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Abstract

Using the density matrix renormalization group technique, we calculate numerically the low energy ex-

citation spectrum and magnetization curve of the spin-1 antiferromagnetic chain in a staggered magnetic

field, which is expected to describe the physics of R2BaNiOs(R ^ Y) family below the Neel temperature

of the magnetic rare-earth (R) sublattice. These results are valid in the entire range of the staggered

field, and agree with those given by the non-linear a model study for small fields, but differ from the

latter for large fields. They are consistent with the available experimental data. The correlation functions

for this model are also calculated. The transverse correlations display the anticipated exponential decay

with shorter correlation length, while the longitudinal correlations show explicitly the induced staggered

magnetization.
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The quasi-one-dimensional magnets have been the focus of analytic, numerical and experimental studies

since Haldane pointed out the difference between the integer spin Heisenberg antiferromagnetic (AF)

chains and the half-integer chains in 1983. W By mapping the Heisenberg spin chains onto the 0(3)

nonlinear a-model, '2' he conjectured that the low-energy excitation spectrum displays a finite gap for

the integer spin systems while it is gapless for half-integer spin chains. This conjecture has been verified

by later experiments on quasi-one-dimensional spin-1 materials such as NENP and Y^BaNiOs which

show clear evidence of the Haldane gap. I3' Nowadays, the pure one-dimensional Haldane systems are

fairly well understood, and a reliable estimate for the Haldane gap A = 0.41048(2) J for spin-1 chains

has been obtained by both density matrix renormalization group (DMRG) calculation 141 and finite size

exact diagonalization. '5'

More recent developments on the Haldane systems concern various effects of external perturbations:

doping with magnetic or non-magnetic impurities I6' and applying external magnetic field. The impurity

doping may introduce bound states within the Haldane gap, '7' while applying uniform external magnetic

field splits the degenerate Haldane triplet state into transverse and longitudinal modes. '8' The longitu-

dinal mode becomes softened upon increase of the magnetic field, and at a critical field Hc the system

enters a new phase with long-range AF order. Of course, a staggered applied magnetic field is even

more interesting which would induce non-vanishing staggered magnetization and affect the Haldane gap

excitation spectrum, but such a staggered field cannot be materialized by an external source.

Most recently, a series of experiments performed on the family of quasi-one-dimensional materials with

a general formula R2BaNiOs, '9~16' where R is one of the magnetic rare-earth elements substituting

fully or partially Y (for brevity we denote this replacement by R ^ Y), have made it possible to study

the effect of the staggered magnetic field on the Haldane systems in detail. All members of this family

contain spin-1 Ari2+ linear chains and the in-chain AF exchange coupling is rather strong. (The detailed

structure of this family of compounds is described in Ref. [11]). The reference compound Y^BaNiOs is

found to be highly one-dimensional with negligible interchain interactions, '91 and no magnetic order has

been observed so far even at very low temperatures. '61 Hence it is believed to be an almost ideal example

of the Haldane-gap system. Other members have magnetic R?+ ions in addition to the spin-1 Ni2+ ions.

These ions are positioned between two neighboring Ni chains, weakly coupled to the Ni2+ ions and the

coupling between themselves is also very weak. Nevertheless, these magnetic ions are AF ordered below

certain Neel temperature TV- These ions do not affect the Ni chains substantially above TV, keeping their

Haldane features untouched, but the 3D AF ordered R3+ sublattice below TV has dramatical effects on

these chains, imposing a staggered magnetic field. The neutron scattering experiments on powder samples

and small size single-crystals of NdzBaNiOs and Pr2BaAri05'13'15'lc' show an increase of the energy

gap below the Neel temperature.

We assume that these chains can be still considered one-dimensional, being put in a staggered field

created by 3D ordered R3+ ions at low temperatures. The Hamiltonian can be then written as :

where J is the exchange constant (to be taken as energy unit, i.e., J =1 ). The dimensionless staggered

field h = gSnBHn/J with HK as the physical staggered field, which, in turn, is proportional to the R

sublattice magnetization MR

Hn = aMR. (2)



g=2 is the theoretically predicted gyromagnetic ratio of the Ni ion. The direction of the staggered field

has been chosen as the z axis. This Hamiltonian has been considered using the mean-field theory '17il6l

as well as by mapping onto the 0(3) nonlinear a model (NLSM). !20'

In this Communication we use the DMRG technique to calculate the low energy excitation spectrum

and magnetization curve of the Hamiltonian Eq.(l). The obtained field dependence of the gap and the

staggered magnetization is consistent with the experimental results. These results are valid in the entire

range of the staggered field and recover those given by non-linear a model for small fields but differ

from the latter for large fields. Moreover, we calculate the spin-spin correlation functions for this model.

The transverse correlations display an exponential decay as anticipated for the spin-1 AF chain, with

a shorter correlation length, while the longitudinal correlations show explicitly the induced staggered

magnetization.

We follow the standard DMRG algorithm I4-18-19) to calculate the low-energy excitations of the Hamil-

tonian (1), adopting the periodic boundary conditions (PBC). We use the infinite-chain algorithm up to

chain length N=60 and keep as many as 400 optimized states during each sweep. The largest truncation

errors are of the order of 10~8 for smaller h, while for bigger h, these errors are as small as 10~13, which

means our results are even more reliable for bigger h.

The numerical results for the change of the lowest excitation energies (the Haldane gap) of Hamiltonian

(1) A - Ao are presented in Fig. 1 as functions of the dimensionless staggered magnetic field h. In the

absence of this field the longitudinal (A^) and transverse (A r) modes are degenerate, forming the Haldane

triplet. For non-zero h, these modes will split with respect to each other. Both of them will increase

with the staggered magnetic field, while the longitudinal gap increases faster than the transverse one.

For small staggered fields, the increase of the longitudinal gap will be nearly three times faster then the

transverse ones, while for larger staggered fields, this ratio will decrease, and is is approximately two for

the largest staggered field we considered.
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FIG. 1. The DMRG results for the transverse (solid circle) and longitudinal (empty circle) energy gaps as
functions of the staggered magnetic field for spin-1 chain.

The staggered magnetic moment of the system with chain length N is defined as



(3)

the longest chain in our calculation being N=60. Then the staggered magnetic moment for infinite long

chain Mn can be obtained by extrapolating Mn = limjv->oo Mn{N). Obviously, this quantity is a function

of the staggered field, and our numerical results are shown in Fig. 2. Considering Eq. (2), this figure is

nothing but the relation between the magnetization of the Ni sublattice and the R sublattice, and it is

qualitatively in agreement with the experimental data in Fig. 2 of Ref. [16]. Our numerical results show

that in small staggered fields, the magnetization change linearly with the increase of the field, so we can

easily extract the "zero field" staggered magnetic susceptibility x's'(0)=18.50/J. This value fully agrees

with the results obtained from the transfer-matrix renormalization group I21', Quantum Monte Carlo

I22' and the NLSM calculations, f20' We fit our results using the following function:

=a arctan(6 h) + (1 - -a) tanh(c hd) (4)

with a=0.412, 6=38.106, c=1.195, d=0.621. The fitting line is also shown in Fig. 2. To compare with

the NLSM results '20l in detail, in Fig. 2, we use their analytic relation

Xls){0)h = Mn(l + 1.56M2 + 2AM* + 3.27 M^)

with their value x(s)(0) = 18.7/J as a reference. We see clearly that the analytic expression is very

good for small staggered fields, while for larger staggered fields it deviates from our numerical results

significantly. We have also calculated the magnetic moment for large h which is not shown in Fig. 2.

Our result indicates that the moment should saturate in large enough staggered magnetic field for both

isotropic and (single-ion) anisotropic cases. The unsaturated moment at zero-temperature observed so

far in various experiments tells us that the induced staggered magnetic field on Ni chains is, probably,

not large enough yet. This issue was also discussed earlier. '161
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FIG. 2. The staggered magnetization curve for spin-1 chain. The staggered magnetic field is proportional to
the magnetization of the R sublattice. The numerical results (solid circle) are fitted by a function with four
parameters (solid line) (see Eq. (4 )), with a=0.412, 6=38.106, c=1.195, d— 0.621, respectively; the analytic
results given by non-linear a model are also presented (dotted line).

From the above results, we obtain the values of the transverse as well as the longitudinal gap as functions

of the magnetic moment of the Ni sites, which can be compared directly with the analytic NLSM result



(see Fig. 3). These results are also consistent with the experimental data. I13'20! As for the comparison

with the NLSM treatment we see again that in small staggered fields, the analytic and numerical results

are in good agreement with each other, while for larger staggered fields, the analytic results deviate

significantly from the numerical simulations. Both longitudinal and transverse gaps increase faster in

simulations than the NLSM predicts. Since for our DMRG calculations, larger is the staggered field,

more reliable are the results, so the disagreement of magnetization moment and the gaps between these

two approaches raises a question whether the NLSM mapping is valid or not for large staggered magnetic

fields.
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FIG. 3. The numerical results for the transverse gaps (solid circle) and the longitudinal gaps (empty circle)
versus the magnetic moment on Ni sites; the NLSM results are shown ( solid line for transverse gaps and dotted
line for longitudinal gaps) in the same figure.

Besides calculating the low-energy spectrum of the one-dimensional systems, the DMRG method also

provides a direct and simple way to calculate the spin-spin correlation functions which can shed some

further light on the nature of the system under study. For a pure Haldane system, the correlation decays

exponentially, following

x(z) x( •') I &~~ ̂

where £=6.03 is the correlation length obtained by the numerical study, f4' and A is a constant. When

a staggered field is applied, the AF long-range order will be induced along the ^-direction, so (S$Sf)

will not decay any more. However, {SQS£) - (S$)(Sf) will still decay exponentially. Of course, the

transverse correlations (SfiSf) decay exponentially as before, but with modified exponents. In Fig. 4(a)

and Fig. 4(b), the functions CXX{1) = ln(v7|(S£S,x)|) and C»(Z) = ln(v
//|(50

IS(
2) - <Sg>(Sf>|) are shown

for different staggered fields. We see that both functions decay exponentially following Eq. (5) and the

correlation lengths £xx and £zz decrease with increasing staggered field. As h increases, the reduced

longitudinal correlations decay much faster. We have extracted the correlation lengths and extrapolated

them to infinite chain length by considering the chain length dependence of £xx and £,,. We find that

£x~x ~ A T and £~* ~ Aj,, and both results can be fitted by £ - 1 = 0.402 * A (Fig. 5), which coincides

exactly with f = 6.03 obtained for the isotropic spin chain (h — 0, Ao = 0.41). M This is an independent

check of the self-consistency in our calculations.
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FIG. 4. Spin-spin correlation functions for different values of staggered magnetic field, where / is the distance
between the two spins. Both correlations (SoSf) and (5oS,f) — (So)(S,f) decay exponentially, but the latter decays
faster.



FIG. 5. The inverse correlation lengths fXI' and £.2' for infinite chain length vs. the transverse and longitudinal
gaps, respectively. The solid line is the fitting £ - 1 = 0.402 * A.

In conclusion, by considering a model hamiltonian which describes the physics of a family of mixed-spin

materials in the temperature range below XV of the magnetic rare-earth sublattice, we have calculated

numerically the energy gap and the staggered magnetic moment as functions of the staggered magnetic

field created by the AF long range order. The obtained results are consistent with the experimental data

qualitatively. Our numerical results are also compared with the analytic considerations based on the non-

linear a model. The comparison shows that the NLSM results are good for small staggered fields, while

they deviate from the numerical simulations for larger staggered fields. After submitting this paper we

saw a new report on polarized neutron study of longitudinal Haldane-gap excitations in NdoBaNiOs. '23'

which show somewhat different behavior than expected from the theory. The reason of this discrepancy

has to be understood.
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