QCD space-time description of high-density particle matter in high-energy collisions ... from clean etc to dirty nuclei.

Klaus Kinder-Geiger

Kay Kay Gee BNL

Why at all ? How te 2.

Does it make Sense ?

What then ?

THE PARTON CASCADE MODEL

W
Losed set of balance equations
• partons:

$$k \cdot \frac{\partial}{\partial r}F_{p} = \left(\begin{array}{c} * \\ & & \\ &$$

**

cs — macroscopic doservables	distribution ("Wigner function"):	$k = \begin{cases} \# \text{ of particles } \alpha = g, q, duster, \pi, k, pk = \begin{cases} \# \text{ at time t within olt, position indit around \vec{r}, \\ \text{ energy (momentum) in dE(dk) around E (\vec{k}). \end{cases}$	$k^{H} = (E, \hat{k}); k^{2} \{z = m^{2} \text{ on shell its} $ $k^{H} = (E, \hat{k}); k^{2} \{z = m^{2} \text{ space-tite} $	specify initial state at time t= w= 0;	$\mathcal{T}(t_{*o},\hat{\tau},l_{e},\hat{\iota}) = \frac{d N_{a}(t_{*o})}{d^{3}\tau d^{3}k de}$	D. (E, l) • N. (+)	$\sum_{i=q,i} \left[\delta(E_i - \frac{\alpha}{2}) \delta(k_{2i} \pm \frac{\alpha}{2}) \delta^2(E_1) \right] \left[e^{-\frac{2}{2}i} \delta^2(T_1) \right]$	$\frac{A+B}{\sum} \sum_{i=1}^{N(i)} \left[f_a^{i} \left(\frac{k_{\pm i}}{P_i}, \alpha_o^{a} \right) g_a^{i} \left(\vec{k}_{\pm i} \right) \right] = \nu^2 \left(\vec{r}_i - \vec{k}_i \right)^2 A^{(0)} \left(\vec{k}_{\pm i}, \vec{k}_{\pm i} \right)$
Wichoscopaic degnami	Vorentz invariant 1- particle	Fa (r, k) dt d	$r^{H} = (t, \tilde{\tau});$	Initial value problem:	$\frac{1}{2} (\tau, k) \equiv$	1 (- + 2 - + 90 + 90 	(K2, 22) (K2, 22) (K2, 22) (K2, 22) (K2, 22) (K2, 22) (K2, 2	A+R A+R A+R A+R A+R A A+R A A A A A A A

. 120

 (t_o) : Tor t>to, solve cupled evolutional 2 collisonal cascade in small timestos : 2-skp procedure: trace particle history to = t., + \$t; from to with t. microscopic particle history is contained in $\Delta \mathbf{E}_{\mathbf{k}}\mathbf{k}^{2} \mathcal{E}(\mathbf{T}^{(i)}) \otimes \mathbf{T}^{(i)} \cdot \Theta(\mathbf{\Delta t}_{i} - \Delta \mathbf{E}_{\mathbf{k}}\mathbf{k}^{2})$ $\frac{\Delta t}{\epsilon} \subset (\pi^{(i)}) \otimes \pi^{(i)} \cdot \Theta(\Delta t_i - \Delta |\vec{r}|)$ $\overline{F}^{(i)}(\tau_{i},\tau|z,\tilde{\iota})$ + 2750 $\frac{\Theta}{\partial l_m k^2} \frac{F}{a}(r,k) = \mathcal{E}_a(r) \otimes F_a$ $C_{c}(F) \otimes F_{c}$ Tradicul $F^{(i+1)} = F^{(i)} + \Delta F^{(i)}$ Fluster $t = t_n > t_o$ د . . k. 2 Ha (+, K) $F_a(t,t(n,t)) =$ noter ţ Ω L Ψ ل ل ک At any finite Stenative t. t. H U U ーなー La La H.

121

From shatist porticle currents nerry mom. Honers entropy currents (set donnts- mumber density: presure ?	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
ell. temperature.	$T_{a}(t, t) = \frac{\varepsilon_{a} + R}{\varepsilon_{a}}$

122 .

.

Ì

THERMALIZATION AND CHEMICAL EQUILIBRATION 128

Central Au+Au at $s^{1/2} = 200 \text{ A GeV}$

JETS & MINIJETS IN AA COLLISIONS

"TET QUENCHING" (Wang; Gyulassy)