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Abstract

Nuclear Power Plant (NPP) surveillance and fault diagnosis systems in Dutch Borssele
(PWR) and Dodewaard (BWR) power plants are summarized. Deterministic and stochastic
models and artificial intelligence (AI) methodologies effectively process the information from
the sensors. The processing is carried out by means of methods and algorithms that are
collectively referred to Power Reactor Noise Fault Diagnosis. Two main schemes used are
failure detection and instrument fault detection. In addition to conventional and advanced
modern fault diagnosis methodologies involved, also the applications of emerging technologies
in Dutch reactors are given and examples from operational experience are presented.

1. INTRODUCTION

The Netherlands has two nuclear power plants. The first Nuclear Power Plant Dodewaard
started its production of electricity of 54 MWe (163.4MWth) in March 1969. This is a small
BWR reactor is cooled by natural circulation. Power increased to 60.4 MWe (187 MWth).
During the 1997, the owner (SEP, Dutch Electricity Production Companies, GKN N.V.) of the
plant decided to stop the operation although it was licensed until 2004. Reactor is shut down and
preparations are being made for its decommissioning.

The second NPP is the Borssele owned by EPZ-NV (Electriciteits Productie-maatschappij
Zuid-Nederland). The reactor is built by KWU-Siemens and first core cycle started at the
beginning of 1974. It is a Pressure Water Reactor (PWR) with two coolant loop and two steam
generators and a pressurizer. The reactor thermal power is 1360 MWth with electric production
of 480 MWe. Borssele NPP had major plant modifications in 1997 in order to meet advances in
technology and regulatory requirements, after operation of 23" core cycles [1]. At the beginning
of 1998 the reactor started again its electricity production.

The Netherlands Energy Research Centrum ECN started with reactor noise studies as early as
in 1962 with noise measurements at zero-power on an Argonnaut type low flux reactor; these
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these studies were extended to power reactors after 1970. Borssele NPP experiments were started
in 1974. The Dodewaard reactor noise measurements were started by KEMA in 1976 and later
jointly conducted by TU-Delft Interfaculty Reactor Institute (IRI) and GKN N.V.

Both power plants mentioned above played an important role in the reactor noise analysis,
monitoring and development of advanced techniques for diagnosis. Data obtained from the
reactors have been a driving force for the reactor noise analyses. It gave a feedback to
benchmark analysis for measuring power reactor noise at PWR (SMORN-III in 1981), core
physics parameters estimation (SMORN-IV in 1985), anomaly detection and testing benchmark
(SMORN-VI in 1992) and testing the Neural Network Methodology (SMORN-VII, 1995).

The Dodewaard reactor also became a very important facility to study stability in (natural
circulating) BWRs and its monitoring. The BWR reactor can be unstable under unfavorable
conditions and circumstances caused by a feedback between neutronics and thermal hydraulics,
which may result in excessive oscillations of the flow rates or the reactor power.

In this paper, achievements from both reactors are presented in power reactor noise analysis
during first decade of operation and developments in fault diagnostics in the second decade.

2. BORSSELE NPP NOISE MEASUREMENTS, ON-LINE MONITORING AND
DIAGNOSTICS

The Borssele NPP noise measurement started in 1974 after a request of the Directorate of
Labor of the Ministry of Social Affairs (KFD). Aims of these measurements have been to
determine the noise patterns of the reactor as completely as possible. During the period of 1975
and 1981, that is in first ten core cycles, periodic measurements were done until tenth core in
three days measuring campaigns. The increasing number of sensors are employed and analyzed
off-line. After the 10® core cycle in 1981 until the end of 23™ core cycle in 1997, measurements
were carried out with an on-line system.

These measurements are reported in SMORN (Specialists meetings on reactor noise), up to
1995 in seven meetings, IMORN (regular informal meetings), until '97 in 27 meetings, and
POWER PLANT DYNAMICS, CONTROL and TESTING Symposia until 1995, in nine
meetings and numerous IAEA (-TCM) and other meetings including a number of publications.

2.1 BORSSELE PRIMARY SYSTEM INTEGRITY AND SENSOR TESTING
MEASUREMENTS

The main interest is to measure the reactor noise at reactor power by ex-core and in-core
neutron detectors, thermocouples and pressure signals of the primary system. The main
emphasis is to develop measuring techniques and the methodology to understand core behavior
during the operation. Using ex-core neutron detectors at four different axial levels and at four
different detector positions the method for Core Support Barrel Motion analysis was developed
[2]. Also the inlet and outlet temperature noise signal, primary pressure signal are investigated.
For neutron detectors, the low-frequency spectrum determines the total r.m.s value of the noise,
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which is highly dependent on the boron concentration of the primary coolant. The reactor noise
contributions are measured and results reported to the reactor operation. In some cases super
intended of the reactor control and maintenance group requested further information about
specific events and sensor testing. During the stretch-out operation, where boron concentration is
zero, we observed effects on reactivity and noted that pressure noise is linearly dependent on
temperature of the coolant. From these measurements the temperature dependent pressure
coefficient is derived. In-core and ex-core neutron detector signals and their relation to primary
pressure signals are investigated at different operational conditions. These measurements formed
a very large database as AC/DC signals, information files and resulted in fingerprints of the
spectral patterns.

A new technique was developed to measure core support barrel motion (CSBM). This
technique uses at least four ex-core neutron detector signals. From linear combinations of
CPSD's of all neutron detector pairs the reactivity noise spectrum and the core motion spectra are
separated from each other and the absolute motion amplitude and direction of the motion is
derived [3]. Later this technique was implemented on-line and also a special PC-version was
developed for real-time measurements.

In-core self-powered neutron detector signals are measured and several spectral peaks are
investigated with relation to ex-core, incore, primary pressure and main coolant pump vibration
signals [3,4,5].

The changes on the standing waves depending on the temperature of the primary coolant
system are investigated through pressure signals. These standing waves extend over the whole
coolant circuit, with nodes inside the pressure vessel and the two loops oscillating in opposite
phase. The wavelength derived from these experiments the total average length of the two loops
could be estimated; Its value - 142.6 m — corresponds to the actual length.

Temperature noise signals of the core-exit, the core—outlet and the core-inlet noise signals
are investigated and the response time of the thermocouples are derived. Core inlet thermocouple
response times are about 1.20 £ 0.10 s., core outlet 2.32 £ 0.12 s. and core exit thermocouple
response times range from 0.31s t0 0.92 s.

2.2 ON-LINE MONITORING AND HIGHLIGHTS OF DIAGNOSTIC STUDIES FOR THE
BORSSELE NPP

In 1981, the first patch panel was built for 90 signals, on which 32 signals are directly
connected to the on-line system. An on-line data acquisition system provides programmable
signal conditioning and conversion. The converted data can be used locally or transmitted
through the data transmission system to ECN for signal analysis, monitoring and failure
detection. Information on the structural integrity thus obtained gave rise to:

e predictive maintenance;

e carly detection of failures and minimizing the detrimental effects on the internal parts

and diagnostics of the failure;
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e reduction on inspection cost and direct possibility for in-situ testing of measuring
channels;
e remote control possibilities in case of unforeseen difficulties.

This system has ability of continuous monitoring of 32 selected DC and AC signals and circular
database of three elapsed days. System used on-line multi-channel signal processing in both time
and frequency domain. Real-time data and the processed results are block-wise transferred to a
large block of shared memory every 2 s. or 4 s., which is accessible commonly to several users
and other real-time diagnostic applications. The part of the calculations for further analysis is
performed in the distributed network system in other PC- or workstation-based systems through
the Ethernet. The on-line analysis for testing complete measuring electronics and sensors in situ
is enhanced. The test of thermocouples and other sensors response time and frequency and time
characteristic are worked out for model-based analysis. The real-time core support barrel motion
analysis is carried in routine base [6,7]. Most important is the monitoring of the secondary
system, therefore measuring channels were extended by steam generator steam flow, steam
temperature, steam pressure, water level and the feedwater flow, temperature, pressure.
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Fig.1: Real-time NPP (Borssele) monitoring overview..

In case of emergency, it is important to be able to access all dynamic measurement channel
information determined earlier for comparisons. The database is made until the end of the core
cycle 23™, while, database is created for the whole core cycle of operation between 1982-1997.
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In the course of time, model and method developments and computer enhancements
succeeded to work in parallel. In the beginning of the years ’90, early failure detection
techniques, decision making and reliability became important issues. Therefore, a general
sequential decision reliability concept and a failure rate assessment methodology is introduced
for systems in which decision making is an integral part of the operational [8].

The effectiveness of the failure detection by adaptive Lattice modeling using Kalman
Filtering methodology is introduced and implemented in Borssele NPP [9].

Lattice parameters calculated in real-time are used to calculate the Mahalanobis distance for
discrimination, which is termed as feature selection in the pattern recognition terminology. The
Mahalanobis distance in essence is sensitive to the changes in the system dynamics through the
change of the pdf of the multivariate normal distribution. This implies that the failure sensitivity
analysis of the failure detection system can be carried out on a statistical basis. Also DC signals
are used for the failure detection by using cumulative sum test (CUSUM) by accumulated
information [10].

Studies are performed for signal
validation together with sensor failure by

B St ~(*)—{serT] m? modeling the steam generator and pressurizer
| se2 | + of Borssele NPP separately in state space
—# using  Kalman filtering  methodology

[11,12,13]. The method used in studies
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predetermined bound, the estimator indicates
the possibility of failure according to a certain
decision making scheme. To this end a sequential failure detection technique is implemented.
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Nneural network (NN) studies and applications started in about 1991. The first application
was implemented for the pressure signals spectra measured at the different temperatures. A
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and measured signals.

neural network was used to identify the average temperature from the measured peak position
which appeared due to a standing wave [14]. The potential of NN for sensor validation and plant
monitoring was noted. For these studies the autoassociative NN structure was extensively used
[15,16,17,18]. The type of network was feedforward and the training algorithm was standard
backpropagation (BP). Neural network structures can be modified according to the information
provided at its input, in a temporal base so as to train the network with changing process

environment. This can be carried out

However, since the BP algorithm
was not efficient and effective
enough, advanced training algo-
rithms were also considered and
employed [22,23].
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Fig.8: Monitoring display by real-time neural network; Measured and NN
estimated (light) values.
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The studies were later integrated into two European projects on severe accident management
and in these projects self-organizing neural networks were employed to the big volume of the
data subject to processing [24,25,26,27,28,29]. By means of this, data reduction is performed and
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the task is formed into a shape suitable for execution by feedforward NN afterwards. This work
eventually resulted in an on-line NN plant monitoring system applied to the plant.
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sensors (reactor core) [29].

In parallel with the advent of new technologies, new methods are being developed for the
effective utilization of the techniques involved in these technologies. With respect to advanced
data analysis, specially, in addition to powerful Fourier transform techniques, a relatively recent
development appeared in the applied mathematics as a new technology. This method introduce
some new potentialities in data analysis since they can detect and analyze localized structure in
signals in contrast with Fourier transform, which spreads the information throughout the time
interval used. The new mathematical tool for signal analysis is the wavelet transform. This
powerful tool analysis the dependence of signal on scale, position and signal dimensions. The
adaptability property of wavelets is especially useful in plant monitoring where the signal
energy is concentrated at lower frequencies in slow developing transients as well as in rapid
transients where the signal energy is concentrated at higher frequencies. During the last few
years it is explored in many areas of application for NPP signal analyses [27,30,31,32,33].

2.3 HARDWARE/SOFTWARE SYSTEMS FOR SIGNAL PROCESSING AND PROCESS
MONITORING

Condition monitoring was one of the spin-offs of ECN’s ongoing research program at the
beginning of 90’s. Successful system monitoring through the multi-user system used in on-line
monitoring of Borssele NPP gave idea in parallel developments in WorkStation and powered PC
line. A series of single user PC based systems were developed and used for condition
monitoring.
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The first system build was DSA-1: it is a graphical enhanced real-time data acquisition
system based on PC with A/D converter and Digital Signal Processing Card DSP using upto four
signal channels. This system has the ability of calculating in time and frequency domain, all
combinations of signals in same time. Also real time AR-modeling up to four channels using the
Levinson-Durbin algorithm is addead to software. Model orders can be selected depending on
Akaike’s information criterion with minimum of 20. Measured and model-based spectra can be
compared and displayed simultaneously. Real-time display of step response, impulse response
function and optional calculation of decay ratio. System was later upgraded and selectable alarm
settings on the identified functions or parameters, e.g., RMS values, response time, decay ratio
(DR) and damping coefficients were added. A special unit was built and installed at the
Dodewaard NPP in 1994 for the on-line monitoring of stability of the reactor using three reactor
safety channel signals for operator support.

The next signal analysis and monitoring system is the DSA-2 system. It has 8- analogue
measuring channels with advanced ADC card of sigma-delta technology (CADSF), which is able
to achieve signal to noise ratio of 90 db antialias filtering and digitizing the analogue signals with
16 bits accuracy. DSP card (SPIRIT30) using TMS320C30 processor is used for multichannel
signal processing. This system is operating two main programs: the first program is multichannel
reactivity calculation using the solution of inverse kinetic calculations in real-time. The second
program is a general real time noise analysis in time and frequency domain. The system is able to
calculate all available 8-channels with all their possible cross combinations in time and
frequency domains for 256 time and frequency resolutions and a maximum frequency up to 1
kHz. It uses exponential averaging with selectable given time window for forgetting the pasted
time. Coherence and Phase calculations are added to real time operation after every spectral
calculation and the exponential averaging. The system is used in various types of reactors in the
Netherlands and also in Switzerland PSI and Indonesian Multi-Purpose reactor of 30 MWth. In
the very near future the system will be used during the start-up experiments of HTTR (High
Temperature Engineering Test Reactor of Japan (JAERI-Oarai) [34].

The third up-grade is the DSA-3, based on previous systems; is called “Primary System
Integrity Monitoring Device”. The system is designed for the on-line and real-time
measurements of Core Support Barrel Motions “CSBM” in PWR type NPPs, using radial pump
vibrations signals. DSA-3 measures in real time all cross information (28 in total) as well as
phase and coherence information and in the same time it calculates decomposed spectra of the
neutron detector signals to the CSBM analysis. The system displays in real-time resulting core
motion amplitude and direction as well as the reactivity spectrum and all measured functions on
request.

The fourth upgrade (DSA—4) was built and tested for instantaneous boiling detection or any
type of anomaly detection for observing specific out-of-core experiments. It is specially designed
for use at High Flux Reactor (HFR) experiments. It has the same functionality as the DSA-2
system only all measured functions are preserved with pre-defined and alarm bands and alarm
indication for any sudden change in the monitored patterns.

DSA-5 system is a combination of DSA-2 basic functions with addition of real-time
spectral pattern recognition using adaptive neural network for condition monitoring [35]. The
neural networks are known as powerful pattern classifiers. They are able to respond in real-time
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to the changing system state descriptions provided by continuous sensor outputs. This on-line
spectral pattern recognition system uses various frequency functions (PSD, CPSD, Coherence,
Phase and Transfer functions) obtained from a variety of signals of the reactor. Adaptive learning
facility makes it possible for the network to learn (new) real-time patterns and to extend its
generalization power. This can happen if the error relay between the predefined desired and
testing error. The system is able to follow 256 spectral points in real time measured and
predicted functions by adaptive autoassociative neural network and the deviations between
measured and predicted patterns with allowed error limits. When these alarm limits are exceeded
adaptive learning stops and prediction continues while the severity level of the exceeded alarm is
given as fault identification. It has fast learning capability and display facility for selected
function.
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3. DODEWAARD NUCLER POWER PLANT MONITORING AND DIAGNOSTICS

The Interfaculty Reactor Institute (IRI) in Delft has a rather long history in using noise
analysis for obtaining information on the status of nuclear reactor. In the past 20 years, research
on Dodewaard reactor demonstrated that noise analysis is a powerful and convenient tool for
studying the characteristics of a boiling water reactor. Analytical studies comprised the optimum
way of using the noise signals available for an early and adequate detection of an anomalous
situation.
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3.1. BOILING WATER REACTOR NOISE AND STABILITY MEASUREMENTS

In 1978, during the eight-core cycle, noise measurements started to characterize the noise
patterns of the principal reactor parameters and to identify the noise sources in the reactor. These
identifications form an essential part in improving the knowledge of the overall dynamic stability
of the reactor system [36]. In these measurements, ex-core and incore (LPRM) neutron detector
signals, reactor pressure and steam flow, temperature signals were used and their mutual
coherence and phase information were studied. Research was carried out for in-core feedback
effects where information was deduced from neutron noise measurements [37]. Incore power
feedback effects have been studied by radial coherence measurements where the coherence was
found to be dependent on detector distance and frequency. The result indicated that even such a
small core reactor does not behave as a point reactor [38]. The sub-channel coolant flow rate
measurements have been carried out using noise signals of both in-core neutron and gamma
detectors [39]. It has been found that the measured velocities were different from those obtained
by neutron sensitive twin detectors. These measurements with two sets of detectors indicated that
the noise correlation measurements in BWRs measure the velocity of steam bubbles. However, a
correction must be made for void drift between different sub-channels. Difference is explained
by the larger field of view of the gamma detectors compared to the neutron detectors [40]. A
fairly large discrepancy remains between the recirculation flow as obtained by the incore
measurements and by thermocouple noise correlation in the downcomer. The coolant velocity
profile over the core is measured by means of twin self powered neutron detectors [41]. The
challenging study has been carried out experimentally and theoretically for the study of effective
time constant related to heat transfer from fuel to coolant which is a very important parameter for
dynamic behavior and thus the stability of the reactor. Here, the measured fuel time constant was

found to be 2.0+ 0.4 s.

Instabilities can result to excessive oscillations of the reactor power or of the coolant flow
rate, therefore extensive attention is paid for BWR stability and numerous of experiments model
calculations were made. Several methods have been tried in time and frequency domain analyses
of the neutron detector noise signals at different experimental conditions [41]. The impulse
response of the ARPM signal can be estimated from the AR-model and it is observed that system
has not a pure second-order oscillatory behavior but superimposed on it a exponential decay
which leads to third-order system. Decay ratios and the frequencies, the impulse response and
NAPSD are obtained by least-squares-fitting. Least-squares fitting of the impulse response and
NAPSD function resulted in the decay ratio. From the experiments the r.m.s ratio of the APRM
signal of 0.8-1.3 Hz and 0.4-0.8 Hz is a linear function of decay ratio. This gives also very quick
check for the measured decay ratio by other means. From the measurements the maximum outlet
void fraction as a function the decay ratio is derived by spectrum fitting [41]. Data of the noise
measurements were used to validate computer codes and studies of the physics of the reactor
especially with respect to natural circulation, the oscillatory behavior observed during the start-
up measurements [42].

Measurements, taken in the Ringhals-I BWR, show that instability occurred at high power
and low core flow. It was found that both global (in-phase) and regional (out-of phase)
oscillations occur, the global with low DR but large signal amplitude. Methods for obtaining the
stability characteristics of both modes separately from neutron noise signals were developed. The
DR of the out-of-phase mode appears to be a good indicator of the margin to instability [43].
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3.2. DEVELOPMENT OF ANOMALY DETECTION TECHNIQUES

Safe operation of NPP can only be guaranteed in case of a timely and reliable detection of
anomalies, followed by a proper corrective action. In sophisticated anomaly detection, several
distinctive tasks have to be performed successively by signal processing, feature extraction,
feature compression and decision making [44,45,46]. During the first process, the information
contained in the noise signals is presented as a function of time in a more suitable way.
Thereafter a relevant feature of this new time signal is extracted and compared to ‘normal’
feature values such as DC value, standard deviation, AR parameters, residual noise etc. Finally, a
reliable decision has to be made whether the system is still normal. Deviations of the system
from the AR model show the change of characteristics (feature extraction) which can be
observed in the residual noise. Here three ways of feature extraction and comparison of residual
noise have been studied and compared; the first way is to compare extremes of the residual noise
with thresholds based on the standard deviation under normal condition. Secondly, comparing
the distribution of the amplitude of the residual noise with the expected distribution. Finally,
using sequential probability ratio tests (SPRT).

The performance of an anomaly-detection method has been studied by three detection
parameters, namely: the false alarm probability (FAP), the alarm failure probability (AFP) and
average time to alarm (ATA). These rates can be determined from the probabilities. The
important difference between the SPRT and the former methods is that a decision about the state
of the signal is not taken every time step of the signal. Moreover, the number of time steps
between two decisions is not constant. For optimization of the anomaly detection method, the
false alarm rate (FAR) should be as low as possible and the average time to alarm (ATA) as short
as possible. Study showed that the SPRT method gives the fastest response to a change in
standard deviation of the residual noise for given false alarm rate (FAR).

The application of an artificial
neural networks (ANN) for the
Dodewaard reactor stability monitoring
was studied [45]. A  three-layer
perceptron was trained on synthetic
autocorrelation functions to estimate the
decay ratio and the resonance frequency
from measured neutron noise. Training
of the ANN was improved by adding
noise to the training patterns and by

02 applying non-conventional error

oo b 1 ) . oS definitions in the generalized delta rule.
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was compared with those of conventional

. stability monitoring techniques. It is
(ATA) for the three anomaly detection found that the training is capable of

methods as a function of the false alarm monitoring  the  stability of  the

rate (FAR) (e =100 Hz; qngmaly : 50% Dodewaard. The ACF of the second

increase in standard deviation) {44]. order system and the Dodewaard neutron
noise are given in the Fig.17.

Fig.16: Comparison of the average time to alarm
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input nodes, [44].

the output signal of a second-order
system fed with white noise (upper
graph) and the Dodewaard neutron
noise (graph below) [44].

In the neural network topology auto associative network with three layers was used. In the
first layer the ACF of 60 time lags as a number of input node 60 is filled, in the hidden layer 30
nodes are used and at the output layer DR and resonance frequency are estimated. Study of the
sensitivity analysis is carried for this application [Fig.18]. It is found that the neural network
gives a very accurate estimation of the resonance frequency, network performs very well in
stability monitoring (DR estimation) and also network is more robust than the ACF method.

4. CONCLUSIONS

In this paper a review is given for Borssele NPP noise measurement, real-time applications,
advance methodologies, systems and their applications. The on-line system used for Borssele
NPP has extensive capabilities for comprehensive monitoring of the total power plant. The
processed information is made available by the main computer to various peripheral computers
connected . The system has the capacity of multi-level monitoring as well as multi-tasking
provides the users with a distributed computer system environments. Signal processing is
performed for the following distinctive goals, namely,

o forming a database of signals for the purpose of investigations on earlier serve core cycles,
e information stored during the on-line thirteen fuel cycles can can be used for further new
analyses or emerging researches in PWR NPP diagnostics.
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¢ carly detection of failures or failure trends results in reduction of inspection and maintenance
expenditure.

The muilti-leve] distributed structure of the system has ample flexibility to perform any signal
processing task in the most efficient way. It provides the user with the same degree of
flexibility to implement emerging applications for surveillance.

In the coarse of time several deterministic and stochastic methods have been implemented
and tested in real-time base. The importance of Kalman filtering in the dynamic system may be
regarded as an optimum observer. The optimality of recursive Kalman filter estimates with the
equivalent recursive information update form, provides a modern approach to time series
analysis for sample by sample real-time information processing.

Neural networks are extensively tested and used in real-time operation and the high
performance of these applications are very encouraging.However, the reliability of the neural
network estimations are not yet explicitly addressed yet. Still they can be considered as rather
robust and reliable auxiliary supporting tools for NPP operation; adaptive learning should be
carefully treated during the application. The first applications of the MISO ( sensor failure) and
MIMO (sensor/ system failure) system approach has the ability of indicating failed signals at
different components where this feature can be used for detecting failed component and the
failing sequence. Applications are spread over a wide range of support areas in literature,
including plant parameter estimation, transient event classification and many others.

The multiresolution signal decomposition in real-time implies that the signal is splitted up
into several orthogonal components, so that each component signal can be treated effectively for
enhanced information processing in NNP operation. The signal as well as the spectral
decomposition can be performed in real time for the purpose of enhanced plant monitoring.

The reactor noise study yields very good achievements in the development of the BWR
noise analysis understanding. Several theoretical and experimental results gave well
understanding of the physical phenomena. In spite of the fact that the Dutch Dodewaard reactor
is shut down, there is a wide set of experimental data available for further analysis and
understanding in two-phase flow phenomena as well as stability monitoring.

Three anomaly detection methods, namely the extremes, the distribution and the SPRT
method, were studied and compared with each other . It is found that the SPRT method performs
best under all circumstances studied. The distribution method is superior to the extremes method
in this respect. The performance of neural networks for BWR stability monitoring was studied;
results obtained in the study gives the trade of the implementation but never the less very good
performance was achieved in DR and resonance frequency estimation.
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