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Abstract U

\^^pply \he realistic shell model which includes the coupling between many-particle

(quasi-)bound states and the continuum of one-particle scattering statesfto the spec-

troscopy of mirror nuclei: 8B and 8Li, as well as to the description of low energy

cross sections (the astrophysical 5 factors) in the capture reactions: 7Be(p, 7)8B and

7Li(n,7)8Li.
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I. INTRODUCTION

The solution of solar neutrino problem, i.e., an observed deficit of neutrinos with respect

to predictions of the Standard Solar Model (SSM) [1] , is passing through an understanding

of the capture reaction: 7Be(p, 7)8B. The 8B produced in the solar interior in the reaction

7Be(p, 7)8B, is the principal source of high energy neutrinos detected in solar neutrino ex-

periments. Therefore, if we stay within the framework of standard electroweak theory and

the SSM [2], the observed deficit of those neutrinos can be traced back, at least partially,

to the value of low energy 7Be(p, 7)8B radiative capture cross section which determines the

magnitude of neutrino flux and remains the most uncertain quantity in the SSM [2]. At the

solar energies ( ~ 20keV), this cross-section is too small to be directly measurable. For this

reason, the theoretical analysis of this reaction is so important. On the other hand, whenever

the measurement is feasible (EQM > 150keV), the exact value of the capture cross section

depends : (i) on the normalization obtained indirectly from the 7Li(d!,p)8Li cross section

and, (ii) on the model dependent extrapolation of measured values of the cross-section down

to the interesting domain of solar energies. Experimental data for the 7Be(p, 7)8B capture

cross section are varying strongly [3-7] , though more recent experiments consistently indi-

cate low values (S < 20 eV-b) for the astrophysical factor S = CTCM(ECM)ECM exp(~2TT??),

where r\ = e2ZiZ2Jfiv [6,7]. Also the Coulomb dissociation experiments [8] deduce low value

for the astrophysical S - factor though this value depends strongly on the amount of E2 -

contribution in the Coulomb dissociation which is not yet completely understood.

Many different theoretical models have been applied for the calculation of S - fac-

tor at stellar energies [9-16], and their predictions are often in striking disagreement

among each other, confirming strong model and/or approximation dependence of calcu-

lated cross-section. Part of the theoretical ambiguities can be removed by a simultaneous

study of the 7Li(n, 7)8Li mirror reaction, which has also been studied by several experi-

mental groups [17-19]. Also for this reaction, largely different values for the low energy

capture cross section have been reported [17-19]. In the context of the solar neutrino



problem, the 'Li(n,7)8Li cross section is often used to extrapolate the capture cross sec-

tion for the reaction 7Be(p, 7)8B down to the solar energies at ECM ~ 20keV [6] . But

the 7Li(n,7)8Li reaction cross section at very low energies is also extremely interesting

in itself as it provides the essential element of rapid process of primordial nucleosynthe-

sis of nuclei with A > 12 in the inhomogeneous big-bang models [20-23]. Indeed, in

the inhomogeneous big-bang hypothesis [20-23], the main reaction chain leading to the

synthesis of heavy elements is [22] 1H(n,7)2H(n,7)3H(J,n)4He(i,7)7Li(n,7)8Li, and then

8Li(a, n) i :B(n,7)12B(/3~)12C(n,7)13C, efc, for heavier nuclei. In this sense, the reaction

7Li(n, 7)8Li is a key process to bridge the gap of mass A = 8 and to produce heavy ele-

ments.

The theoretical description of weakly bound exotic nuclei close to the drip-line, such as,

e.g., 8B on the proton rich side of the drip line or n Be, n Li on the neutron rich side of

the drip line, is challenging due to the proximity of particle continuum which implies the

strong modification of effective nucleon - nucleon interaction and causes the unusual spatial

properties (halo structures, a large diffusivity) of nucleon density distribution . Nowadays,

these properties are perhaps somewhat better understood near the neutron drip line than

near the proton drip line. In weakly bound exotic nuclei, number of excited bound states or

narrow resonances is small and , moreover, they couple strongly to the particle continuum.

Hence, these systems should be described in the quantum open system formalism which does

not artificially separate the subspaces of (quasi-) bound (the Q-subspace) and scattering

(the P-subspace) states. For well bound nuclei close to the ft - stability line, microscopic

description of states in the first subspace is given by the nuclear shell model (SM) with model-

space dependent effective two-body interactions, whereas the latter subspace is treated in

terms of the coupled channels equations. For weakly bound exotic nuclei, the validity of

this basic paradigm is certainly questionable, and we propose to change it by considering

the approximation which takes into account coupling between Q and P subspaces in terms

of the residual nucleon-nucleon interaction. This coupling will consistently modify both the

scattering solutions and the spectroscopic quantities for interior bound states.



One possibility for such an approach could be the Continuum Shell Model (CSM) ,

which in the restricted space of configurations generated using the finite-depth potential has

been studied for the giant resonances and for the radiative capture reactions probing the

microscopic structure of these resonances [24-27] . This approach may be insufficient for the

description of low lying excitations, in particular in the nuclei close to drip lines, where it is

essential to have a most realistic description of bound states. For that reason, the corner-

stone of our approach, which is called in the following the Shell Model Embedded in the

Continuum (SMEC), is the realistic SM itself which is used to generate the iV-particle wave

functions. This choice implies that coupling between the SM states and the one-particle

scattering continuum must be given by the residual nucleon - nucleon interaction. The first

"•pplication of the SMEC model has been published recently in Ref. [29] .

As said before, we are interested in describing low lying bound and resonance states in

otic nuclei. For that reason, we restrict the description of particle continuum to the subset

of one-nucleon decay channels. This should be a reasonable starting point for describing both

the microscopic structure of 8B and 8Li and the corresponding reactions: 7Be(p, 7)8B and

7Li(n,7)8Li. Also at higher energies above, e.g., a or t emission thresholds, the one-particle

continuum approximation prohibits a reliable description of more complicated multi-nucleon

decay channels as well as the residual correlations generated in the many-body wave functions

of bound states by the coupling to those channels. In principle, this obstacle can be removed

in future studies and further improvement of the SMEC (CSM) to include more complicated

channels like, e.g., the a - decay channel, can be done following the approach of Balashov

et al. [30] . This rather involved extension of the SMEC (CSM) will not be discussed here

any further. One should also be aware that in the case of two-nucleon halo nuclei or at

higher energies above the threshold for the three-particle decay, the one-particle continuum

approximation is oversimplified.

The paper is constructed in the following way. In Sect. 2, we present some details of

the SMEC model, stressing in particular those elements which differ this model from the

CSM. Sect. 3 is devoted to the discussion of spectroscopic properties of 8B (Sect. 3.1) and



8Li (Sect. 3.2). We shall discuss influence of the residual interaction which couples Q and

P subspaces on the energy and the width of many-body states. We will also discuss an

important self-consistency correction to the average single particle (s.p.) potential which

results from this residual interaction. The self-consistent average potential is then used to

generate radial formfactors of many-body states which enter the coupling matrix elements

between Q and P subspaces. Sect. 4 is devoted to the discussion of 7Be(p, 7)8B and and

7Li(n,7)8Li capture cross sections. Finally, the most important conclusions are summarized

in Sect. 5.

II. THE SHELL MODEL EMBEDDED IN THE CONTINUUM (SMEC)

In the decaying nucleus or in the reaction processes such as, e.g., the radiative capture

process, all asymptotic channels are given by the solutions with outgoing waves. Such

physical systems, in which bound (localized) interior states are coupled to the asymptotic

scattering channels, are called the open systems. One way out of this complication is to

describe the quantum open system together with its environment of asymptotic channels as

the quantum closed system. This implies that the projection operator technique is used to

separate P subspace of asymptotic channels from the Q subspace of many-body states which

are build up by the bound s.p. wave functions and by the s.p. resonance wave functions.

In this latter case, one should use certain cutoff radius to define this part of resonance

wave function which belongs to the Q subspace and the remaining part is put into the P

subspace. In our case, the P subspace contains (N — 1) - particle states with nucleons on

bound orbits and one nucleon in the scattering state, but also this part of the s.p. resonance

wave functions which is outside of the cutoff radius. In fact, we define the P subspace from

the condition

P + Q = l , (1)

which also implies that all wave functions used in the calculations are orthonormalized in

the usual sense. Physically, the closeness assumption for the total system means that the



states of (N — 1) - n cleus which define the asymptotic channels for the studied reaction are

assumed to be stable. This assumption in turn means that the most important channels are

supposed to be those which involve low-lying states of the residual nucleus. In the domain

of low energy excitations and/or for weakly bound nuclei away from the /^-stability line this

is most likely a good approximation. However, in the domain of higher excitation like, e.g..

for the giant resonances, the quality of this approximation which depends on the width of

considered many-body states in N — 1 nucleus, may be hazardous for broad states.

The key element of the CSM is the treatment of s.p. resonances, which on one side may

have an important amplitude inside a nucleus and, on other side, they exhibit asymptotic

behaviour of scattering wave functions [24] . The part of resonance for r < Rcut , where

Rcut is the cut-off radius, is included in Q subspace, whereas the remaining part is left in

the P subspace [24]. The wave functions of both subspaces are then renormalized in order

to em ' e the orthogonality of wave functions in both subspaces. It should be mentioned

that in the earlier formulation of the CSM [28], the contribution of the s.p. resonances both

to Q and P subspaces have been neglected.

In the SMEC calculations, we solve similar equations as in the CSM [24] but , as explained

below, due to specificity of exotic nuclei, we change certain important ingredients of the

CSM. For the bound states we solve the standard SM problem:

HQQ$i = Ei*i . (2)

HQQ = QHQ is identified with the SM Hamiltonian and its <]>, are the iV-particle (quasi-)

bound wave functions. We believe, that for a quantitative description of low lying states in

the exotic nuclei one has to use as a starting point the accurate many-body wave functions

in the Q subspace which are provided by the SM with effective interactions.

The residual coupling of P and Q subspaces is given by the zero-range force

V13 = -VS\a + (1 - aJ/^Mn - r2) , (3)

where P°2 is the spin exchange operator. We assume that the SM Hamiltonian HQQ contains

already effects generated by this residual coupling and we do not modify HQQ anymore.
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For the continuum part, we solve the coupled channel equations:

+) = 0 , (4)

where index c denotes different channels and Hpp = PHP . The superscript (+) in (4)

means that boundary conditions for outgoing scattering waves are used. In our case, we have

ingoing wave in the input channel and outgoing waves in all other channels. The structure

of (N — 1) - nucleus is given by the SM, whereas one nucleon occupies a scattering state.

The channel states are defined by coupling one nucleon in the continuum to a many-body

state of (N — 1) - nucleus.

The SM wave function has an incorrect asymptotic radial behaviour for unbound states.

Therefore, to generate both the radial s.p. wave functions in the Q space and the scattering

wave functions in P space we use the finite-depth average potential of Saxon-Woods (SW)

type with the spin-orbit part included:

(r)
^ - + Vc , (5)

r ar
where / ( r ) is the spherical symmetric SW formfactor:

"1 . (6)

The Coulomb potential Vc is calculated for the uniformly charged sphere with radius

Coupled channel eqs. (4) can be written more explicitly as:

E ) = 0 , (7)
c

where

# « ' = (T + U)6C, + vJ
c, . (8)

In the above equation, T stands for the kinetic-energy operator and vJ, is the channel-

channel coupling generated by the residual interaction. The explicit formula for vJ, is given

in (A4). The s.p. potential in (8) consists of an 'initial guess' U(r), and the diagonal part of



the coupling potential v^c which depends on both the s.p. orbit <f>ij and the considered many-

body state Jv. Obviously, this correction cannot be neglected when generating s.p. wave

function <f>ij for a given Jn. These s.p. wave functions define Q subspace and thus modify

the diagonal part of the residual force. So this implies a self-consistent iterative procedure,

because the change of s.p. wave function changes in turn the correction coming from the

residual force (see the Appendix A). As long as this correction is small in comparison with

the initial average potential, the iterative procedure is fastly converging to the new self-

consistent average potential:

U^(r) = U(r) + vJJsc\r) . (9)

The parameters of the initial average potential (5) are chosen in such a way that the re-

sulting potential U^(r) reproduces energies of experimental s.p. states, whenever their

identification is possible. In the next section, we will show examples of such self-consistent

potentials. The dependence of the generated correction in the potential (9) on isospin of

s.p. states generates a mutual dependence of average potentials for protons and neutrons in

the iterative procedure. Using self-consistently determined radial wave functions instead of

those generated by U(r) means that the matrix elements Vap~f$ (Al) of the residual force V12

depend not only on the s.p. wave functions <j>ij involved but also on the many-body state JT.

This is another interesting aspect of the self-consistent procedure determining the average

potential in SMEC.

The third system of equations in CSM consists of inhomogeneous coupled channel equa-

tions:

(£<+> - HPP)u\+) = HpQ$i = wi (10)

with the source term Wi which is primarily given by the SM structure of N - particle wave

function for state 3>2 . The explicit form of the source term is given in (A7). These equations

define functions w,- , which describe the decay of quasi-bound state $; in the continuum.

The source W{ couples the wave function of N - nucleon localized states with (N — 1) -



nucleon localized states plus one nucleon in the continuum. For zero-range residual force (3),

formfactor of the source term is given by the s.p. wave functions of the same self-consistently

determined average potential U^(r) as used to define the subspaces Q and P.

The full solution of the many-body problem can be expressed by means of three distinct

functions: $; , £% and u>; , and reads [24] :

+"'•)„ 1
frejf<*i\HQP\?E> , (11)

where

H$ = HQQ + HQPG(
P

+)HPQ , (12)

is the effective SM Hamiltonian including the coupling to the continuum, and Gp is

the Green function for the motion of s.p. in P subspace. Matrix HQQ is non-Hermitian

(symmetric and complex matrix) for energies above the particle emission threshold and

Hermitian (real) for lower energies. Consequently, the eigenvalues of HQQ are real for bound

states and complex for decaying states. Matrix HQQ can be diagonalized by the orthogonal

transformation:

with complex eigenvalues: E{ — \i^i , which depend on the energy E of particle in the

continuum. The eigenvalues of HQQ at energies Ei{E) = E, determine the energies and

widths of resonance states. With these changes, one obtains:

for the many-body wave function projected on channel c , where

c
 ?^ = *•• + E

is the wave function of discrete state modified by the coupling to the continuum states.

Hence, this formalism if fully symmetric in treating the continuum and bound state part



*&E (in Eq. (14)) represents the continuum state modified by the discrete states, and Cli (in

Eq. (15)) represents the discrete state modified by the coupling to the continuum. More

informations about those features of SMEC which are the same as in the CSM, can be found

in the paper by Bartz et al. [24].

III. SPECTROSCOPY OF 8B AND 8LI NUCLEI

A. The self-consistent average potential spanning the Q subspace

The essential element of SMEC approach is the construction of Q - subspace. As ex-

plained in the previous section, this is obtained by an iterative procedure which for a given

initial average s.p. potential (5) and for a given residual two-body interaction (3) yields the

self-consistent s.p. potential depending on the s.p. wave function <^j, the total spin J of the

iV-nucleon system as well as on the one-body matrix elements of (N — 1) - nucleon daughter

system. The parameters of different initial SW potentials for [p <g> 7Be] and [n ® 7Li] systems,

which are used in this work are summarized in Table I. These potentials have been obtained

for different parameters (1 — a) of the spin-exchange component in the residual interaction

(3) and for different s.p. orbits 4>i,j which correspond to energies eij (see the second column

in Table I) in the self-consistently determined potential f/^5C'(r). In all cases, the strength

of the residual interaction (3) is Vj2 — 650MeV-fm3. All these potentials have the same

parameters of radius Ro — 2.4 fm, surface diffuseness a = 0.52 fm, and spin-orbit coupling

Vso = —4MeV. Cohen - Kurath (CK) interaction [31] is used as a SM interaction. In Fig.

1 , we show examples of calculated potentials in 8B for the proton s.p. orbital \pz/2 in two

different total spin states: </*" = 2+ and Jw = 1+ . The calculations have been performed

using the initial potential U(r) for (1 — a) = 0.27, which is chosen in such a way that the

self-consistent potential tA5C)(r) yields lp^/2 proton s.p. orbit bound at the experimental

binding energy of ground state (g.s.) J71" = 2+. The same U(r) is then taken both for 2+

and 1+ states. The spectroscopic factor of proton lp^/2 s.p. state in the g.s., is close to 1 for
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CK interaction [31]. This allows to identify position of proton lp3/2 s.p. orbit in Jv — 2+

state, i.e., we demand that U^sc\r) provides lp3/2 s.p. state at —137keV. This choice, as

we shall see in Sect. 4.A, is essential for a quantitative description of 7Be(p, 7)8B radiative

capture cross-section.

The self-consistent average potential U^sc\r) (the solid line in the l.h.s. plot) exhibits

for small r a clear maximum which is absent in the initial potential U(r) . One should also

notice, that self-consistent potentials f/(sc)(2+) and U^sc\l+) are different (compare solid

curves on l.h.s. and r.h.s. of Fig. 1) , in spite of the fact that the initial potential U[r) in

these states is the same. This clearly shows strong state dependence of calculated average

fields and two-body effective interactions. For example, whereas the lp3/2
 S-P- orbit in the

g.s. (J77 = 2+) is at —137 keV , the self-consistent procedure yields this orbit at —2.538 MeV

in the first excited state (Jv — if) .

The dotted lines in Fig. 1 show the equivalent s.p. average potentials U^eq\r) in J71" = 2+

and 1+ states for proton l?>3/2 orbit. For the same a, RQ and Vso parameters as in the initial

potential U(r), parameter V̂  in U^eq\r) is adjusted in order to reproduce the energy of lp3/2

s.p. orbit in U^sc\r). Clearly, U^(r) and U(sc^(r) differ strongly in the potential interior.

However, the potential surface of U^eg\r) and U^sc\r) for both considered Jw is very similar.

This is particularly apparent for Jv = 2+ . The root mean squared (r.m.s.) radius of the

lps/2 orbit is < r2 >1 / 2 = 4.228fm in U^sc\2+) and < r2 >1 / 2 = 4.239fm in U{eq){2+). For

J x = 1+ , the effective surface diffuseness of U^sc\r) is even slightly decreasing. Also the

radial wave functions of the proton 1^3/2 orbit in U^(r) and U^(r) are almost identical

with only a small shift towards the potential interior of the maximum of radial wave function

in U{sc){r).

We have no clear indication concerning the position of proton lpi/2 s.p. orbit. Using the

same U(r) as used to determine U^sc\r) for l;>3/2 s.p. state, we get the lpi/2 proton s.p. orbit

in lf(sc\r) at ePl/2 = +0.731 MeV in Jz = 2+ states and at ePlf2 = +0.311 MeV in J s = 1+

states . Consequently, the energy splitting of P3/2 and pi/2 orbitals is state dependent. It

is Ae = 3.369 MeV, in the initial potential U{r). In £/(sc)(r), it equals Ae = 0.868 MeV
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for r = 2+ , and Ae = 2.849 MeV for JT = 1+ states. In Jn = 3 + states, coupling to the

continuum does not introduce any correction to the position of lpi/2 s.p. state. Therefore,

to obtain the energy and the wave function of lpi/2 state we take the equivalent potential

£/(£?)(3+) to U^{3+) for the lp3/2.

In general, the surface region of average potential shows weak sensitivity to the self-

consistent correction. Deviations from this general rule can be seen for weakly-bound many-

body states having an important admixture of / = 0 and / = 1 neutron s.p. states, i.e., for

halo configurations in the neutron rich nuclei [32]. In this case, the self-consistent correction

may change significantly the surface of the average potential [33]. In the above discussion we

have considered effect of coupling between P and Q subspaces on the average s.p. potential

for the proton orbits. To exclude the effect of Coulomb barrier, in Fig. 2 we show the initial

potential U(r), the self-consistent potential £/(5C'(r), and the equivalent potential U^eq\r)

for neutron \pz/2 s.p. orbit in 8Li where, for the sake of argument, l/>3/2 neutron s.p. orbit in

U^sc\r) is at —20keV. Parameters of the initial potential in this case are: Vo = —33.4 MeV,

RQ = 2.4fm, a = 0.52fm and Vso — —4 MeV. Parameters of the residual interaction (3)

are the same as used in Fig. 1. One may notice that the self-consistent correction to the

average potential is now much stronger than in 8B and, in particular, it changes strongly

the surface of U^sc\r}, as expected for weakly-bound halo nuclei [32].

Fig. 3 shows the dependence of U^sc\r) on the parameter (1 — a) of the spin-exchange

component of the two-body residual interaction (3). The self-consistent potentials for differ-

ent values of (1 —a) have been determined for the lp3/2 s.p. proton orbital (eP3/2 = —137 keV)

in Jx — 2+ . Parameters of corresponding initial potentials U(r) are shown in Table I. We

see that U^sc\r) strongly depends on the the spin-exchange term of the residual force (3).

The largest correction to the initial potential U(r) is obtained for small values of (1 — a), i.e.,

when approaching the Wigner force limit. This dependence of U^(r) on the spin-exchange

component of the residual interaction has a sensible effect on the width of resonances, as we

shall see below.
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B. Spectrum of 8B

In this section and in Sect. III.C, we shall present the detailed calculations of spectra for

mirror nuclei : 8B and 8Li. The SMEC results depend on the following ingredients : (i) the

nucleon - nucleon interaction in Q subspace, (ii) the residual coupling of Q and P subspaces,

(iii) the self-consistent average s.p. potential which generates the radial formfactor for s.p.

bound wave functions and s.p. resonances, and (iv) the cutoff radius for s.p. resonances.

Fig. 4 compares SM energy spectrum for T = 1 states of 8B (on the l.h.s.) calculated in

the p - shell using the CK interaction [31] , with those obtained in the SMEC in different

approximations. The experimental data are plotted on the r.h.s. of this figure. For the spin-

exchange parameter in (3), we take (1 — a) = 0.27. Different sets of coupling matrix elements

are taken into account. In the column denoted 'SMEC', we include coupling matrix elements

between the J~ — 3/2~ g.s. wave function of 7Be and all considered states in 8B. 'SMECl'

and 'SMECl*' columns show the results when also coupling matrix elements between the

Jv = l/2~ first excited state in 7Be and states of 8B are included. In 'SMECl', this

J* = 1/2" state is at the energy (E* = 1.07 MeV) predicted by SM, which differs from the

experimental energy (E* — 0.429 MeV) of this level. For that reason, in the column denoted

'SMECl*', we show results of calculations where energy of J7" = 1/2" state is put at its

experimental position, without changing neither the coupling matrix elements of residual

force nor the effective interaction in Q subspace.

The iterative procedure to correct U(r) and to include the diagonal part contribution

of residual interaction has been described in the previous section. The self-consistently

determined s.p. potential U^sc\r) is then used to calculate the radial formfactors of coupling

matrix elements and the s.p. wave functions. One and the same potential U(r) is used for

the calculation of self-consistent potentials for all many-body states in 8B, and for both

lps/2 and lpi/2 proton s.p. states. These self-consistent potentials for 1̂ 3/2 proton s.p.

state in J*" = 2+ and 1+ states of 8B can be seen in Fig. 1. For neutrons, there is no

correction from the residual interaction, and the average s.p. potential is chosen such that
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it yields l£>3/2 and lpi/2 neutron orbits at —13.02 MeV and —11.16 MeV respectively. These

values have been deduced from experimental Q-values and SM spectroscopic factors. The

parameters of initial potential for neutrons are : Vo = —67.595 MeV (for 1̂ 3/2 state) and

Vo = —70.942 MeV (for lpi/2 state). The remaining parameters are the same as for protons.

The r.m.s. radius of neutron 1̂ 3/2 and lpi/2 orbitals is < r2 > ~ 2.5 fm. We have checked

that this choice of potential parameters for neutrons is not crucial and, e.g., shift of neutron

s.p. energies by ~ 2 MeV does not influence final results of SMEC for the spectroscopy of

8B. Supplementary informations concerning results shown in Fig. 4 can be found in Table II.

The spectrum of 8B is relatively insensitive to certain approximations in SMEC. Ground

state energy relative to the proton emission threshold is reasonably well reproduced by the

SMEC. Zero of the energy scale is fixed at the experimental position of Jn = if first excited

state with respect to the proton emission threshold for all examples of SMEC calculations

which are shown in Fig. 4. The position of g.s. with respect to the energy threshold for

proton emission changes by about 100 keV due to the inclusion of coupling to the g.s. of

7Be (compare columns denoted 'SM' and 'SMEC' in Fig. 4 and in Table II). The coupling

to the excited 7Be* nucleus is relatively unimportant (see columns denoted 'SMECl' and

'SMECl*' in Fig. 4 and in Table II). Calculated width of Jw = i f depends weakly on

chosen couplings (compare 'SMEC' with 'SMECl' or 'SMECl*' columns in Table II) and

for the interaction with (I — a) — 0.27, one obtains approximately half of the experimental

width. Width for J* = i f state depends sensitively on the proportion of direct and spin-

exchange terms (see Fig. 5 and Table III) in the residual interaction, and the agreement

with the experimental value improves when approaching the limit of Wigner force (a = 1).

( Other details can be read in Table III. ) In this limit, the residual interaction Vi2 in (3)

is compatible with SU(4) supermultiplet symmetry [34]. It is well known that this limit

is badly broken in majority of heavier nuclei mainly due to the increasing importance of

spin-orbit coupling. Significant deviations from SU(4) symmetry in nuclei heavier than 16O

have been found by comparing the realistic shell model wave function and the favoured

SU(4) representation [35]. However, in p-shell nuclei, SU(4) is still a good approximation
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[36,37]. The Gamow-Teller transitions have been studied using the SM calculations with

CK interaction showing that the supermultiplet symmetry of SU(4) is well preserved [37].

Comparison of jj and LS couplings in terms of the ratio a/K of their respective energy

scales suggested a gradual increase of a while going from light to heavy p-shell nuclei and,

hence, the growing importance of jj coupling at the end of the p-shell [38]. On the other

hand, realistic SM calculations have shown that the g.s. wave functions have very small

admixture of SU(4) - breaking configuration , both at the beginning and at the end of p -

shell [31,36,39]. Analysis of giant magnetic dipole resonance using the same realistic force

have also shown that salient selection rules of SU(4) remain valid in p - shell nuclei [37].

For that reason, it is encouraging that SMEC calculations in 8B for low-lying many body

resonances and, in particular, the residual two-body interaction which couples Q and P

subspaces, is consistent with these SM findings.

It is instructive to see the energy dependence of J* = 1+ lowest eigenvalue of the effective

Hamiltonian (12) in 8B (see Fig. 6) . The same interaction and potentials as in Fig. 4 are

used. Results shown with the solid line include the coupling of JT = if state to the

channel wave function obtained by the coupling of J71" = 3/2" g.s. wave function of 7Be with

one proton scattering wave function. The dashed line shows results obtained by including

couplings both to the g.s. and to the J* = l/2~ first excited state of 7Be at the energy given

by the SM calculation. Finally, the dotted line shows the results when this first excited state

is placed at the experimental position (E* = 0.429 MeV). The real part of the eigenvalue

depends on the total energy of the system. For the center of mass (cm.) energies less

than about 2 MeV, ER is a decreasing function of energy and for higher energies it becomes

an increasing function of energy. The minimum of ER(E) depends slightly on whether the

coupling to the J x = 1/2" first excited state of 7Be is included. On the contrary, the

imaginary part of the eigenvalue increases monotonously with energy from the threshold

and saturates at higher energies. Different approximations concerning the couplings have

an influence ER and are practically insignificant for TR.

SM energy of the first J x = 3* level is too low as compared to the experimental value

15



(see Figs. 4 and 5). The coupling to the continuum cannot correct for this deficiency of

SM. The width of 3± state differs by at least a factor 5 from the experimental data and

here, again, the agreement between experiment and calculations improves when a —> 1

(see Fig. 5 and Table III). There may be several reason for the observed discrepancy

between SMEC calculations and the experimental data for this state. Firstly, as mentioned

already, SM is not well describing energy of this state. (The CK interaction is somewhat

ss successful in describing spectra of light p-shell nuclei.) Secondly, the wave function of

experimental 3* state is most probably overlapping with the cluster configuration [3He—5Li],

which cannot be adequately described in p-space SM calculations. It is known in mirror

nucleus 8Li, that the 3f state is strongly influenced by the mirror cluster configuration

[3H — 5He] [40] . Moreover, energy of experimental 3* state lies above the threshold for

three-particle decay: 8B —> [3He — p — 4He]. This decay channel which surely contributes

to the experimental width, cannot be taken into account in the one-particle approximation

for scattering continuum. Also correlations which could be generated in Q subspace by

the coupling to this three-particle decay channel are outside of considered model space.

Thirdly, 3f state in 8B cannot couple to the first excited state 1/2" of 7Be but could couple

to higher excited, particle-unstable states such as 7/2~. These couplings cannot be treated

fully consistently in SMEC, because the closeness condition (1) implies that states in (TV —1)

- nucleus must be stable with respect to the particle emission.

C. Spectrum of 8Li

Table IV compares SM energy spectrum with those obtained in the SMEC for T =

1 states of 8Li. SM calculations in the p - shell (Q subspace) are done using CK interaction

[31], like in the case of 8B. Parameters of the residual interaction (3) are also the same as

given in caption of Table II. Parameters of U(r) are given in Table I. U(r) is such that the

neutron lpz/2 s.p. state in U^sc\r) is bound by 2.033 MeV in JT = 2^ state, similarly as the

experimental g.s. of 8Li. The l/>i/2 neutron state is then bound by 1.109 MeV. The r.m.s.
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of lj>3/2 neutron s.p. orbit in U^-sc\r) is < r2 > ~ 3.474 fm. The same initial potential is

used for calculation of self-consistent average potentials for all other many-body states in

8Li and for both IP3/2 and lpi/2 neutron s.p. states.

Coupling to the continuum induces the renormalization of spin-orbit interaction. The

energy splitting of 1̂ 3/2 and lpi/2 orbitals which equals : Ae = 2.302 MeV in U(r), becomes

Ae = 0.924MeV in t/(*c>(2+), and Ae = 3.078MeV in U^(l+) . One should notice that

these splittings are different from analogous splittings in 8B (see the discussion in Sect 3.B).

Hence, the coupling to the continuum breaks explicitly the mirror symmetry of spectra and

wave functions of SM.

The dependence of self-consistent correction to the average potential on isospin of s.p.

states, induces a salient dependence of neutron s.p. potential on proton s.p. potential. This

dependence is very weak in the studied cases of 8Li and 8B. For protons, U(r) is such that

it yields lp^/2 orbit at —14.8 MeV and lpi/2 orbit at —13.9 MeV. These values have been

deduced, similarly as for 8B, from the experimental Q-values and SM spectroscopic factors.

The parameters of U(r) are Vo = -73.066 MeV (for lp3 / 2 state) and Vo = -78.058 MeV (for

lpi/2 state), and remaining parameters are the same as for neutrons.

In the column denoted 'SMEC in Table IV, we include the coupling between J71' = 3/2"

g.s. of 7Li and all considered states of 8Li. 'SMECl' and 'SMECl*' columns show the results

when also the coupling between J* — l/2~ first excited state in 7Li and states of 8Li are

included. In 'SMECl', this J x = 1/2" state is at the SM energy : E* - 1.07MeV. This

energy value differs from the experimental value : E* — 0.467 MeV. For that reason, in

'SMECl*' column we show results where the energy of J1* — \J1~ state is placed at its

experimental position. The coupling matrix elements of the residual force (3) and the CK

interaction in Q subspace remain unchanged in 'SMECl' and 'SMECl*' calculations.

The position of g.s. with respect to the energy threshold for neutron emission is weakly

modified by the inclusion of coupling to the continuum. The energy shift in this case is

smaller than the shift caused by the coupling to J* = l/2~ excited state of 7Li*. In general,
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the coupling of 8Li to 'Li* plays more important role than the analogous coupling of 8B

to 7Be* . Experimentally, 3* state in 8Li lies above the neutron emission threshold and,

for all different examples of SMEC results shown in Table IV, we have put this state at an

experimental position with respect to the neutron emission threshold. Ground state energy

with respect to the neutron emission threshold is not well reproduced by SMEC calculations.

Energies of lowest three states : J* = 2f, 1*, 3* in SM calculation, are too much compressed

as compared to the data. On the other hand, the energy splitting between 3+ state and

the second excited state i f is well reproduced. The width of 3f state does not depend on

the chosen coupling matrix elements and is by factor ~ 10 too small as compared to the

data. The width of J* = if state depends also weakly on the coupling matrix elements (see

columns denoted by 'SMECl' and 'SMECl*') and is comparable to the experimental decay

width.

Fig. 7 compares SM energy spectrum for T = 1 states of 8Li (on the l.h.s.) with those

obtained in the SMEC for different parameters (1 — a) of the residual interaction (3). A

satisfactory agreement with the data for the width of if state is obtained when approaching

the limit of Wigner force (a = 1). ( More details can be found in Table V. ). Also the width

of 3* state improves largely and differs only by factor 3 from the data. We consider that this

agreement is satisfactory in view of the obvious limitations : (i) SM is not well describing

energy of this state, (ii) the wave function of the 3f state is strongly overlapping with the

cluster configuration [3H — 5He] which cannot be reliably described in p - shell calculations

[40], and (iii) 3^ state cannot couple to the first excited state 1/2" of 7Li but could couple

to higher excited states, such as 7/2~, which are particle unstable and cannot be included

in the SMEC model. One should notice that SMEC describes better 3f in 8Li than in 8B

due to the fact that the three-particle decay channel in 8Li is closed.

Contrary to the J1* = 3f state, the J*" = if state in 8Li is well reproduced, in particular,

when the parameter of spin-exchange component in the residual interaction (3) approaches

the limit of the Wigner force. It is interesting to see the energy dependence of second

eigenvalue if of the effective Hamiltonian (12). The results shown with the solid line in Fig.
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8 include the coupling of JT = \% in 8Li to the Jv = 3/2 g.s. of 7Li. One neutron is in the

continuum. The dashed line presents results obtained by including couplings both to the g.s.

and to the J x = 1/2" first excited state of 7Li at the energy predicted by the SM. Finally,

the dotted line shows the results when this first excited state is placed at the experimental

position E* = 0.467 MeV. Contrary to the the case of Jn = if lowest eigenvalue in 8B, now

also the imaginary part TR of the eigenvalue depends on the chosen couplings.

IV. RADIATIVE CAPTURE PROCESSES INVOLVING 8B AND 8LI NUCLEI IN

THE FINAL STATE

A. The 7Be(p,7)8B reaction

The /?+ decay of 8B , which is formed by the reaction 7Be(p, 7)8B at the cm. energy of

about 20 keV, is the main source of high energy solar neutrinos. In the absence of agreement

between different experimental data for this reaction and in view of the disagreement between

different measurements of solar neutrinos, the input of SSM [1] should be compared with

the theoretical values. The cross-section for the reaction 7Be(p, 7)8B remains the main

uncertainty in the input of the SSM.

In the SMEC, the initial wave ty; for the system [7Be + p]j- is :

ibJt (r) r • 1 W
^(r) = £ i ' - ^ - L 2 [K*. x XT X xH (16)

; ,• r I Jm;

and the final wave $ / for the system [8B]JTT=2+ is:

J I (Jf)

(17)
ibjb

 7 L imf

It and 5 denote the spin of target nucleus and incoming proton, respectively. AJ
t
b

s
b

b
 s is the

coefficient of fractional parentage and ulbjb is the s.p. wave in the many-particle state Jf .

With the wave S&i(r) and ^ / ( r ) , we calculate the transition amplitudes:

TEC = C{EC)iuJfhjbja < C8Jfmf \ J.rm >< /60£0 | /O0 >
(18)
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< UJfmf | Jinn >

for El and El and

Tm = il

W

for Ml transitions, respectively. In the above formula, 6 = ra,- — m/, a =

(19)

v/a(o + 1) and :

(20)

The radiative capture cross section can then be expressed as:

9 \kj \hcJ\hcj2s + l 2It

a =

(21)

( 2 2 )

where /4 and s denote the spin of target nucleus and the spin of incoming proton, respec-

tively, [i stands for the reduced mass of the system.

Fig. 9 shows the calculated multipole contributions to the total capture cross section

as a function of cm. energy for different parameters of the residual interaction (3). In the

upper part, the calculation is done for the same parameters of the residual interaction as

used in the calculations of spectra shown in Fig. 4. In the lower part, the calculation

is done for (1 — a) — 0.05, close to the Wigner force limit. The spectrum in this case

was shown in Fig. 5. Parameters of the initial potential U(r) in these two cases can be

read from Table I. The proton threshold energy is adjusted to agree energies of calculated

and experimental if state. The photon energy is then given by the difference of cm.

energy of [p(g)7Be]j+ system and the experimental energy of the 2* g.s. of 8B. As can

be realized from Fig. 9, the El and E2 contributions as well as the total cross-section are

insensitive to the amount of spin-exchange in the residual force. On the contrary, the Ml
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contribution and particularly its resonant part, are strongly dependent on a. Ratio of E'2

and El contributions at the position of if resonance is 8.15-10"4 or 7.72-10"4 depending

on whether the spin-exchange parameter equals 0.27 (the upper part of Fig. 9) or 0.05 (the

lower part of Fig. 9). The experimentally deduced value for this ratio 6.7tiJ • 10~4 [42] is

consistent with our finding but does not allow to distinguish between different spin-exchange

parameters.

El component provides the main contribution to the total capture cross-section in the

reaction 7Be(p, 7)8B . This non-resonant contribution is a good measure of the spatial

extension of 2f wave function, which in turn is determined by the extension of the proton

lps/2 orbit. It is essential for the calculated cross-section that the lps/2 proton orbit in the

self-consistent average potential is bound by 137 keV. Modification of this value by different

choice of the depth parameter VQ in U(r), introduces the change in SEl which can be much

larger larger than the change due to uncertainties in the potential radius RQ or its surface

diffuseness a.

Fig. 10 shows the total 5 - factor as a function of the cm. energy. The SMEC results

have been obtained for a ~ 0.95. Different multipole contributions to the total cross section

for this parameter of the residual interaction (3) have been shown in the lower part of Fig.

9. Together with SMEC results for the 5-factor, we show experimental data [6,7]. The low

energy dependence of S(E) can be fitted by [13]:

S(E) = 5(0)exp(a£ + J3E2) . (23)

In our case, the fit of S(E) using (23) in the range of cm. energies up to 100 keV yields

5(0) = 19.594 eV-b, a = -1.544 MeV~\ /? = 6.468 MeV~2. As compared to the similar

fit of S - factor calculated in the Generator Coordinate Method [13] , we find smaller 5(0)

parameter and slightly bigger values for the parameters a and ft. Recent experimental

determination of 5-factor [7] yields similar to ours low value for 5(0).

The ratio of Ml and El contributions for a = 0.95 is: am/aEl = 1.43-10"3, 2.65-10"3

and 1.90-10"2 at 20, 100 and 500 keV, respectively. The resonant part of Ml transitions
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yields SM1 = 20.52 eV-b at the if resonance energy. This Ml-contribution to the astro-

physical 5-factor decreases fast and becomes SM1 = 3.65-10"1, 4.74-10"2, 2.72-KT2 eV-b at

cm. energies 500, 100, 20 keV, respectively. At the position of 1+ resonance, the calculated

5 - factor (S — 40.67 eV-b) is smaller than measured by Filippone et al. [6] . This value ,

which is dominated by the Ml-contribution, is proportional to the square of spectroscopic

amplitude of p-states, which for the CK interaction is —0.352 and 0.567 for pi/2 and p^/2

respectively. Similar small values of spectroscopic amplitudes are obtained for Kumar [43]

and PTBME [44] interactions (see also [15] ).

The E2 contribution to the astrophysical factor was recently measured by Kikuchi et

al. [45] who finds: SE2 ~ 0.0ig-8meV-b and SE2 ~ 0.0+o(+3"6) meV-b in the energy intervals

from 1.25 to 1.5 MeV and from 1.5 to 1.75 MeV respectively. SMEC gives for this quantity

52 — 53meV-b and 53 — 71 meV-b, in these two energy intervals respectively. Similar values

for SE1 have been been found by Typel and Baur [46]. These values are by factor 10 larger

than those determined by Kikuchi et al. [45] what remains a puzzle.

B. The 7Li(n,7)8Li reaction

This mirror reaction to the above considered capture reaction: 7Be(p, 7)8B , together

with a simultaneous description of energy spectra and particle decay widths of 8B and 8Li,

provides another stringent test for SMEC calculations. The SM interaction and SM many-

body wave functions (e.g. the spectroscopic amplitudes) are identical in both cases. The

self-consistent one-body potentials which take into account residual coupling of Q and P

subspaces and which determine the radial formfactors of s.p. wave functions used in the

calculation of matrix elements of the residual interaction (3), are optimized in the same way

in 8B and in 8Li. Finally, the parameters of direct and spin-exchange terms in the residual

interaction (3) are also the same, so the modification of coupling matrix elements in 8B and

8Li is solely due to the different radial shape of s.p. wave functions in the corresponding

self-consistent potentials for different «/"" of many-body states. In the case of neutrons,
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the integral in Eq. (20) is sensitive to the nuclear interior even in the low energy limit.

From elastic scattering of neutrons the scattering lengths as, where 5 is the channel spin

(S = s + It, c.f. Eqs. (16) and (17)), are known to be [47]: ax = 0.87 ± 0.07fm and

a,2 = —3.63 ± 0.05 fm. So for the s-wave in the initial channel we adopted procedure of

Barker [48] of readjustment of appropriate s-wave scattering potentials in order to reproduce

these experimental values of scattering lengths.

In Fig. 11 we show different multipole contributions to the total capture cross section

as a function of cm. energy for different parameters a of the residual interaction (3). The

same parameters have been used for the mirror reaction: 7Be(p, 7)8B (see Fig. 9). In

the lower part of Fig. 11, the calculation is done for the spin-exchange parameter equal

(1 — a) = 0.05. The corresponding parameters of U(r) can be found in Table I. Similarly

as for 8B, the neutron threshold energy is adjusted to agree energies of calculated and

experimental 3* state. The photon energy in Fig. 11 is then given by the difference of

cm. energy of [n<g)7Li]j+ system and the experimental energy of the 2f g.s. of 8Li . As

can be seen in Fig. 11, the total cross-section and the El contribution in particular, are

insensitive to the amount of spin-exchange in the residual force. The E2 contribution shows

a weak sensitivity to the parameter a in the region of l^ resonance. The Ml contribution

and in particular its resonant part, are strongly dependent on a. At the thermal neutron

energies, Ml contributions for (1 — a) = 0.23 and 0.05 differ by approximately one order of

magnitude.

Like for the mirror reaction 7Be(p, 7)8B, the dominant contribution to the total capture

cross-section in 7Li(n,7)8Li reaction is the El component. Nevertheless, the Ml contribu-

tion in 7Li(n,7)8Li is relatively more important, in particular near the 3f resonance. This

is partially due to the smaller extension of 17)3/2 neutron s.p. orbit in the g.s. wave function

of 8Li (1^3/2 neutron s.p. orbit is bound by 2.033 MeV in the g.s. of 8Li) as compared to the

extension of 17)3/2 proton s.p. orbit in the g.s. of 8B. This strong binding of 17)3/2 neutron

state in 2+ states of 8Li has also a direct consequence on calculated radiative capture cross

section which becomes reduced, mainly its El component. One should also underline that in
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low-energy reaction such as 7Li(n,7)8Li , neutron penetrates interior region of the potential

and, therefore, is more sensitive to the ratio of direct and spin-exchange terms in (3) and,

indirectly, to the modifications of the interior of average potential by the coupling to the

continuum (see Figs. 1 -3 ) .

Fig. 12 shows the total neutron capture cross-section as a function of the cm. energy.

The calculation is done for the same parameters of residual interaction (3) as used in Fig.

10 for the mirror reaction 7Be(p, 7)8B . Together with the SMEC results, we show the data

of Nagai et al. [19] which measured the cross-section for the 7 - decay to the g.s. of 8Li. The

calculation fits well the data at this energy. The low energy dependence of calculated total

neutron capture cross section can be fitted by [49]:

<E) = ( | | ) 1 / 2 (so + s,E^ + s2E + • • •) , (24)

where ptn is the reduced mass of neutron and E is the cm. energy in MeV. In the energy

interval up to 100 keV SMEC results can be well fitted by three-parameter fit: so = 11.517,

S\ = —2.145, s2 — —11.636, when \in is expresed in a.m.u.

The ratio of Ml and E\ contribution is aMl/aE1 = 1.78-10-3, 2.09-10"2 and 1.09 at 20.

100 and 200 keV, respectively. The resonant part of Ml transitions which is overestimated

in the calculation due to small calculated width for this state, yields the contribution of

<jMl = 305.1 fib at the 3* resonance energy. This contribution decreases fast and becomes

<7M1 = 13.8, 0.426, 9.18-10-2 /ib at cm. energies 200, 100, 20 keV, respectively.

V. CONCLUSIONS

In this work we have applied SMEC model for the microscopic description of spectra in

8B and 8Li, and low-energy radiative capture cross sections in mirror reactions: 7Be(p, 7)8B

and 7Li(p, 7)8Li. The SMEC model, in which realistic SM solutions for (quasi-)bound states

are coupled to the one-particle scattering continuum, is a development of CSM model [24,25]

for the description of low excitation energy properties of weakly bound nuclei. For that rea-

son, we use a realistic SM effective interaction in the Q subspace and introduce a residual
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zero-range force with the spin-exchange included which couples Q and P subspaces. This

deliberate choice of interactions implies that the finite-depth potential generating poten-

tials in P and matrix elements of residual coupling (Q subspace), has to be determined

self-consistently. The self-consistent iterative procedure yields new state-dependent average

potentials and consistent with them new renormalized matrix elements of the coupling force.

These renprmalized couplings and average potentials are then consistently used in the calcu-

lations of spectra and capture cross-sections, i.e., both in Q and P subspaces. What should

be taken for coupling between bound and scattering states is in principle not known and we

have decided to use a schematic combination of Wigner and Bartlett forces. Varying the

parameter of the spin-exchange component for a fixed intensity of the coupling, we came to

the conclusion that most satisfactory description of experimental data is achieved for small

contribution of the spin-exchange part, i.e., approaching the limit of pure Wigner force. This

finding is consistent with the results of SM which strongly suggest an approximate validity

of SU(4:) symmetry in p-shell nuclei [31,36,37,39]. This proves also an intrinsic consistency

in our model between the effective SM interaction, in our case the CK interaction, and the

residual coupling between Q and P subspaces.

Simultaneous study of mirror system and reactions allows for a better understanding of

the role that play different approximations and parameters in the model. The dependence of

final results on radius, diffusivity and spin-orbit coupling parameters of the initial potential

U(r) is not terribly important and they can be taken from any reasonable systematics.

Coupling to the excited configurations in the (JV — 1) - daughter nucleus is somewhat more

important in 8Li than in 8B. However, this coupling depends only on the wave function of

daughter nucleus in the excited state and is totally insensitive to the exact energy position

of these excited configurations. On the contrary, the depth of U(r) has to be carefully

adjusted so that the energy of s.p. orbit(s) in U^sc\r) involved in the systems: [n®(N — 1)]

and \p<8)(N — 1)], reflects the binding of g. s. in the nucleus N. This is very important for

any quantitative analysis of the reaction cross-section. In the studied cases of 8B and 8Li

, the correct identification of this s.p. orbit and hence the determination of an appropriate
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depth parameter in U(r) is simple because the SM spectroscopic factor in 2f g.s. is close to 1.

Different binding of 8B and 8Li leads in SMEC model to different U^(r) for corresponding

many-body states in mirror nuclei. This in turn causes: (i) the breaking of initial mirror

symmetry in SM spectra of these nuclei and (ii) the different effective spin-orbit splitting in

self-consistent potentials for corresponding states in mirror nuclei.

SMEC model in the present form allows to describe microscopically the coupling to

one-nucleon continuum. More complicated decay channels like, e.g., those involving the a

particle in the continuum or more than two particles in the asymptotic states are beyond

the scope of this model. It is encouraging, however, that these possible shortcomings in the

description of decay channels, as we have shown on the example of 3+ resonances, are so

unambiguously reflected in the calculated decay width for these states. In general, the decay

width is particularly sensitive to the details of the SM wave functions involved and to the

values of matrix elements of residual coupling so they provide a sensible test of the quality

of SMEC wave functions and/or approximations involved.

The overall agreement between experimental data and SMEC calculations for studied

nuclei is good proving the internal consistency of model assumptions and parameters. The

astrophysical factor 5(0) for the reaction 7Be(p, 7)8B equals 19.424 eV-b which is close to

the values reported by Filippone et al. [6] and Hammache et al. [7] but differs from many

earlier experiments as well as from many theoretical analysis [12,14,15] . The low-energy

dependence of S(E) is slightly different from the one found by Descouvement and Baye [12]

which is sometimes used in extrapolating the experimental results to the astrophysically

relevant region. The calculated ratio of SEl and SE2 contributions in the region of if

resonance also agrees well with the data of Davids et al. [42]. Surprisingly, at higher energies

(E > 1.25 MeV) the calculated E2 contribution differs by factor 10 from the reported value

of Kikuchi et al. [45]. The results of Refs. [42] and [45] seem to us incompatible with each

other.

The present studies have shown that SMEC results depend sensitively on very small

number of parameters. Some of them, like the parametrization of the residual interaction
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which couples states in Q and P subspaces, has been established in the present work. The

others, related to the energy of s.p. states which determine the radial wave function of many-

body states, are bound by the SM spectroscopic factors and experimental binding energy in

studied nuclei. This gives us a confidence that SMEC can have large predictive power when

applied to other p - shell nuclei and to other capture cross-sections in this region.
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APPENDIX A: THE COUPLING POTENTIAL AND THE SOURCE TERM

To solve the coupled channel equations (4) in P subspace, one has to calculate the matrix

elements Vafas of the residual interaction (3) between states in Q and P subspaces. For the

zero-range force including the spin exchanges, which was used in this work, we have:

^ ^ ^ (Al)

where

T/(0)

^ [( h)M% (1 W ) ( QM&] (A2)

and angular two-body matrix element with isospin T can be expressed as [41] :

. (A3)

Any symbol containing the hat, like e.g. j , means: j = <^2j + 1.
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The channel-channel coupling in (4), (10) is taken into account through the matrix

elements of the type:

vcc' =-l^L •VaQS((Jtja)j\\\[aWe) -(a^ds) \\{JtJi)j) (A4)

The A^-body matrix element in the above expression, is rewritten as :

j 7 u L r • \{JtJa)J\\ \\aa
a-i) •{upa6j j \\WtJi)j) , (A5)

K K 0

and the reduced matrix element in this latter formula is then expressed as :

{ Jt ja J

j't j , J \ - (Jt\\ ( a i d s ) \\J't) • (Ja\\ ( a i d , ) \ \ j j . (A6)

K K 0 J

The diagonal parts of this operator induce corrections which renormalize the s.p. average

potential U(r) (see Eq. (9) ).

The source term in the inhomogeneous eqs. (10) takes into account the couplings of the

type :

L

[4 (A8)

Again, the reduced matrix element in this expression is given as a coupled product of the

two contributions:

j a{
J o j • O«ll4l|0>.<Jt|| (aj {a,ae)L)Ja \\Vj) (A9)

jc, ja 0 J

This operator modifies both real and imaginary parts of eigenvalues of HQQ in Eq. (12),

but does not change the s.p. average potential U{r).
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TABLES

TABLE I. Parameters of the initial potentials U(r) (5) used in the calculations of self-consistent

potentials U(sc\r) for various parameters (1 - a) of the spin-exchange term in the residual interac-

tion (3). U(sc\r) are constructed for various T = 1, positive parity states in 8B and 8Li and for dif-

ferent single particle states: lp3/2 and lpi/2- For all cases the radius of the potential is Ro = 2.4 fm,

the diffuseness parameter is a = 0.52 fm, and the spin-orbit orbit parameter is Vso = —4MeV.

The strength of the residual interaction (3) is F12 = 650MeV-fm3, for all considered cases.

System

[p ® 7Be]

[n (8) 7Li]

eV3/2 [MeV]

-0.137

-2.033

1 - a

0.45

0.27

0.05

0.45

0.27

0.05

Vo [MeV]

-42.140

-40.045

-37.660

-41.683

-39.555

-36.905
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TABLE II. SM energies and SMEC energies and widths vs. experimental ones of 8B nucleus.

All units are in keV. The proton separation energy is adjusted in order to reproduce the energy

of the lowest resonance state. Different labels denote as follows: 'SMEC' - only the ground state

of 7Be was taken into account in all couplings, 'SMEC1' - coupling to the first excited state

in 7Be was included with E* = 1.07 MeV (SM value), 'SMECl*' - the same with excited 7Be

state at E* = 0.429 MeV (experimental value). Parameters of the residual interaction (3) are:

F12 = 650MeV-fm3, a = 0.73. The cut-off radius is Rcut = 5 fin except for the pi/2 s.p. wave

function in if many body states, which is in the continuum at about 300 keV above the threshold

and for which larger cut-off was used Rcut = 10 fm. The numbers in parentheses are the widths of

3* state if this state would be placed at the experimental energy. For more details, see the Table I

and the description in the text.

State

2+

1+

3+

1+

SM

energy

-446

637

1246

2327

SMEC

energy

-356

637

1294

2153

width

—

16.5

13.1

(25.2)

240.2

SMECl

energy

-334

637

1237

2081

width

—

15.3

12.5

(25.8)

272.7

SMECl*

energy

-329

637

1241

2080

width

—

15.2

12.6

(25.8)

309.0

experiment

energy width

-137.5±1.0 —

637±6 37±5

2183±30 350±40

not known
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TABLE III. The dependence of 8B spectra on the relative strengths of direct and spin exchange

parts of the residual interaction (3). Analogously to the entry 'SMEC in Table II only ground state

of 'Be was taken into account. The entries in this table are labelled by the value of a parameter

of the residual force. The numbers in parentheses as in Table II. For more details see Table I, the

caption of Table II and the discussion in the text.

State

2+

1+

3+

1+

SM

energy

-446

637

1246

2327

a =

energy

-418

637

1313

2299

0.55

width

—

12.6

3.0

(5.6)

115.9

a =

energy

-356

637

1294

2153

0.73

width

—

16.5

13.1

(25.2)

240.2

a =

energy

-320

637

1275

1899

0.95

width

—

25.9

34.9

(67.4)

398.9

experiment

energy width

-137.5±1.0 —

637±6 37±5

2183±30 350±40

not known
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TABLE IV. The same as in Table II but for 8Li nucleus. The neutron separation energy is

adjusted in order to reproduce the energy of the lowest resonance state. Different labels denote as

follows: 'SMEC - only the ground state of 7Li was taken into account in all couplings, 'SMEC1' -

coupling to the first excited state in 7Li was included with E* - 1.07 MeV (SM value), 'SMECl*'

- the same with excited 7Li state at E* = 0.467MeV (experimental value). The numbers in

parentheses are the widths of lj~ state if this state would be placed at the experimental energy.

For other informations see Table I, the the caption of Table II and the discussion in the text.

State

V

2+

1+

3+

1+

SM

energy

-1471.1

-388.1

221.2

1301.6

SMEC

energy width

-1437.09 —

-418.9 —

221.2 3.4

1065.6 357.9

(378.1)

SMECl

energy width

-1346.4 —

-349.5 —

221.2 3.5

1050.0 383.1

(422.9)

SMECl*

energy width

-1345.6 —

-351.5 —

221.2 3.5

1036.7 464.2

(506.8)

experiment

energy width

-2033.8±0.3 —

-1053.0±0.1 —

221.2±3.0 33±6

1176 « 1000
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TABLE V. The dependence of 8Li spectroscopy on the relative strengths of direct and spin

exchange parts of the residual interaction is presented. Analogously to the entry 'SMEC in Ta-

ble IV, only g.s. of the 7Li was taken into account. The entries in this table are labelled by the

value of a parameter of the residual force. The numbers in parentheses as in Table IV. For other

informations see Table I, the the caption of Table IV and the discussion in the text.

State

3*

2+

1+

3+

1+

SM

energy

-1471.1

-388.1

221.2

1301.6

a = (

energy

-1514.7

-441.7

221.2

1199.2

).55

width

—

—

0.8

171.8

(170.1)

a = (

energy

-1437.9

-418.9

221.2

1065.6

).73

width

—

—

3.4

357.9

(378.1)

a =

energy

-1330.3

-394.4

221.2

790.0

0.95

width

—

—

9.4

561.1

(735.3)

experiment

energy width

-2033.8±0.3 —

-1053.0±0.1 —

221.2±3.0 33±6

1176 « 1000
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FIGURES

2 4

r[fm]

FIG. 1. Finite-depth average s.p. potentials used to generate the radial s.p. wave functions for

bound states and resonances.

(i) Plot on the l.h.s. shows the initial potential U(r) (5) (the dashed line), the self-consistent

potential U^(r) (the solid line), i.e., U(r) which is corrected by the coupling to the continuum of

scattering states, and the equivalent average potential U^eq\r) (the dotted line) of the Saxon-Woods

type which yields the proton lp3/2 orbit at the same energy as in the self-consistent potential. The

residual interaction (3) parameters are: F12 = 650 MeV-fm3, a = 0.73. U(r) is chosen in such a

way that U^sc\r) yields the lp3/2 s.p. state at the energy -137keV, corresponding to the binding

energy of the 2̂ " g.s. in 8B. The correction to the average potential from the residual interaction

(3) is calculated for the lp3/2 s.p. orbit in 2+ states of 8B. For more details, see Table I and the

description in the text.

(ii) Plot on the r.h.s. shows the same as on l.h.s. but for the 1+ states of 8B. The initial potentials

on the r.h.s. and Lh.s. are identical and U^eq\r) is reproducing the position of the lj»3/2 s.p. orbit

of U(sc\r) for 1+ states in 8B.
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10 -

10

FIG. 2. The initial potential Z7(r) of Saxon-Woods type (see (5)) (the dashed line), the

self-consistent potential U^sc\r) (the solid line) and the equivalent Saxon-Woods average potential

U^eq\r) (the dotted line) which yields the neutron lp3/2 orbit at the same energy as found in

Xj(sc)(r). The curves show the absolute value of corresponding potentials in the logarithmic scale

so the characteristic tail for large r can be well seen. U(r) is chosen in such a way that U^(r) for

neutrons obtained from it by including the diagonal correction term from the residual interaction

(3) yields the IP3/2 neutron s.p. state in J* = 2+ states of 8Li at the energy —20keV. For more

details, see Table I and the description in the text.

38



o -

- 4 0

0 1 3
r[fm]

FIG. 3. The self-consistent average potential U(sc)(r) which is obtained by including the cou-

pling of states in Q and P subspaces with the residual interaction (3), is plotted for two parameters

of the residual force a = 0.55 (the solid line) and a = 0.95 (the dashed line). The calculations have

been done for the s.p. orbit lp$/2 and in Jv = 2+ states of 8B. The initial potential in each case

has been chosen in such a way that the corresponding self-consistent potential yields the lp^/2 S-P-

orbit at the same energy of —137 keV. For more details, see Table I and the description in the text.
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FIG. 4. SM with CK interaction and SMEC in different approximations labelled 'SMEC',

SMEC1' and 'SMECl*' vs. experimental T = 1 states of 8B nucleus. The proton threshold energy

is adjusted to reproduce position of the if first excited state. The shaded regions represent the

width of resonance states. For the details of the calculation, see the description in the text and in

the caption of Table I.
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FIG. 5. Results of SMEC calculations for different parameters of spin-exchange part of the

residual interaction in 8B.

41



1

0.85

0.4

> 0.3

^ 0.2

0.1

0

i . . i i i i I i

i i i t I i i i i I i i i i

- 1 0 1 2 3 4 5
ECM [MeV]

FIG. 6. Energy dependence of the eigenvalue (both real ER and imaginary TR parts) of the

effective Hamiltonian (12) for the if state in 8B. The solid line corresponds to the coupling to the

g.s. of 7Be only. The dashed line corresponds to the inclusion of coupling to the first excited state

in 7Be at the energy predicted by SM with CK interaction [31]. The dotted line corresponds to the

inclusion of coupling to the first excited state in 7Be which is placed at the experimental energy.

For more details, see the description in the text.
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FIG. 7. Results of SMEC calculations for different parameters of spin-exchange part of the

residual interaction in 8Li.
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FIG. 8. The same as in Fig. 6 but for the l j state in 8Li. For more details, see the caption of

Fig. 6 and the description in the text.
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FIG. 9. Multipole contributions to the total capture cross section of 7Be(p, f)8B as a function

of the center of mass energy. The SMEC calculations have been done for different values of the

spin-exchange parameter (1 — a) = 0.27 (the upper part of the figure) and (1 — a) = 0.05. For

other details, see Table I and the discussion in the text.
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[MeV]

FIG. 10. The astrophysical 5-factor for the reaction 7Be(p, 7)8B is plotted as a function of the

center of mass energy. The SMEC calculations have been done for the residual interaction (3) the

spin-exchange parameter (1 — a) = 0.05. The experimental points have been taken from Filippone

et al. [6] and Hammache et al. [7].
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FIG. 11. Multipole contributions to the capture cross section to the g.s. (Jx = 2+) of 8Li in

the reaction 7Li(n, 7)8Li are plotted as a function of cm. energy. The SMEC calculations have

been done with the spin-exchange parameter (1 — a) = 0.27 (the upper part of the figure) and

(1 — a) = 0.05. For other details see the discussion in the text.
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FIG. 12. The cross-section for the reaction 7Li(n, 7)8Li is plotted as a function of cm. energy.

The SMEC calculations have been done for the spin-exchange parameter (1 — a) = 0.05. The

experimental point is taken from Nagai et al. [19].
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