.

Concluding the subsection, we note that it follows from Eq. (28) that
&o(z) = — ao(j) and, hence,

JO\Z ) — •-'Ov^y v^"/

for any z £ U^. This means that the roots of the function So(^) are situated
symmetrically with respect to the real axis.

III. NUMERICAL METHOD AND RESULTS OF COMPUTATIONS

In the present work we make use of the Faddeev equations (24) considered
together with the boundary conditions (3), (5) and (25) to calculate the values
of the 4He3 scattering matrix So(z) in the physical sheet. We search for the
resonances including the virtual levels as roots of So(z) and for the bound-
state energies as positions of poles of So(z). All the results presented below
are obtained for the case /max = 0.
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Ta6raaa I. The parameters for the HFD-B 4He-4He potential.

e(K)
rm (A)

A
a

C8

Cio
D

10.948
2.963
184431.01
10.43329537
-2.27965105
1.36745214
0.42123807
0.17473318
1.4826

In all our calculations, h2/m — 12.12 K A2. As the interatomic He-He-
interaction we employed the widely used semiempirical potential HFD-B con-
structed by R. A. Aziz and co-workers [9]. This potential is of the form

(Z) = e | ^ e x P ( - a C + PC?) - [ ^ + ̂  + ̂ ] F(C)| (31)

where £ = x/rm. The function F(Q reads

, \f(>D.

For completeness the parameters of the potential HFD-B are given in Table I.

The value of the parameter c (the core "diameter" of particles) is chosen to
be so small that its further decrease does not appreciably influence the dimer
binding energy t* and the energy of the trimer ground state Et . Unlike
papers [24-26], where c was taken to be equal 0.7 A, now we take c = 1.3 A.
We have found that such a value of c provides at least six reliable figures of
ti and three figures of E\\ .

Since the statements of Sect. II are valid, generally speaking, only for the
potentials decreasing not slower than exponentially, we cut off the potential
HFD-B setting V{x) = 0 for x > ro. We have established that this cutoff for
r-o > 95 A provides the same values of ed (cd = -1.68541 mK), E{°] (E{

t
0) =

—0.096 K) and phases So(p) which were obtained in our earlier calculations
[24-26] performed with the potential HFD-B. Comparison of these results
with results of other researchers can be found in Refs. [24-26]. In all the
calculations of the present work we take ro = 100 A. Note that if the formulas
from Sect. II including the parameter y, are used for finite potentials, one
should set fj, = +oo.

14



Before making numerical approximation of the system of equations (3),
(24), (25) at /max = 0 we rewrite it in terms of a new unknown function
$o(x,y;z) that is expressed via the Faddeev component Fo{x,y.z) by the
relation (8). Note that for z E. II'*' \ a-3B the function $o{x, y, z) is square in-
tegrable in x,y (see Sect. II B). Therefore, this function is uniquely determined
by the asymptotic condition

* o ( * , » : - - ) ^ 0 (32)

that can be easily approximated and programmed. One could, for instance.

require <3>o(.t\j/;. = 0 at a sufficiently large pmax and look

for a numerical solution of the system (3), (24). (25) satisfying this condi-
tion. Further, for z € II'5*, one could, going sufficiently far from pmax into
the domain of smaller (but nevertheless, providing the asymptotics (19))
values of/>, separate the elastic scattering amplitude ao(~), putting, e.g.,
ao(z) ss $o(-i",y\ ~)exp( —iy/z — t^ y), where the value of x corresponds to the
maximum of the function (/',/(.!•). Such an approach is, however, not effective
in view of a relatively slow decrease of the exponentials exp( — J\td\ x) and
exp(— Im \/z — t& y) as well as of the function exp(— Im y/z p) in the energy
domain of interest for us in fl ' s ' . For a proper approximation of the condi-
tion (32), very large values of pmax are to be taken. This is just a reason why
one should take into account the asymptotics of the function $o(^ij/;^) as
x —> oo and/or y —> co. Though the asymptotic formula (5) only holds for
z € II<A\ we employ it also for z e 1I(5> \ U{AK Indeed, when z e fl(5) \ iH*1.
the leading term of the asymptotics of $o(al,y; ~) as y —>• oo and .r < y".
v < 1, is given by the same expression ao(^)exp(i>/r —. t^y) (see Sect. II B)
as in Eq. (5). Outside of the parabola x < y", it suffices'to require the con-
dition (32) to be satisfied. The presence, in Eq. (5), of the spherical wave
exp(i\/z p)/yfp does not contradict, this requirement. Therefore, the use of
asymptotic condition (5) is justified even if z € n ( 5 ) \ Il('4'.

A detailed description of the numerical method we use is presented in
Ref. [26]. Here we only mention main steps of the computational scheme [26]
helpful for understanding our results.

When solving the boundary-value problem (3), (5), (24), (25) written in
terms of the function $o, we carry out its finite-difference approximation in
polar coordinates p and 0. The grid is chosen in such a way that the points of
intersection of arcs p — pi, i = 1,2,..., Np, and rays 0 — Qj, j = 1,2 .Y().
with the line .r = c turn out automatically to be its knots. The pi points are
chosen according to the formulas

c ; — i 9 i\j(f>)
l

c - ' i - - - - ' / v c •
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where Nj:^ stands for the number of arcs inside the core domain and

i

The nonlinear monotonously increasing function f(r), 0 < r < 1, satisfying
the conditions /(0) = 0 and /(1) = 1 is chosen in the form

f(r] __ / Q o r • T € [0,r0]
J[ }~ X^T + T" .. r e (TO,1]

The values of a0, Q0 > 0, and Qi, an > 0, are determined via To and v from
the continuity condition for / ( r ) and its derivative at the point r0. As a rule,
we took values of To within 0.1 and 0.2. The value of the power v depends on
the cutoff radius pms.x = p^p = 50-— 4100.4 its range being within 2 and 4 in
our calculations.

The knots 6} at j = 1,2, ...,Nfi - N^ are taken according to 93 =
arctg(j/j/c). The rest knots 0}, j = Np — A^p) + 1 , . . . , Ng, are chosen equidis-
tantly. Such-a choice of the grid is prescribed by the need to have a higher
density of points in the domain where the functions <J>((;r, y; z) are most rapidly
changing, i.e. for small values of p and/or x and lower in the asymptotic do-
main. In this work, we used the grids of dimension Ng — Np =600—1000.
The number of the last arc knots in 9 lying in the core domain was usually
equal to N{

c"
] = 5.

The finite-difference approximation of the integro-differential equations
(24) and boundary conditions (3), (25) for /max ~ 0 reduces the problem to
a system of NpNg linear algebraic equations. The finite-difference equations
corresponding to the arc i ~ Np include initially the values of the unknown
function <$>{x,y\z) from the arc i = Np + 1. To eliminate them, we express
these values through the values of $(2, y; z) on the arcs i = Np and i = Np — 1
by using the asymptotic formula (5), just in the manner described in the con-
cluding part of Appendix A of Ref. [26]. In [26], this approach was only used
for computing the energies of bound states. Now we extend it also on the
scattering problem. (Note that the formulas (A10) and (All) in [26] related
to the described approach contain misprints. The values C^ in these formulas
should be replaced with inverse values 1/C1^ .) The matrix of the resultant
system of equations has a block-three-diagonal form (see Ref. [26],. Appendix
A). Every block has the dimension Ng x Ng and consists of the coefficients
standing at unknown values of the function §(x,y;z) in the grid knots be-
longing to a certain arc p — pi- The main diagonal of the matrix consists of
Np such blocks.
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In contrast to [24-26], in the present paper we solve the block-three-
diagonal algebraic system on the basis of the matrix sweep method. This
allows us to dispense with writing the system matrix on the hard drive and to
carry out all the operations related to its inversion immediately in RAM. Be-
sides, the matrix sweep method reduces almost by one order the computer time
required for computations on the grids of the same dimensions as in [24-26].

We searched for the resonances (roots of the function So(z) on the physical
sheet) and bound-state energies (roots of the function SQ1(Z) for real z < Q) of
the helium trimer by using the complex version of the secant method. Within
this method, the approximation zn to a root of a holomorphic function f(z)
is constructed from the two previous approximations zn_i and 2V1-2 according
to the formula

_ _ /(3n-l)(Zn-l - Zn-2)

Z n ~ Z n ~ l /(*„_!) -/(Sn-2)) '

As the relationship (30) implies the symmetry of properties of the scatter-
ing matrix So(2) with respect to the real axis, we performed all the calcula-
tions for So(z) only for Imz > 0 (except the tests of the code). We start with
a study of graph surfaces of the real and imaginary parts of the scattering
matrix So(z) in the domain of its holomorphy II^5' \ U^B- The root lines of
the functions ReSo(z) and ImSo(z) obtained in the case of the grid parame-
ters Ng = Np = 600 and jCWx = 600 A are depicted in Fig. 1. Both resonances
(roots of So(z)) and bound-state energies (poles of SQ(Z)) of the 4He trimer
are associated with the intersection points of the curves ReSo(z) = 0 and
ImSo(^) = 0. When the roots or poles are simple, these curves intersect each
other at the right angle. Note that for real z < t& the function SQ{Z) is real
and, thus, ImSo(z) = 0. In Fig. 1-, along with the root lines we also plot
the boundaries of the domains H^s\ n ^ ' and II'*'. One can observe that a
"good" domain 11^ includes none of the points of intersection of the root
lines ReSo(^) = 0 and ImSo(z) = 0. Nevertheless, as we will see below, the
going beyond this domain, is of an interest, even-though the asymptotic for-
mula (5) is not valid for z'E C\ U^ and the function S0(z) calculated there
cannot be interpreted as the scattering matrix. The caption for Fig. 1 points
out positions of the four "resonances", the roots of So(z), found immediately
beyond the: boundary of the domain n ' s ' . As one could expect, the values of
the function SQ(Z) at z £ C \ II^5) and positions of its roots in C \ n(s) turn
out to be unstable and strongly depend on the value of the cutoff radius pmax,
whereas the dependence on the number of knots is weak. In particular, for
pmax = 400 A, a (quasi)resonance, closest to the real axis, is situated at the
point (-1.95 + i 1.81) mK, if Ne = Np = 300, at the point (-1.90 + i 1.85) mK,
if Ne = Np = 520, and at the point (-1.89 + i 1.86) mK if Ng = Np = 800. The
same (quasi)resonance in Fig. 1 (calculated for /)max = 600 A) is situated at
the point (-2.34 + i 0.97) mK. If Ng = Np = 600 is fixed, the increase of pmax
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- 6 - 4 - 2 0

PHC. 1. Root locus curves of the real and imaginary parts of the scattering matrix
So(2). The solid lines correspond to ReS0(«) = 0, while the tiny dashed lines, to
ImS0(2) = 0. The Numbers 1, 2, 3 denote the boundaries of the domains n(*J,
n ' s) and n('4), respectively. Complex roots of the function S0(z) are represented by
the crossing points of the curves ReS0(.?) = 0 and ImS0(2) = 0 and are located at
(-2.34 + i 0.96) mK, (-0.59 + i 2.67) mK, (2.51 + i 4.34) mK and (6.92 + i 6.10) mK.
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II. Dependence of the difference Q — Z?t
(1) (mK) between the dimer

energy id and the trimer excited state energy E\l) on the grid parameters. The
values of /»max are in A.

Nt,Nf(Nt = N,)
/'max

400
600
800

600

0.7752
0.7809
0.7852

800

0.7661
0.7695
0.7723

1000

0.7625
0.7649
0.7669

up to 800 A shifts this point to the point (—2.44 + iO.65)mK.
All the aforesaid regarding the instability of the function So(~) values and

positions of its roots beyond the domain II 'S ' bears no relation to its pole
at the point z = E\ = — 2.46 ml\, corresponding to a trimer excited-state
energy, even though this energy does not belong to n ' s ' . The point is that
the position of the pole of So(c) is only determined by the position of the
root of the determinant of the linear algebraic system we solve, whereas the
inhomogeneous term of the system plays no role. Therefore, the search for
the poles.of the grid function So(s) is equivalent to the search for the binding
energies of the trimer. The grids we have used turn out to be quite sufficient
for this purpose. The convergence of our results for Et with respect to the
parameters Ng, Np,pmax and their accuracy can be judged from the values of
the difference t& — E\ obtained with different grids and shown in Table II.

We would like to stress that we do not consider the roots of function So(~)
drawn in Fig. 1 as genuine resonances for the 4He3 system since they are
situated beyond the domain I1 (S) where the applicability of our method is
proved. We should rather consider them as artifacts of the method. However
it is remarkable that the "true" (i.e., getting inside TI'5') virtual levels ami
then the energies of the excited (Efimov) states appear just due to these
(quasi)resonances when the potential V(x) is weakened. This is the object of
our further consideration.

Following [18,21,26], instead of the initial potential V(;r) = V'HFD-BO?')-
 w e

will consider the potentials

To establish the mechanism of formation of new excited states in the ''He
trimer, we have first calculated the scattering matrix So(~) for A < I. In
Table III for some values of A from the interval between 0.995 and 0.975.
we present the positions of roots and poles of So(~), we have obtained at
real z < Q ( A ) . We have found that, for a value of A slightly smaller than
0.9885, the (quasi )resonance closest to the real axis (see Fig. 1) gets on il
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Ta6jiHua III. The dimer binding energy erf and the differences td - E\ , id - E\
ed - E,(2)* and td - E[2)" (all in niK) between this energy and the trirner exited-state

E(2) and the virtual-state energies E{2]'\ E\2]" depending on factorenergies
A.

M)

A
0.995
0.990
0.9875
0.985
0.980
0.975

(d

-1.160
-0.732
-0.555
-0.402
-0.170
-0.036

td ~ Ej •

0.710
0.622
0.573
0.518

0.39616
0.2593671545

-
-

0.473
0.4925
0.39562

0.2593674502

0.222
0.097

0.009435

-
-
-

0.00156

/?max (A)

723
910
1046
1228
1890
4099

and transforms into a virtual level (the root of So(^)) of the second or-
der corresponding to the energy value where the graph of So(^), z 6 R,
z < €rf, is tangent to the axis z. This virtual level is preceded by the
(quasi)resonances z = (-1.04 + iO.ll)mK (z/\td\ = -1.58 + i 0.168) for A =
0.989 and z = (-0.99 + i 0.04) mK {z/\td\ = -1.59 + i 0.064) for A = 0.9885.
The originating virtual level is of the second order since simultaneously with
the root of the function So{z), also the conjugate root of this function gets on
the real axis. With a subsequent decrease of A the virtual level of the second

-,(2). oforder splits into a pair of the virtual levels Et and E\ , Et < E\
the first order which move in opposite directions. A characteristic behavior of
the scattering matrix SQ(Z) when resonances transform into virtual levels is
shown in Fig. 2. The virtual level Et moves towards the threshold td and
"collides" with it at A < 0.98. For A — 0.975 the function S0{z) has no longer
the root corresponding to E\ . Instead of the root, it acquires a new pole
corresponding to the second excited state of the trimer with the energy E\ .
Note that though the virtual levels Et and Et appear beyond the domain
n ' 5 \ already at A = 0.985 the point E\ turns out to be inside this domain.
Therefore, it should be considered as a "true" virtual level of the trimer. We
expect that the subsequent Efimov levels originate from the virtual levels just
according to the same scheme as the level E\ does.

The other purpose of the present investigation is to determine the mech-
anism of disappearance of the excited state of the helium trimer when the
two-body interactions become stronger owing to the increasing coupling con-
stant A > 1. It turned out that this disappearance proceeds just according to
the scheme of the formation of new excited states; only the order of occurring
events is inverse.

The results of our computations of the energy E\ when A changes from
1.05 to 1.17 are given in Table IV. In the interval between A = 1.17 and
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PHC. 2. Graphs of the function So(z) at real z < ed for three values of A < 1 .
The notations used: E* = JS(

(2)7|ed|, E** = E\2)"/\ed\.

Ta6jiHiia IV. Dependence of the dimer energy ed and the difference (d

between this energy and the trimer exited-state energy Ej:- on the factor A.

?W

A
1.05
1.10
1.15
1.16
1.17

U (mK)
-12.244
-32.222
-61.280
-68.150
-75.367

U - Ef > (mK)
0.873
0.450
0.078
0.028
0.006

Pmax (A)
300
200
150
120
120
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Ta6jiniia V. Dependence of the dimer energy Q and the difference td — Et

between this energy and the trimer virtual-state energy Et on the factor A.

A
1.18
1.19
1.20
1.25
1.30
1.35
1.40
1.50

U (mK)
-82.927
-90.829
-99.068
-145.240
-199.457
-261.393
-330.737
-490.479

U - £t
(1)* (mK)

0.001
0.016
0.057
0.588
1.831
3.602
6.104
12.276

Pmax (A)

no
110
100
85
70
70
55
50

A = 1.18 there occurs a "jump" of the level E\ on the unphysical sheet
and it transforms from the pole of the function So(^) into its root, E, ,
corresponding to the trimer virtual level. The results of calculation of this
virtual level where A changes from 1.18 to 1.5 are presented in Table V. For
all the values of A presented in Tables IV and V, the dimer possesses an only
bound state. We have found that the first excited state of the dimer appears
only at A = 6.81.

Note that in the case of finite potentials the geometric characteristics of
the domain I l ' s ' where the function So(z) can be calculated reliably, are only
determined by the value of |e<i(A)| (see formula (9) for \i = +oo). When | Q ( A ) |

increases, the domain II^5) is enlarged. It is easy to check that the energies
of the excited state level Et (A) and of the virtual level E\ (A) given in
Tables IV and V belong to the corresponding domains II^S'(A). For A > 1,
this results in a weak dependence of the calculated values of is'1'(A) and
E\ (A) on the parameters Ng, Np and (this is especially important) on the
parameter pmax-

In essential, we chose the values of the cutoff hyperradius pmax given in
Tables I I I -V from the scaling considerations. As a matter of fact, we took
the value of pmax following the formula

Pmax(A) = (33)

where the "constant" C\ — {\l\(-d\ pn corresponds to an appropriate

choice of /9max at A = 1. It has been established in [24-26] that such a choice

is ensured if pn = 400--600 A. In determining the values of pmax(A),
A=l
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indicated in Table III, we followed the formula (33) literally. As the "'constant'"

Ci, we took its value corresponding to the base value of pn' m a x
A = l

values of /?max(A) presented in Tables IV and V correspond to the choice of

=600 A. The

in the interval within 400 and 800 A. All the results presented in
A=l

Tables III - V have been obtained with the grids parameters Ng = Np = 600.
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Kolganova E.A., Motovilov A.K. E4-98-243
On the Mechanism of Formation of the Efimov States
in the Helium He Trimer

A mechanism of dissappearance and formation of the Efimov levels of the
helium He3 trimer is studied when the force of interatomic interaction is changed.
It is shown that these levels arise from virtual levels which are in turn formed from
(quasi)resonances settled on the real axis. The resonances including virtual levels
are calculated by the method based on the solution of the boundary value problem,
at complex energies, for the Faddeev differential equations describing the scattering
processes (2+ 1 -> 2 + 1; 1 + 1 + 1). All the calculations are performed with the
known interatomic Aziz He-He-potential HFD-B. A very strong repulsive
component of this potential at short distances between helium atoms is approximated
by a hard core. A special attention is paid to the substantiation of the method used
for computing resonances and to the investigation of its applicability range.

The investigation has been performed at the Laboratory of Computing
Techniques and Automation and at the Bogoliubov Laboratory of Theoretical
Physics, J1NR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 1998

Колганова Е.А., Мотовилов А.К. Е4-98-243
О механизме возникновения ефимовских состояний
в тримере гелия Не

Исследуется механизм исчезновения и возникновения ефимовских уровней
у тримера гелия Не3 при изменении силы парного взаимодействия. Ус-
танавливается, что эти уровни возникают из виртуальных уровней, которые, в
свою очередь, получаются из (квази)резонансов, садящихся на вещественную
ось. Для вычисления резонансов, включая виртуальные уровни, используется
метод, основанный на решении при комплексных энергиях краевой задачи для
дифференциальных уравнений Фаддеева, отвечающей процессам рассеяния
(2+ 1 —> 2 + 1; 1 + 1 + 1). Все расчеты производятся с известным межатомным
Не-Не-потенциалом Азиза HFD-B. Очень сильная отталкивательная компонен-
та этого потенциала на малых расстояниях между атомами гелия аппрок-
симируется твердым кором. Особое внимание уделено обоснованию
используемого метода расчета резонансов и исследованию областей его приме-
нения.

Работа выполнена в Лаборатории вычислительной техники и автоматизации
и Лаборатории теоретической физики им. Н.Н.Боголюбова ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 1998
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