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SUMMARY

Synroc (Synthetic Rock), a titanate~based ceramic originally proposed
by Prof. A. Ringwood(ANU) and designed for the immobilization of high
level nuclear waste (HLW), consists of three principal phases such as
hollandite, zirconolite and perovskite. Nearly all the fission products and
actinides in HLW can be incorporated as solid-solution in at least one
of these phase. The preferred form of Synroc can be obtained up to 20
% of high level waste calcine to form dilute solid solution. The
constituent minerals, or close structural analogues, have survived in a
wide range of geochemical environments for periods of 20-2000 Myr
while immobilizing the same elements present in nuclear waste. A dense,
compact, and mechanically strong form of Synroc can be formed by hot
pressing reactive precursor powders at about 1200°C and 20 MPa.

In this state-of-the-art report, formulation method and characterization
of Synroc with respect to the «crystal structure, the consisting
substances, types, etc. were reviewed. Additionally, a new promising
powder process, "Combustion Process”, was proposed and the properties
of the combustion-synthesized powder were described. An international
co-operative program between JAERI and ANSTO, and US patents for
early Synroc research in Australia were also introduced.

From the literatures review, Synroc is expected to have advantages in
using as an immobilizer of HLW. Therefore, a systematic research to

develop the Synroc is needed.
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Table 1. Typical Synroc Composition

Component. Amount (wt%) Component Amount (wit%)
Synroc-B Synroc—C
Ti0z 59.5 Synroc-B : 85
Zroz 11.4 Simulated radwaste 10
Al20s 6.0 Additional TiOz 4-5
BaQ(BaCy) 7.2 Additional Alz204 0-1
Cal(CaClUsy) 15.9

Simulated Radwaste

Cel2 9.7 2Zriz 14.3
Nd2ts 28.3 Cez0 8.4
Euz04 4.4 SrU 6.2
Moy 16.2 NiD 2.8
Fel) 9.6 ———

100.0




Bd®*, Cs*, Rp*

(Ti,AlLFe)O4 octahedron

edge-sharing
octahedral pair

Fig. 1. Octahedral arrangement shown along the short unit cell edge of
hollandite. The small octahedral tunnels of hollandite cannot
accommodate simulated waste but the large tunnels incorporate

Cs and Rb.
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Fig. 2. Octahedral array and elemental partitioning in perovskite.



P Ti 3+,4+’F-82+,3+ ,Al3+

4% (Ti,Zr,Fe, A0, octahedron

Fig. 3. HTB layer repeats and crystallochemical partitioning in zirconolite
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BaTiO3 + BaTisOs + AlO3 ———> BaAkTisO1s (at 12007C)
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UM ol Wet tunnel P EE HE=Ch 2 sitedl]l REE £ U= 202
2 3ot &t
general formula = Ax(ByCs-,)One, x<2  [25-27).
A cations (mono-, di-valent)
+1 1 K, Na, Ag, Rb, Tl, Cs
+2 1 Sr, Ba, Ra, Pb
B and C cations (di-, tri-, tetra-, penta-valent)
+2 Mg, Co, Ni, Cu, Zn, Mn, Fe
+3 1 Al, Cr, Fe, Ga, Rh, Mn, Ti, In
+4 1 Ti, Sn, Mn, Si, Mo, Tc, Ge
+5 1 Sb
hollandite /& WM = YAtd HE F F2 Cs0| Ball A &5 0,
g2 2~5 wt% A ZO0ICL hollandite?| Csol st X[& & AHE X

sy ZmPIO AIL UCL A2 ©X FI B narow

L= ]
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.

—_—
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Lt Perovskite (CaTiOs3)
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Jm

5 2
D IR SIERILE EH 1HOI0] zirconolite 2Tt perovskitedl O
0l A0 QUCh HEBS0, 39 Ces (=134 A) zirconolite2 T
perovskiteOff 128 AT ¢ 20| EMSIH, Gd=2 (=125 A) 2uf H=Z 0|
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el @2 220, UANS YUHE2 2 zirconolite2t 81D trigonal

zirkelite, orthorhombic2 polymignitec} StCH

TE2FEH #MEC 800THAM ZrO7t
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o

Zirconolite=  perovskite
perovskite2} Y
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Fig. 8. Dense block SYNROC is fabricated when powdered precursor (white)

is compressed uniaxially at 1150°C
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Fig. 11. Bellows handling and pressing operations in the SYNROC

demonstration plant
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gt. Process control
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1) characterization and subsequent testing of both Cm~doped Synroc
containing PW-4b simulated waste and Cm-doped single phase
zirconolilite and perovskite

2) initiation of studies on naturally—occuring zirconolites to study the

fong—term durability of this mineral phase over geological time.

JAERIZES] HAZUER2 1) £FE Synroc afl ZTAME I HLW

i
KT
Ho

- 34 -



S80l s "Il 2) Hot cell WHIME TRU elementsE
Synroc AMl# HIZE, 3) TRU & ¥ & 7|30 28 J|xAP
ANSTOZ 9] A32&= 1) Synroc?] WALA ZAIHEA R, 2) TRU elements
of A&EHs ¥ 7o that 2 sto 26t AP SO|Ch

1Y

Phase IIIAM el & WILX[ HAPZHRE QAUSIALCL.
1. Studies on single phase perovskite samples

DER YAMMHIISH0M QEIU0E HAE Synroc?| FAAM RO
perovskiteLl zirconolite 0] D& &I 2/ Ch SynrocHl Cm-244
0 a-decay damage effect& A 5tALC

Fig. 12& CmoO| 2 && perovskite M 0 2t AW HES LIELH 2
OlCt ©X Cm (0.8165g)= 40g2 =Z Lt =0QICt CaTio; o MZ &
#1810 Ca(OH)22t TIPT(titanium isoproxide)& &8&!510{ 2tE &efalol
CmO| =0tyes Aotg Sgstth of s 289 pHE NHOHZ2
ZEGI pH=92 ZTHSBICt ELoFERI
2ls 750°Col M 2A12 S°2F Ar- 4% HE 97|

22 97%Y se=S LEUWRAL stagde 2o 7|6l
J

it
k0
0R0
ol

1]

Y LBE 1250, 29MPaZ 2AI2ES 0t BICL D2 JYLHE 2
H2ae= 1.3-1.4% AE0]RCH
CmoO| & Jt= perovskite? S EMF0 otLtl YTt XRD £ A4

S st Zos ¢, 750°CoHIM BtAEl St e

Fig. 14= EEAMNE Fo AMHO Zud 0 NJHEZ 800°CUHIM AMUWst
$o ofojeo XRD EAZIOIC, MUH 4HYO 2P ol
perovskiteat 2 2 EME RS0, “«"& (CmPu)O7t 0Ol M UCH &



Cold Laboratory

Precursor

[ZTTZT 777772272272 77277 e kol L L L L L L L LR L LLLELL D)

Hot-Cell

Y
____> Adjusting pH (= ~9)

l

Drying (80°C)
- -~ and Calcining - -

(750°C, 2 h)

Hot-Pressing
(1250°C, 29MPa, 2h)

Specific 244Cm Activity:
22.3 GBg-g~! {0.602 Ci-g'1)

Fig. 12. Preparation of Cm doped perovskite
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Fig. 13. Change in density with increasing « —decay
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Fig. 14. XRD patterns from annealed(P12A08) and as—leached

(P12BAL) Cm~doped perovskite specimens
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1) The Cm-doped reference Synroc (Synroc-C containing simulated
PW-4b waste) containing simulated PW-4b waste prepared in the
hot—cell facility at JAERI has the expected phase distribution and
physical properties. lLeach rates of inactive elements from this
material are comparable to those prcpared in the open laboratory;
however, furthcr work is required to determine the effcct of

Cm~1oading on the Cm leach rate

2) Sample of the reference Synroc after an equilvalent storage age of
13,000 years exhibit Ba and Mo leach rates which are similar to
those for cold Synroc samples. Leach rates of Cs and nost
affected by «a-decay damage being a factor of between 5 and 10
higher than that for 50 year sample. The increase in Ca and Sr

leach rates is smaller than that of Cs.
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3)

4)

5)

6)

7)

8)

Cm leach rates from the Synroc are unaffected by a—decay
damage, and are instead apparently controlled more strongly by the

pH of the leachant.

The density of the Cm-doped reference Synroc decreased linearly
with dose and showed no evidence of macro—cracking. Storage of
the samples at 200°C reduced the change density per unit a@ dose
by a factor of 2 compared to that of the sample stored at room

temperature.

Studies of Np leach rates of Np-doped Synroc made at ANSTO
established that the solution leach rate under oxic conditions was a
factor of 10 higher than under anoxic conditions and that the
presence of Boom clay did not markedly affect the leaching

behavior of Np under anoxic conditions.

Samples Cm~-doped perovskite and zirconolite were preapared but
other phases were present in parts of the zirconolite and perovskite
specimens. In the extension to the Phase I program there will be a
sample and technology interchange program between ANSTQ and

JAERI to resolve this issue.

Initial studies of the kinetics and mechanisms of leaching from
Synroc have established that releases ara not congruent and that
future modelling studies will need to include allowances for the
effect of hydrated layers on the surface of the specimens on

elements release.

Extensive studies were made of crystal-chemical incorporation of

rare earth and actinidcs in zirconolite by XRD and elpetron
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mMicroscopy.

9) Devolopmon of a zirconolite-rich ceramics has reached the stage

where good microstructures and very good leaching behaviour of

samples containing Nd and U have been obtained.

10) Studies of naturally-occurring zirconolites have established that

these are visable analogues for the zirconolite phase in Synroc.
The major projects on the crystal chemistry and radiation damage
of zirconolite have been completed. However, additional work on:
mineralogy petrology, and geochemistry of zirconolite bearing rocks
with emphasis on PTX conditions under which the phase has
survived; use of SIMS to determine the stable and radiogenic
isotope systematics of altered Zirconolites; durability studies of
zirconolite; determination of the annealing kinetics  of
radiation—damaged zirconolite and exprimental studies of the effect

of radiation damage on the dissolution of zirconolite need to bo

carried out.
2 2o JAERIZt 2] ANSTO 2tel SynrocHl st 29|
010f, SA 34 2+2](1996-1998) ==HFE HE =8 Z0|C
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4274976 : Treatment of high level nuclear reactor wastes(49)

INVENTORS : Ringwood ; Alfred E., Red Hill, Australia
ASSIGNEES : The Australian National University, Australia
ISSUED : June 23, 1981

FILED : July 3, 1979

ABSTRACT : A process for immobilizing high level radioactive waste (HLW)
calcine comprises the steps of :

(1) mixing the HLW calcine with a mixture of oxides, the oxides in the
mixture and the relative proportions thereof being selected so as to form a
mixture which, when heated and then cooled, crystallizes to produce a mineral
assemblage containing well-formed crystals capable of providing lattice sites in
which elements of the HLW are securely bound, the crystals belonging to or
possessing crystal structures closely related to crystals belonging to mineral
classes which are resistant to leaching and alteration in appropriate geological
environments and including crystals belonging to the titanate classes of
minerals; and

(2) heating and then cooling the mixture so as to cause crystallization of the
mixture to a mineral assemblage having the elements of the HLW incorporated
as solid solutions within the crystals thereof.

A mineral assemblage having elements of HLW calcine incorporated within

the crystals thereof is also disclosed.
CLAIMS

1. A process for immobilizing high level radioactive waste (HLW) calcine
which comprises the steps of :

(1} mixing said HLW calcine in a minor proportion with a mixture of oxides,
the oxides in said mixture and the relative proportions thereof being selected so
as to form a mixture which, when heated and then cooled, crystallises to
produce a mineral assemblage containing well-formed crystals capable of
providing lattice sites in which elements of said HLW are securely bound, the
crystals belonging to or possessing crystal structures closely related to crystals
belonging to mineral classes which are resistant to leaching and alteration in
appropriate geological environments and comprising crystals belonging to or
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possessing crystal structures closely related to at least two of the titanate
mineral classes selected from the group consisting of perovskite (CaTiO3),
zirconolite (CaZrTi207) and hollandite-type (BaAlTigOi6) mineral classes : and

(2) heating and then cooling said mixture so as to cause crystallization of
the mixture to a mineral assemblage having the elements of said HLW
incorporated as solid solutions within the crystals thereof.

2. A process according to claim 1 wherein said minor proportion of said
HLW calcine is less than 30% by weight.

3. A process according to claim 2, wherein said minor proportion of said
HLW calcine is 5-20%6 by weight.

4. A process according to claim 1 wherein the oxides and the relative
proportions thereof in said mixture of oxides are selected to form a mixture of
oxides having a melting point of less than 1350C, and said heating step
comprises heating said mixture of HLW calcine and said oxides to a
temperature sufficient to melt said mixture.

5. A process according to claim 1, wherein the heat treatment of said
HL W/oxide mixture is carried out under mildly reducing conditions.

6. A process according to claim 5, wherein the heat treatment is carried out
in the presence of a metal.

7. The process of claim 6 wherein said metal is nickel.

8. A process according to claim 5, wherein the heat treatment is carried out
under a reducing atmosphere.

9. A process according to claim 8, wherein the reducing atmosphere is a
gaseous atmosphere containing no free oxygen and containing a reducing gas.

10. The process of claim 9 wherein said reducing gas is hydrogen and/or
carbon monoxide.

11. A process according to claim 1 wherein the oxides and the relative
proportions thereof in the mixture of oxides are selected to that said mixture of
oxides may be heated to a temperature in the range of 100071500°C. without
extensive melting of said mixture, and said heating step comprises heating said
mixture of HLW calcine and said oxides to a temperature in the range of
100071500°C. without extensive melting.

12. A process according to claim 1, wherein said mineral assemblage further
contains crystals belonging to or possessing crystal structures closely related to
at least one of the mineral classes selected from the group consisting of
barium felspar (BaAl;SizOs), leucite (KAISi;Og), kalsilite (KAISiQ4), and nepheline
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(NaAISIO.).

13. A process according to claim 12, wherein said mineral assemblage
contains crystals belonging to, or possessing crystal structures closely related to
a combination of mineral classes selected from the group of combinations
consisting of perovskite-hollandite-barium  felspar-zirconolite-leucite-kalsilite,
perovskite—hollandite—barium felspar-zirconolite-leucite,
perovskite-hollandite-barium felspar—kalsilite~zirconolite, and
perovskite-hollandite-barium felspar—nepheline-zirconolite.

14. A process according to claim 13, wherein said mineral assemblage
comprises a  perovskite—zirconolite-hollandite~barium  felspar—kalsilite—feucite
composition.

15. A process according to claim 1, wherein said oxides comprise at least
four members selected from the group consisting of CaO, TiO; ZrO», KO,
Ba0, Na)O, AlOs, SiO» and SrO, one of said members being TiO; and at {east
one of said members being selected from the sub-group consisting of BaO,
Ca0O and SrO.

16. A process according to claim 15, wherein said mixture is comprised of
at least five members selected from said group, one of saild members being
TiOz, at least one of said members being selected from the sub-group
consisting of BaO, CaO and SrO, and at least one of said members being
selected from the sub-group consisting of ZrOs, SiO2 and AlLOs.

17. A process according to claim 15, wherein in said group of oxides from
which said oxides are selected, Al,O; is replaced partly or completely by the
oxides of Fe, Ni, Co or Cr.

18. A process according to claim 1 wherein said mineral assemblages
correspond essentially to crystals belonging to, or possessing crystal structures
closely related to the perovskite and the hollandite-type mineral classes.

19. A process according to claim 1, wherein said mineral assemblage
consists essentially of crystals helonging to, or possessing crystal structures
closely related to the zirconolite and the hollandite-type mineral classes.

20. A process according to claim 1 wherein said mineral assemblage
consists essentially of crystals belonging to, or possessing crystal structures
closely related to the perovskite, zirconolite and the hollandite-type mineral
classes.

21. A process according to claim 1, wherein said oxides comprise at least
three members selected from the group consisting of BaO, TiO: ZrO,, K0,
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Ca0, Al:03 and SrO, one of said members being TiO; and at least one of said
members being selected from the sub-group consisting of BaO, CaO and SrO.

22. A process according to claim 21 wherein said mixture is comprised of at
least four members selected from said group, one of said members being TiOg,
at least one of said members being selected from the sub-group consisting of
BaO, Ca0 and SrO, and at least one of said members being selected from the
sub—group consisting of ZrQ» and AlOs.

23. A process according to claim 21 wherein in said group of oxides from
which said oxides are selected, AlO; is completely or partly replaced by the
oxides of Ni, Co, Fe or Cr.

24. A mineral assemblage containing a minor proportion of immobilized high
level radioactive wastes, said assemblage comprising crystals belonging to or
having crystal structures closely related to crystals belonging to mineral classes
which are resistant to leaching and alteration in appropriate geological
environments and comprising crystals belonging to or possessing crystal
structures closely related to at least two of the titanate mineral classes
selected from the group consisting of perovskite (CaTiOs), zirconolite
(CaZrTi:07) and hollandite-type (BaAl2TisOw) mineral classes, and said
assemblage having elements of said high level radioactive waste incorporated as
solid solutions within the crystals thereof.

25. A mineral assemblage according to claim 24, further containing crystals
belonging to, or possessing crystal structures closely related to at least one of
the mineral classes selected from the group consisting of barium felspar
(BaALSi1,03), leucite (KAISI»Os), kalsilite (KAISiOs), and nepheline (NaAISiOy).

26. A mineral assemblage according to claim 25 containing crystals
belonging to, or possessing crystal structures closely related to a combination

of mineral classes selected from the group of combinations consisting of

perovskite—hollandite-barium felspar—zirconolite-leucite—kalsilite,
perovskite—hollandite-barium felspar-zirconolite-leucite,
perovskite-hollandite-barium felspar—kalsilite—zirconolite and

perovskite~hollandite-barium felspar~nepheline-zirconolite.
27. A mireral assemblage according to claim 24, containing crystals
belonging to, or possessing crystal structures closely related to a combination

of the mineral classes perovskite~zirconolite—hollandite.
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4329248 : Process for the treatment of high level nuclear
wastes(50)

INVENTORS : Ringwood; Alfred E., Red Hill, Australia
ASSIGNEES : The Australian National University, Australia
ISSUED : May 11, 1982

FILED : Feb. 26, 1980

ABSTRACT : A process for immobilizing high level waste (HLW) sludge
containing aluminium and/or iron compounds which comprises the steps of :

(1) mixing the sludge with a mixture of oxides, the oxides in said mixture
and the relative proportions thereof being selected so as to form a mixture
when heated at temperatures between 800C and 1400°C. crystallizes to produce
a mineral assemblage containing (i) crystals capable of providing lattice sites in
which the fission product and actinide elements of said HLW siudge are
securely bound, and (ii) crystals of at least one inert phase containing excess
aluminium and/or iron, said crystals belonging to or possessing crystal
structures closely related to crystals belonging to mineral classes which are
resistant to leaching and alteration in appropriate geologic environments ; and

(2) heating and then cooling said mixture under reducing conditions so as to
cause crystallization of the mixture to a mineral assemblage having the fission
product and actinide elements of said HLW sludge incorporated as solid
solutions within the crystals thereof, and the excess aluminium and/or iron
crystallized in at least one inert phase.

A mineral assemblage containing immobilized HLW sludge containing
aluminium and/or iron compounds incorporated within the crystals thereof is

also disclosed.

CLAIMS

1. A process for immobilizing high level nuclear waste containing a major
proportion of aluminium and/or iron compounds which comprises the steps of
(1) mixing the waste with a minor proportion of a mixture of oxides selected
from the group consisting of TiOs, ZrO, SiO,, Al0O3, Ca0, SrO and BaO, at
least one of the selected oxides being from the group consisting of TiQs, ZrO,
and SiO., the oxides in said mixture and the relative proportions thereof being
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selected so as to form a mixture which when heated at temperatures between
800°C and 1400C. crystallizes to produce a mineral assemblage containing (i)
crystals belonging to or possessing structures closely related to the titanate
mineral classes capable of providing lattice sites in which the fission product
and actinide elements of said waste are securely bound, and (ii) crystals
thermodynamically compatible with said crystals (i) comprising at least one
non-radioactive phase containing aluminium and/or iron, said crystals (i) and
(i) belonging to or possessing crystal structures closely related to crystals
belonging to mineral classes which are resistant to leaching and alteration in
geologic environments; and (2) heating at a temperature within said range and
then cooling said mixture under reducing conditions so as to cause
crystallization of the mixture to a mineral assemblage having the fission product
and actinide elements of said waste incorporated as solid solutions within the
crystals (i) thereof, and aluminium and/or iron crystallized in said at least one
non-radioactive crystal phase (ii).

2. A process according to claim 1, wherein said waste is mixed with from
about 20 to 40% by weight of said mixture of oxides.

3. A process according to claim 1, wherein said heating and cooling is
carried out under reducing conditions such that said iron is maintained
dominantly in a divalent state.

4. A process according to claim 1, wherein said mineral assemblage contains
crystals belonging to or possessing structures closely related to the mineral
classes selected from the group consisting of perovskite (CaTiQs), zirconolite
(CaZrTiz07), and a hollandite-type mineral (BaAl:TisOs).

5. A process according to claim 1, wherein said mineral assemblage
comprises crystals belonging to or possessing structures closely related to at
least one of the mineral classes selected from the group consisting of
perovskite {(CaTiOs) and zirconolite (CaZrTi;0; ~CaUTizO; solid solution).

6. A process according to claim 1, wherein said crystals (ii) include at least
one phase selected from the group consisting of hercynite (FeAl-04), ferrite
((Ni,FeMn)Fe;04) and ulvospinel (Fe;TiOs) and their solid solutions, ilmenite
(FeTiO3), pseudo-brookite solid solutions (AliOs—Fe;TiOs), hollandite solid
solutions (BaAlTigOis-BalFe, T TisOz%), a davidite-type mineral (BaAlFesTh30:5)
and corundum (Al,O3).

7. A process according to claim 1, wherein said at least one non-radioactive
phase includes hercynite-rich spinel or ferrite spinel.
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8. A process according to claim 1, wherein said mixture of oxides comprises
at least three members selected from the group consisting of TiO,, ZrO;, Al,03,
Ca0, SrO and BaO, at least one of said members being selected from the
subgroup consisting of Ti02 and ZrO-.

9. A process according to claim 8, wherein said mixture of oxides comprises
at least two members selected from the group consisting of TiOs, ZrOz, AlOs
and CaQ, at least one of said members being selected from the subgroup
consisting of TiOz and ZrO:.

10. A process according to claim 1 wherein the waste contains Al:O3 in
excess of Fe;Os on a weight basis and the mixture of added oxides comprises
TiO,, ZrO; and CaO in proportions chosen so that the mineral assemblage
comprises hercynite~rich spinel, perovskite and zirconolite.

11. A process according to claim 1 wherein the waste contains AlO3; in
excess of Fe-O3 on a weight basis and the mixture of added oxides comprises
TiO», ZrO2 and CaO in proportions chosen so that the mineral assemblage
comprises hercynite-rich spinel and zirconolite.

12. A process according to claim 1 wherein the waste contains FesOsz in
excess of AlOz on a weight basis and the mixture of added oxides comprises
TiOQ2, ZrQ, and CaO in proportions chosen so that the mineral assemblage
comprises ferrite spinel, perovskite and zirconolite.

13. A process according to claim 1 wherein the waste contains Fe:Os in
excess of AlLOs on a weight basis and the mixture of added oxides comprises
TiO2, ZrO; and CaO in proportions chosen so that the mineral assemblage
comprises ferrite spinel and zirconolite.

14. A mineral assemblage containing immobilized high level nuclear waste
containing a major proportion of aluminium and/or iron compounds, said
assemblage comprising crystals (i) belonging to mineral classes \which are
resistant to leaching and alteration in geologic environments having a fission
product and actinide elements of said nuclear waste incorporated as solid
solutions within the crystals thereof, said crystals (i) comprising crystals
belonging to or possessing structures closely related to at least one of the
mineral classes selected from the group consisting of perovskite (CaTiO3) and
zirconolite (CaZrTiO-CauTi207  solid solution), and  crystals (i)
thermodynamically compatible with said crystals (i) containing aluminum and/or
iron crystallized in at least one non-radioactive phase.

15. A process for immobilizing high level nuclear waste containing high
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concentrations of Al, Fe, Mn, Ni and Na compounds which compounds
constitute a major proportion of the waste which comprises the steps of (1)
mixing the waste with a minor proportion of a mixture of oxides selected from
the group consisting of TiOp, ZrO, SiO2, AlO; CaO, SrO and BaO, at least
one of the selected oxides being from the group consisting of TiO2, ZrO and
Si0», the oxides in said mixture and the relative proportions thereof being
selected so as to form a mixture which when heated at temperatures between
800°C and 1400°C crystallizes to produce a mineral assemblage containing (i)
crystals belonging to or possessing structures closely related to the titanate
mineral classes capable of providing lattice sites in which the fission product
and actinide elements of said waste are securely bound, and (ii) crystals of at
least one non-radioactive phase containing aluminium, iron, manganese, nickel
and sodium, said crystals (ii) including crystals belonging to or possessing
structure closely refated to the nepheline (NaAlSiO;) mineral class, said crystals
(i and (ii) belonging to or possessing crystal structures closely related to
crystals belonging to mineral classes which are resistant to leaching and
alteration in geologic environments, and (2) heating at a temperature within
said range and then cooling said mixture so as to cause crystallization of the
mixture to a mineral assemblage having the fission product and actinide
elements of said waste incorporated as solid solutions within the crystals (i)
thereof, and the aluminium, iron, manganese, nickel and sodium crystallized in
the crystals (i), said heating and cooling being conducted under redox
conditions such that the manganese and nickel are dominantly present in the
divalent state.

16. A process according to claim 15, wherein said waste is mixed with from
20 to 40% by weight of said mixture of oxides.

17. A process according to claim 15, wherein said heating and said cooling
are carried out at reducing conditions such that said manganese and/or nickel
are maintained dominantly in a divalent state and said iron is maintained
dominantly in a divalent or trivalent state.

18. A process according to claim 17, wherein said reducing conditions are
such that the oxygen fugacity lies near the nickel-nickel oxide buffer.

19. A process according to claim 15, wherein said crystals (i) comprise
crystals belonging to or possessing structures closely related to the mineral
classes selected from the group consisting of perovskite (CaTiOy), zirconolite
(CaZrTixO7), and a hollandite-type mineral (BaAl:TigOne).

_57_



20. A process according to claim 15, wherein said crystals (i) comprise
crystals belonging to or possessing structures closely related to at least one of
the mineral classes selected from the group consisting of perovskite (CaTiO3)
and zirconolite (CaZrTi:0;-CaUTi207 solid solution).

21. A process according to claim 15, wherein said crystals (ii) comprise at
least one phase selected from the group consisting of hercynite-rich spinel
(F"ALO,), corundum (Al,03), pseudo-brookite solid solutions (AlLTiOs—FeTiOs),
and hollandite solid solutions (BaAl:TisO6-Ba(FeTi) TigO16).

22. A process according to claim 15, wherein said crystals (ii) comprise at
least one phase selected from the group consisting of ferrite-spinel (composed
principally of the end members NiFe)'04-MnFe;"Oy-Fe'Fe,"O-Fer' TiO -Fe"AlLOy),
ilmenite  (FeTiOs3), ulvospinel  (FesTis04), ferropseudo-brookite  (FeTi-Os),
hollandite ~ (Ba(Alfe" Fe"Ni,Ti)»-TisOws) and a  davidite-type  mineral
(Ba(Fe" Alz-Fes'TiisOm).

23. A process according to claim 15, wherein said crystals (i) include
phercynite-rich spinel or ferrite spinel.

24. A process according to claim 15, wherein said mixture of oxides
comprises at least four members selected from the group consisting of TiO,,
Zr0., SiO2, AlLOs, Ca0, SrO, BaO, at least one of said members being selected
from the subgroup consisting of TiOs, ZrO; and SiOs.

25. A process according to claim.-24, wherein said mixture of oxides
comprises at least three members selected from the group consisting of TiO-,
Zr0Os, Si0., AlOs, CaO, at least two of said members being selected from the
subgroup consisting of TiOz, ZrO2 and SiOs.

26. A process according to claim 15 wherein the waste contains Al-QOz in
excess of Fe:O3 on a weight basis and the mixture of added oxides comprises
TiO2, ZrO,, CaO and SiO: in proportions chosen so that the mineral assemblage
comprises hercynite-rich spinel, perovskite, zirconolite and nepheline.

27. A process according to claim 15 wherein the waste contains AlOz in
excess of Fe.O3 on a weight basis and the mixture of added oxides comprises
TiO,, ZrO;, Ca0 and SiO, in proportions chosen so that the mineral assemblage
comprises hercynite—rich spinel, zirconolite and nepheline.

28. A process according to claim 15 wherein the waste contains Fe Qs in
excess of Al:O; on a weight basis and the mixture of added oxides comprises
TiOy, ZrO,, AlO;, CaO and SiO; in proportions chosen so that the mineral

assemblage comprises ferrite spinel (MnNiFe)Fex"0,, perovskite, zirconolite and
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nepheline.

29. A process according to claim 15 wherein the waste contains Fe;Oz in
excess of AbO; on a weight basis and the mixture of added oxides comprises
TiOz, ZrO, AlQO; CaO and SiO; in proportions chosen so that the mineral
assemblage comprises ferrite spinel, zirconolite and nepheline.

30. A process according to claim 15 wherein the waste contains Al:Os in
excess of FeyOz on a weight basis and the mixture of added oxides comprises
TiOs, ZrQ2, CaO and SiO» in proportions chosen so that the mineral assemblage
comprises hercynite-rich  spinel, perovskite, zirconolite, nepheline and a
pseudo-brookite-type solid solution (Al;TiOs —FeTiOs).

31. A process according to claim 15 wherein the waste contains ALO; in
excess of Fe;O3 on a weight basis and the mixture of added oxides comprises
TiO», ZrOs, CaO, BaO and SiO: in proportions chosen so that the mineral
assemblage comprises hercynite—rich spinel, perovskite, zirconolite, nepheline and
a hollandite type solid solution (BaAl;TisgO- Ba(Fe,NiMn,Ti):=TigOns).

32. A process according to claim 15 wherein the waste contains Fe;Os in
excess of the ALO3 on a weight basis and the mixture of added oxides
comprises Ti10s, ZrO», Al,Os3;, CaO and SiO; in proporfions chosen so that the
mineral assemblage comprises ferrite spinel (MnNiFe)'Fe."Os,  perovskite,
zirconolite, nepheline, ilmenite (FeTiO3) and pseudo- brookite solid solution
(FeTi,0s~Al;TiOs).

33. A process according to claim 32 wherein the mixture of added oxides
also comprises BaO and the mineral assemblage also comprises a complex
davidite-type mineral Ba(AlFe"):~Fes'Ti30s.

34. A process according to claims 1 or 15 wherein the selected mixture of
oxides is mixed directly with a high level nuclear waste sludge without
preliminary drying or calcining of the sludge.

35. A mineral assemblage containing immobilized high level nuclear waste
containing Al, Fe, Mn, Ni and Na compounds, said compounds constituting a
major proportion of said waste, said assemblage comprising crystals (i)
belonging to mineral classes which are resistant to leaching and alteration in
geologic environments and having fission product and actinide elements of said
waste incorporated as solid solutions within the crystals thereof, said crystals
(i) belonging to or possessing crystal structures closely related to at least one
of the mineral classes selected from the group consisting of perovskite
(CaTiO3) and zirconolite (CaZrTi,0;~-CalTizO7 solid solution), and crystals (ii)
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containing Al, Fe, Mn, Ni and Na, said crystals (ii) including crystals possessing
crystal structures belonging to or closely related to the nepheline (NaAlSiOy)
mineral class.

36. A mineral assemblage according to claim 35, wherein said crystals (ii)
include hercynite-rich spinel or ferrite spinel.
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4778626 : Preparation of particulate radioactive waste mixtures(51)

INVENTORS : Ramm; Eric J., Lilli Pilli, Australia
Buykx; Wilhelmus ., Engadine, Australia
Ringwood; Alfred E., Redhill, Australia
ASSIGNEES @ Australian Nat'l Univ. of Acton, both of, Australia
Australia Nuclear Science & Technology Organisation, both of,
Australia
ISSUED : Oct. 18, 1988
FILED : Oct. 27, 1986

ABSTRACT : A dry, pourable particulate mixture of nuclear waste and synthetic
rock-forming components is produced by supplying the rock forming
components in dry particulate form to a mixer, supplying the nuclear waste in
liguid phase and operating the mixer to distribute the waste substantially
uniformly through the synthetic rock components; the mixture is calcined to
produce a precursor powder which is adapted to be used in a hot pressing
process to form synthetic rock throughout which the radioactive nuclear \vaste
is distributed and immobilized. A reducing gas atmosphere is preferably
maintained in the calcining process stage, the gas being for example pure
hydrogen or a mixture of hydrogen in nitrogen in proportions which are
non-explosive. A screw type or paddle type conveyor can be used for the
mixing and calcining stages although the calcining can be effected in a
vertically downwardly directed tube device having associated heating means such
as microwave heating.

CLAIMS

1. A process for providing particulate material suitable for the formation of
synthetic rock under heat and pressure, comprising :
supplying synthetic rock-forming components in dry particulate form
to a continuous mixer adapted to advance particulate material along a mixer
path from an inlet to an outlet ;
supplying radioactive nuclear waste in liquid phase to the particulate
components at locations spaced along the mixer path and operating the mixer
to cause the waste to be substantially uniformly distributed through the
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synthetic rock components and at the same time heating the synthetic rock
components and waste to maintain a substantially dry particulate material along
said mixer path ;

calcining the substantially dry particulate material to produce in
powder form a precursor comprising synthetic rock forming components and
radioactive nuclear waste distributed therethrough, the precursor being adapted
to be used in a hot pressing process to form synthetic rock throughout which
the radioactive nuclear waste is distributed and immobilized.

2. A process as claimed in claim 1 wherein an off-gas system is provided
and operated for collecting and processing water vapor, other vaporized
components and entrained particulate matter from the radioactive waste
synthetic rock mixture.

3. A process as claimed in claim 1 wherein the mixer used is selected from
the group consisting of a screw conveyor mixer and a rotating paddle, each
such mixer having an approximately horizontally directed mixing path.

4. A process as claimed in claim 1, and wherein the calcining is effected in
a calcining stage downstream of the mixer at temperatures substantially greater
than those prevailing in the mixer.

5. A process as claimed in claim 4 and wherein temperatures of the order
of 300C. are used in the mixer and temperatures of the order of 750C. are
used in the calcining stage.

6. A process as claimed in claim 4 wherein the calcining stage is effected
in a rotary kiln downstream of a separate apparatus for effecting the mixing
stage.

7. A process as claimed in claim 1 wherein the calcining stage is provided
at a downstream portion of a substantially horizontal conveyor having rotating
means for advancing the particulate material, the conveyor having an upstream
portion which provides the mixing stage.

8. A process as claimed in claim 1 wherein the calcining stage is effected
in a tubular calciner having a substantially vertically downwardly directed duct.

9. A process as claimed in claim 8 and wherein the calcining stage includes
the use of microwave heating means.

10. A process as claimed in claim 1 and further comprising the preliminary
step of forming the synthetic rock components as an aqueous slurry dewatered
to form a damp cake of solid particles, drying said damp cake at relatively low

temperatures compared with those used in the subsequent process stages, and

- 62 -



manipulating the powder to be in a flowable form.

11. A process as claimed in claimm 10, and wherein the process includes
precompaction of said damp cake to form the synthetic rock components into
granulated form, and presintering at a temperature of the order of 300T. to
improve the mechanical strength of the granules, whereby a flowable product is
provided.

12. A process as claimed in claim 1 further comprising the preliminary step
of forming the synthetic rock components into a slurry and spray drying the
slurry to form fine particles, and presintering the fine particles at temperatures
of the order of 3007C. to provide a feed stock in powder form for said mixer.

13. A process as claimed in claim 1, further comprising a preliminary step
wherein the synthetic rock components are formed in a sol-gel process,
followed by sintering the material at temperatures of the order of 300TC. to
produce a flowable powder.

14. A process as claimed in claim 1, further comprising maintaining a
non-explosive reducing gas atmosphere in the calcining stage and circulating
the gas through an off-gas system and providing operating means to remove
any radioactive components in the off-gas.

15. A process as claimed in claim 14 and wherein the reducing gas is
selected from the group consisting of substantially pure hydrogen, a mixture of
hydrogen and nitrogen and comprising at least 8026 hydrogen, and a mixture of
hydrogen and nitrogen comprising approximately 3% hydrogen, all percentages
being by weight. _ |

16. A process as claimed in claim 1 further comprising:

(a) filling bellows-like containers in sequence with the calcined product in a
pouring process, the containers each having a bellows-like cylindrical side wall;

(b) closing each bellows-like container in turn with a lid and welding the
container closed; and,

(c) effecting hot uniaxial pressing of each container in turn "to cause
densification of the contents of the container and the formation of synthetic

rock with the radioactive waste immobilized therethrough.
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4806279 : Method of producing impregnated synthetic rock
precursor(52)

INVENTORS : Ramm; Eric J., Lilli Pilli, Australia

ASSIGNEES : Australian Atomic Energy Commission, both of, Australia
Australian National University, both of, Australia

ISSUED : Feb. 21, 1989

FLED : Dec. 1, 1986

ABSTRACT: A vibratory processing arrangement including an apparatus
comprising three main stages. Namely, a high level waste vibrating impregnator,
a vibrating calciner and a vibratory powder mixer. The waste impregnator
comprises a downwardly inclined trough having flexible mountings and a
vibrator at its upstream end, a hood structure and a series of liquid sprays
connected to a high level waste supply tube. The vibratory calciner comprises a
downwardly inclined tube connected to a downstream discharge tube. The
discharge tube has an inlet pipe for entry of reducing gas. The reducing gas
passes upwardly through the tubes to a gas discharge take-off tube near the
upstream end of the downwardly inclined tube. A vibrator is tuned to pravide
the desired flow rate through the downwardly inclined tube. Calcined discharged
powder falls downwardly into the vibratory mixer, which has a vibratory actuator
and flexible mountings. Titanium powder is introduced into the vibratory mixer
through a secondary inlet and is intimately mixed with the calcined discharged
powder before being discharged into respective canisters.

CLAIMS

1. A method of producing impregnated synthetic rock precursor comprising :
feeding particulate synthetic rock precursor into a vibratary conveying
means having an elongated path along which the particulate material is
progressively moved under vibration,
spraying the particulate material with a liquid comprising radioactive
waste over an extended region of the elongated path such that the liquid is
absorbed into the particulate material which continues to advance to the
discharge end of the device,
applying heat over an extended region of said elongated path for
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maintaining the synthetic rock precursor in a substantially dry state and causing
evaporation of water contained in said liguid, and discharging the impregnated
synthetic rock precursor.

2. A method as claimed in claim 1 characterised by the continuous vibratory
conveying means having an elongated path extending from spaced upstream and
downstream ends.

3. A method as claimed in claim 1 or claim 2 characterised by a
temperature of the order of 300°C. being established in the synthetic rock
precursor passing along said elongated path.

4. A method as claimed in claim 3, characterised in that the conveying
means used has a generally trough-like form and has a vibrating element
connected thereto near its upstream end, the downstream end of the vibratory
conveyor being mounted and supported in flexible mountings and remaining
substantially stationary.

5. A method as claimed in claim 5, characterised by the conveyor means
using a multiplicity of spray heads spaced along and above said elongated path
for spraying said liquid.

6. A method as claimed in claim 5 and characterised by including taking
synthetic rock precursor in powder form and forming the precursor into a
granulated form and supplying the granulated form of the precursor to bhe fed
into said vibratory conveying means.

7. A method as claimed in claim 6, further characterised by advancing said
impregnated synthetic rock precursor in flowable particulate form into an
elongated downwardly inclined tubular duct, establishing vibration of the tubular
duct and applying high level heating so as to calcine the synthetic rock
precursor during its passage along said duct, and disoharging the calcined
synthetic rock precursor at the downstream end of the duct.

8. A method as claimed in claim 7 and characterised in that said applied
high level heating establishes a temperature of the order of 750TC. in the
synthetic rock precursor passing down the duct.

9. A method as claimed in claim 7 and characterised in that said step of
establishing vibration of the tubular duct is effected by a vibrator unit
connected to the downstream region of the tubular duct, the upstream end of
the tubular duct being mounted in flexible mountings and the method further
comprising adjusting the frequency of vibrations to control the flow rate of the
synthetic rock precursor.
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10. A method as claimed in claim 9 and characterised by using a gas
circulation system through said tubular duct and controlling the atmosphere
within the tubular duct, gas extracted from the tubular duct being filtered to
remove volatile radioactive components taken up from the radioactive waste
content of the synthetic rock precusor.

11. A method as claimed in claim 10 and characterised by mixing titanium
powder into the discharged calcined synthetic rock precursor by using a
vibratory conveyor which is downwardly inclined in the downstream direction,
the titanium powder being mixed into the synthetic rock precursor near the
upstream end of said vibratory conveyor.

12. A method of producing canisters containing compacted, impregnated
synthetic rock precursor, the precursor being impregnated with radioactive waste
and the canisters being adapted to be treated in a hot pressing operation
whereby the radioactive waste is immobilised in a matrix of synthetic rock in
the canisters, the method characterised by processing synthetic rock precursor
by a method as claimed in claim 11 and further comprising pouring the
synthetic rock precursor into a canister having a generally cylindrical form with
a bellows like cylindrical wall and flat end walls, closing the canister after
pouring the synthetic rock precursor into the canister and effecting a cold
precompaction by uniaxial pressing along the axis of the canister.

13. A method as claimed in claim 12 and characterised in that the cold
precompaction of each bellows canister is effected using an apparatus
comprising a hydraulic press having an upwardly acting ram with a refractory
facing thereon for supporting the bottom of the canister, a fixed top abutment,
a heating zone immediately below the abutment and adapted to surround the
bellows container during the hot uniaxial pressing process and a retractable
platen adapted to be inserted laterally into the press below the heating zone
such that a bellows canister can be placed on the refractory facing and partially
compressed at ambient temperature by upward displacement of the hydraulic
press, the platen being removable to permit the press to be displaced upwardly
to a higher level whereby the bellows—like canister is inserted within the heating
zone and abuts against the top abutment.

14. A method as claimed in claim 8 and characterized in that said step of
establishing vibration of the tubular duct is effected by a vibrator unit
connected to the downstream region of the tubular duct, the upstream end of
the tubular duct being mounted in flexible mountings and the method further
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comprising adjusting the frequency of vibrations to control the flow rate of the

synthetic rock precursor.
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INVENTORS : Ramm; Eric }., Lilli Pilli, N.SW. 2229, Australia
Bukyx; Wilhelmus |., Engadine, N.SW. 2233, Australia
~ Padgett; John G., Engadine, N.S.W. 2233, Australia
Ringwood. Alfred E., Redhill, A.C.T. 2603, Australia
ASSIGNEES : none
ISSUED : Feb. 28, 1989
FILED : July 14, 1986

ABSTRACT : A compressible bellows type metal canister is used in a  hot
pressing process for immobilizing high level radioactive nuclear waste material
in the form of synthetic rock, the canister comprises a base wall and a
corrugated bellows side wall of generally circular cross—section, concentrically
arranged within the corrugated side wall is a cylindrical liner. In the center of
the base wall a conically-tapered aperture is provided with a filter plug.
Diametrically opposed apertures are provided in the base wall and are connected
by an outlet pipe for removal of waste gases.

CLAIMS

1. A method of forming synthetic rock incorporating radioactive waste
wherein precursor materials for the synthetic rock mixed with radioactive waste
are placed in a metal canister, the wall of which includes a bellows like wall
structure, the method comprising heating the canister and its contents and
maintaining a sufficiently elevated temperature during the application of axial
pressure to the canister to cause the formation of synthetic rock and the
discharge of gases, and characterised by using a canister including a discharge
duct connected to an exhaust gas processing system for discharging gases from
within the canister.

2. The method according to claim 1, wherein upstream of the discharge duct
a filter structure is provided within the canister and the filter structure retains
good gas permeability at high temperature and prevents any solid material
escaping from the canister during densification of material being compressed
therein.

3. The method according to claim 2, wherein the filter structure comprises a
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cap-like structure having apertures therein and co-operating with a base end
wall of the canister which has an aperture therein leading to the discharge duct,
a cavity being defined between the aperture and the cap and incorporating a
filter material whereby ingress of synthetic rock forming materiafs into the filter
during compression of the canister is substantially avoided.

4. The method according to claim 1, wherein the discharge duct is in the
form of a bore extending through a base end wall of the canister and
terminating in a pipe adapted to be connected to a gas processing system.

5. The method according to claim 1, wherein the discharge duct is in the
form of a slot-like recess in the bottom of a base end wall of the canister, the
discharge duct is an operating position being closed by co-operation with an
upper face of a pressure pad located on the hydraulic ram.

6. The method according to claim 1, wherein a cylindrical screen is provided
confining the particulate material to a central zone of the canister and
preventing the ingress of this material into the region of the convolutions of the
bellows like structure in the cylindrical side wall.

7. The method according to claim 1, wherein the discharge duct terminates
in a pipe which communicated with a gas extraction manifold and a suction is
applied to enable reliable salvaging of all discharged gas.

8. The method according to claim 7, wherein the pipe is an {-shaped pipe
fitting having a horizontal limb rotatably mounted in sealing engagement in the
base end wall of the canister and connected to the discharge duct; an arm of
the L-shaped pipe fitting extending at right angles to this horizontal limb is
adapted to be rotated from an upwardly directed transport position to a
downwardly directed location by pivotal action whereby an open tip of the pipe
is inserted through a slot in a side wall of an upwardly directed tube \hich
forms the manifold for the extraction system.

9. A method of forming synthetic rock incorporating radioactive waste
wherein precursor materials for the synthetic rock mixed with radioactive waste
are placed in a metal canister, the canister as being claimed in claim 1, the
method comprising heating the canister and its contents and maintaining a
sufficiently elevated temperature during the application of axial pressure to the

canister to cause the formation of synthetic rock and the discharge of gases.
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