

LAPP-EXP-99.03

R TAGGING AND DOUBLY CHARMED B DECAYS IN ALEPH

R. BARATE

LAPP, Chemin de Bellevue, BP110, F74941, Annecy-le-Vieux, CEDEX, France E-mail: barate@lapp.in2p3.fr

This contribution concerns three contributed papers that share the common feature of analysing fully- (or almost fully-) reconstructed B decays coming from a sample of four million hadronic Z decays collected with the ALEPH detector at LEP. In the first paper 1 , 404 charged and neutral B mesons decaying in standard modes are fully reconstructed and used to look for resonant structure in the $B\pi^\pm$ system. In the framework of Heavy Quark Symmetry (HQS), the mass of the B_2^* state and the relative production rate of the B^{**} system are measured. In the same sample of B mesons, significant $B\pi^\pm$ charge-flavour correlations are observed. In the second paper 2 , a search for doubly-charmed B decays with both charmed mesons reconstructed is performed. A clear signal is observed in the channels $b \to D_s \bar{D}(X)$ and $b \to D\bar{D}(X)$ providing the first direct evidence for doubly-charmed b decays involving no D_s production. Evidence for associated K_S^0 and K^\pm production in the decays $B \to D\bar{D}(X)$ is also presented and some candidates for completely reconstructed B meson decays $B \to D_s \bar{D}(n\pi)$, $B \to D\bar{D}K_S^0$ and $B \to D\bar{D}K^\pm$ are observed. Furthermore, candidates for the two-body Cabibbo suppressed decays $B^0 \to D^{*-}D^{*+}$ and $B^- \to D^{(*)0}D^{(*)-}$ are also observed. One $B_s^0 \to D_s^+D_s^-$ event is reconstructed, which can be only the short-lived CP even eigenstate. In the third paper 3 , the B_s decay to $D_s^{(*)+}D_s^{(*)-}(X)$ is observed, tagging the final state with two ϕ in the same hemisphere. It corresponds mostly to the short-lived CP even eigenstate. A preliminary value of the B_s short lifetime is obtained.

1 Resonant Structure and Flavour Tagging in the $B\pi^{\pm}$ System

1.1 Introduction

Fully reconstructed B meson decays are used to extract a precise mass of the B_2^* state and to obtain the B/\bar{B} signature at the decay point. Using the π from B^{**} decay or the nearest π from fragmentation, direct tagging of the initial B just before it oscillates and decays is possible. It could be used in future CP violation experiments.

1.2 B meson and associated pion selection

Charged and neutral B mesons are fully reconstructed in various exclusive modes. Eighty percent are in the mode^a B \rightarrow $\bar{\rm D}^*(X)$, where X is a charged π , ρ or ${\rm a_1}$, and 20% are of the form B \rightarrow $J/\psi(\psi')X$, where X is a charged K or a neutral K^* . In addition, charged B candidates are reconstructed in the channels B $^-\rightarrow$ D $^{*0}\pi^-$ and D $^{*0}a_1^-$, with a missing soft γ or π^0 from the D $^{*0}\rightarrow$ D $^0\gamma$ or D $^0\pi^0$ decays. In total, 238 charged and 166 neutral B candidates are reconstructed with purities of $(84\pm3)\%$ and $(86\pm3)\%$ respectively.

The neighbouring pion is selected using the P_L^{max} algorithm which chooses the track with the highest projected momentum along the B direction (and a B π mass below 7.3 GeV/c).

1.3 Resonant Structure in the $B\pi^{\pm}$ System

Using the pion selected with the P_L^{max} algorithm, the right sign and wrong sign $B\pi$ mass distributions are made

and B** signals are extracted. The gain of one order of magnitude in mass resolution compared to previous inclusive experiments, due to the quality of exclusive B decays, allows a more precise measurement of the masses if one uses the Heavy Quark Symmetry parameters ¹. HQS predicts 4 resonances giving 5 correlated Breit Wigner (3 narrow and 2 wide) in the B π mass distributions. Here only the overall mass scale and the total number of signal events are left free. An unbinned likelihood fit (Fig. 1) gives :

$$M(B_2^*) = (5739_{-11}^{+8}(\text{stat})_{-4}^{+6}(\text{syst})) \text{ MeV/c}^2$$

$$f_{B} = \frac{\mathcal{B}(b \to B^{**} \to B^{(*)}\pi)}{\mathcal{B}(b \to B_{u,d})} = (31 \pm 9(\text{stat})^{+6}_{-5}(\text{syst}))\%.$$

The result for the mass of the B_2^\star state is somewhat low compared to the predicted value of $5771\,\mathrm{MeV}/c^2$.

1.4 B/B Flavour Tagging

The sign of the neighbouring pion (from B** or fragmentation) tags the B/ $\bar{\rm B}$ nature at production : a π^+ right-sign tags a B⁰, etc. The P_L^{max} tagging algorithm efficiencies for neutral and charged B's are :

$$\epsilon_{tag}^{N} = (89 \pm 3(\text{stat}) \pm 2(\text{syst})) \%$$

$$\epsilon^{C}_{tag} = (89 \pm 2(\text{stat}) \pm 1(\text{syst})) \%.$$

The asymmetry \mathcal{A}^N between the number of rightsign and wrong-sign tags, $\mathcal{A}^N = (N_{rs} - N_{ws})/(N_{rs} + N_{ws})$, is shown as a function of the B decay proper time, t, in Fig. 2a. The sinusoidal mixing of $\bar{\mathrm{B}}^0$ into $\bar{\mathrm{B}}^0$ gives rise to the excess of wrong-sign tags (negative value of \mathcal{A}^N) at high proper times.

30 - 45

^aThroughout this paper, charge conjugate decay modes are always implied.

Figure 1: The $B\pi$ mass spectrum from data (points with error bars) and fit (histogram). The fit includes the expected background plus contributions from the narrow and wide B^{**} states.

The mistag rate for neutral B's, ω_{tag}^N , is measured from the oscillation amplitude, with Δm_d fixed to the world average of $0.474 \pm 0.031 \, \mathrm{ps^{-1}}$. An unbinned likelihood fit gives:

$$\omega_{tag}^{N} = (34.4 \pm 5.5(\text{stat}) \pm 1.0(\text{syst})) \%;$$

similarly, an unbinned likelihood fit for ω^C_{tag} , the mistag rate for charged B's gives :

$$\omega_{tag}^{C} = (26.0 \pm 3.6(\text{stat}) \pm 0.7(\text{syst})) \%$$

showing that this method gives good tagging performance, whilst being very efficient. The corresponding fits to the data are displayed in Fig. 2.

2 Doubly charmed B decays

2.1 Introduction

The final states with 2 charm mesons allow a precise study of the b quark decay into $c\bar{c}s$ and give a direct access to the average number of charm quarks per b decay n_c . The study of 3-body B meson decay in $\bar{D}DK$ gives many results on the diagrams, possible resonances and dynamics. Added to the Cabbibo suppressed $D\bar{D}$, standard $D_s^+\bar{D}$, and new $D_s^+\bar{D}n\pi^\pm$ decays, one obtains the total double charm contribution to B meson decay.

2.2 DD selection

The charmed mesons are searched for in the decay modes $D^0 \to K^-\pi^+$, $D^0 \to K^-\pi^+\pi^-\pi^+$,

Figure 2: The right-sign/wrong-sign asymmetries in the data as a function of the proper decay time. The dashed curves display the charge asymmetries determined from the unbinned likelihood fits.

 $\begin{array}{l} D^{+} \to K^{-}\pi^{+}\pi^{+}, D^{*+} \to D^{0}\pi^{+}, D^{+}_{s} \to \phi\pi^{+}(\phi \to K^{-}K^{+}) \\ \text{and } D^{+}_{s} \to \bar{K}^{*0}K^{+} \ (\bar{K}^{*0} \to K^{-}\pi^{+}). \ \text{For } D^{0} \ \text{mesons from} \\ D^{*+} \ \text{decay, the decay mode } D^{0} \to K^{-}\pi^{+}\pi^{0} \ \text{is also used}. \end{array}$

The pairs of D candidates must be in the same hemisphere and the two D candidates are required to form a vertex with a probability of at least 0.1%. To maintain a good acceptance for the $B \to D\bar{D}X$ signal whilst rejecting the backgrounds and minimizing the model dependence of the selection efficiencies, a cut $d_{BD}/\sigma_{BD} > -2$ (>0) is applied on the D⁰, D_s⁺ (D⁺) decay length significance (defined in Fig. 3). The decay length significance of the D \bar{D} vertex is also required to satisfy the condition $d_B/\sigma_B > -2$.

To obtain the number of real $D\bar{D}$ events, standard tables are made (for instance $m(K\pi)_1/m(K\pi)_2$) and the combinatorial background is subtracted linearly.

2.3 Inclusive b quark decays in $D_s\bar{D}(X)$ or $D\bar{D}(X)$

After acceptance corrections, the different branching fractions obtained are given in Table 1.

The inclusive branching fraction of b quarks to $D_sD(X)$ is measured to be

$$\mathcal{B}(b \to D_s D^0, D_s D^{\pm}(X)) = (13.1^{+2.6}_{-2.2}(st)^{+1.8}_{-1.6}(sy)^{+4.4}_{-2.7}(\mathcal{B}_D))\%,$$

in good agreement with previous measurements of the inclusive branching fraction of the B mesons to D_{s} .

For the first time, doubly-charmed B decays involving no D_s production are observed. The corresponding

Figure 3: Display of a decay $B^0 \to D^-D^0K^+$ reconstructed in the ALEPH detector (real data).

Table 1: Summary of the different branching fractions measured in this analysis. The modes involving a D^{*+} (lowest part of the table) are also included in the upper part results as a subsample of the modes involving a D^0 or a D^+ .

Channel	$\mathcal{B}(\%)$	
$b \to D^0 D_s^-(X)$	$9.1^{+2.0}_{-1.8}$	
$b \to D^+D_s^-(X)$	$4.0^{+1.7}_{-1.4} \pm 0.7 ^{+1.4}_{-0.9}$	
Sum b \rightarrow D ⁰ D _s ⁻ , D ⁺ D _s ⁻ (X)	$13.1^{+2.6}_{-2.2} {}^{+1.8}_{-1.6} {}^{+4.4}_{-2.7}$	
$b \to D^0 \bar{D}^0(X)$	$5.1^{+1.6}_{-1.4}$ $^{+1.2}_{-1.1}$ ± 0.3	
$b \to D^0D^-, D^+\bar{D}^0(X)$	$2.7^{+1.5}_{-1.3}^{+1.0}_{-0.9}\pm0.2$	
$b \to D^+D^-(X)$	< 0.9% at 90%C.L.	
Sum b $\to D^0\bar{D}^0, D^0D^-, D^+\bar{D}^0(X)$	$7.8^{+2.0}_{-1.8}^{+1.7}_{-1.5}^{+0.5}_{-0.4}$	
$b \to D^{*+}D_s^-(X)$	$3.3^{+1.0}_{-0.9} \pm 0.6 ^{+1.1}_{-0.7}$	
$b \to D^{*+}\bar{D}^{0}, D^{0}D^{*-}(X)$	$3.3_{-0.9}^{+1.0} \pm 0.6_{-0.7}^{+1.1} 3.0_{-0.8}^{+0.9} \stackrel{+0.7}{_{-0.5}} \pm 0.2$	
$b \to D^{*+}D^-, D^+D^{*-}(X)$	$2.5^{+1.0}_{-0.9}^{+0.6}_{-0.5}\pm0.2$	
$b \to D^{*+}D^{*-}(X)$	$1.2^{+0.4}_{-0.3} \pm 0.2 \pm 0.1$	

inclusive branching fractions are

$$\mathcal{B}(b \to D^0 \bar{D}^0, D^0 D^{\pm}(X)) = (7.8^{+2.0}_{-1.8}(st)^{+1.7}_{-1.5}(sy)^{+0.5}_{-0.4}(\mathcal{B}_D))\%$$

Hence a significant fraction of the doubly-charmed B decays leads to no D_s production. For the average mixture of b hadrons produced at LEP, the sum over all the decay modes above yields:

$$\mathcal{B}(\mathrm{b} \to \mathrm{D_s}\mathrm{D^0}, \mathrm{D_s}\mathrm{D^\pm}, \mathrm{D^0}\bar{\mathrm{D}^0}, \mathrm{D^0}\mathrm{D^\pm}(X)) = \\ \left(20.9^{+3.2}_{-2.8}(\mathrm{stat})^{+2.5}_{-2.2}(\mathrm{syst})^{+4.5}_{-2.8}(\mathcal{B}_\mathrm{D})\right)\%.$$

Adding the small hidden charm and charmed baryon contributions, this measurement is in good agreement with the recent ALEPH measurement of the average number of charm quarks per b decay:

 $n_c=1.230\pm0.036(\rm stat)\pm0.038(\rm syst)\pm0.053(\mathcal{B}_D)$. Some corresponding $D^{(\star)}\bar{D}^{(\star)}$ mass spectra are given in Fig. 4.

Figure 4: Unshaded histogram: the $D\bar{D}$ mass spectra of the selected $b\to D\bar{D}(X)$ candidates (a) $D^{\bullet+}D^{\bullet-}$ (b) $D^{\pm}D^{\bullet\mp}$. The channels are mutually exclusive. Shaded histogram: the $D\bar{D}$ mass distribution of the events in the sidebands of the D_1 or D_2 mass spectra, normalised to the expected number of combinatorial background events.

2.4 Cabbibo suppressed $B \rightarrow \bar{D}D$ decays

As can be seen in Fig. 4a, two candidates for the Cabibbo suppressed decay $B_d^0 \to D^{*+}D^{*-}$ are observed. Asking for no charged track at the $D\bar{D}$ vertex, the background is reduced to 0.10 ± 0.03 event. The corresponding branching fraction is measured to be

$$\mathcal{B}(\bar{B}_{d}^{0} \to D^{*+}D^{*-}) = (0.23^{+0.19}_{-0.12} \pm 0.04 \pm 0.02(\mathcal{B}_{D})) \%.$$

One candidate for the Cabibbo suppressed decay $B^- \to D^{*-}D^0$, with both D vertices well separated from the reconstructed B decay point, is also observed ⁴ and limits on branching fractions are obtained ².

2.5 Semi inclusive $B \to \bar{D}DK(X)$ decays

Reconstructing a K_S^0 and K^\pm compatible with the $D\bar{D}$ vertex, and making the $\bar{D}DK$ invariant mass (without using the soft pion from a D^*), 3 peaks separated by about 150 MeV/ c^2 appear, corresponding to the three 3-body B meson decay modes (Fig. 5). At a lower mass, the events correspond to more than 3-body decay modes (mainly $D^{(*)}\bar{D}^{(*)}K\pi$). After background subtraction, the total number of events is 32.2 ± 7.9 , and in the 3-body region 21.2 ± 5.5 . Hence, one sees that the three-body decays $B \to \bar{D}^{(*)}D^{(*)}K$ are a large part (about 70%) of the inclusive doubly-charmed $B \to \bar{D}^{(*)}D^{(*)}K(X)$ decays.

2.6 Exclusive B \rightarrow DDK decays

Asking now for no other charged track at the $\bar{D}DK$ vertex (and using the soft pion from a D* when available), a clear B signal appear (Fig. 6) with 9 $\bar{D}^{(*)}D^{(*)}K_S^0$ events and 9 $\bar{D}^{(*)}D^{(*)}K^{\pm}$ events above 5.04 GeV/ c^2 . One of these events⁴ was displayed in Fig. 3.

No evidence for resonant decays $B\to \bar{D}^{(*)}D^+_{s1}(2535)$ is found.

Figure 5: The $D^0\bar{D}^0K$, D^0D^-K or D^+D^-K mass of $D\bar{D}$ events with a reconstructed K_S^0 or a K^\pm for (a) ALEPH data (b) simulated three-body decays $B\to D^{(\bullet)}\bar{D}^{(\bullet)}K$. The π^+ from $D^{\bullet+}\to D^0\pi^+$, even if reconstructed, are not used in the mass.

B and \bar{B} decays give different final states and, for instance in a \bar{B} decay, the D coming from the b quark decay (called D_b) can be distinguished from the \bar{D} coming from the W decay (D_W): in most of the events, the invariant mass $m(D_bK)$ tend to be higher than $m(D_WK)$ (and hence the momentum $p(D_b)$ in the B rest frame is higher than $p(D_W)$).

The diagrams contributing to these decays can be divided into 3 classes (Table 2): External W (E), Internal W (I) or color suppressed (cf B \rightarrow J/ ψ K) and interference (EI); as can be seen in Table 2, some I type events are also observed.

Using isospin symmetry, the different branching fractions are given in Table 2 and the sum is :

$$\mathcal{B}(B \to \bar{D}^{(*)}D^{(*)}K) = (7.1^{+2.5}_{-1.5}(st)^{+0.9}_{-0.8}(sy) \pm 0.5(\mathcal{B}_D))\%.$$

2.7 B \rightarrow DDKX decays

Compared to the semi-inclusive result of Sec. 2.5 or to the inclusive b results of Sec. 2.3 , scaled by a factor $1/2f_{B_d^0}=1.3$ to account for b \to \bar{B}^0,B^- , one sees that $\mathcal{B}(B\to \bar{D}^{(\star)}D^{(\star)}KX)$ should be about 3%.

Figure 6: Invariant mass $m(D\bar{D}K)$ for events with one identified K and no other additional track from the $D\bar{D}K$ vertex. D can be either a D^0 , a D^+ or a $D^{\bullet+}$.

Figure 7: Invariant mass $m(D_s^+\bar{D}(n\pi^\pm))$ reconstructed for ALEPH data (a) $D_s^+\bar{D}$ (b) $D_s^+\bar{D}n\pi^\pm$, $n\geq 1$. The peak close to 5.1 GeV/ c^2 is due to events with one missing neutral from decays $D^*\to D\pi^0$, γ or or $D_s^{\bullet+}\to D_s^+\gamma$.

2.8 B
$$\rightarrow$$
 D_e⁺ $\bar{\rm D}(n\pi^{\pm})$ decays

Using the events with a $D_s^+\bar{D}$ mass above 5.04 GeV/ c^2 in Fig. 7a, the branching fraction of B^0 and B^+ mesons into doubly-charmed two-body decay modes is also measured and gives

$$\mathcal{B}(B \to D_s^{(\star)} + \bar{D}^{(\star)}) = (5.6^{+2.1}_{-1.5}(st) \stackrel{+0.9}{_{-0.8}}(sy) \stackrel{+1.9}{_{-1.1}}(\mathcal{B}_D))\%,$$

in good agreement with previous measurements of the same quantity .

For the first time, some candidates for completely reconstructed decays B^0 , $B^+ \to \bar{D}^{(*)}D_s^+ n\pi^{\pm}$ $(n \ge 1)$ are also observed (Fig. 7b). A measurement of the branching fraction for many-body decays B^0 , $B^+ \to \bar{D}^{(*)}D_s^+ X$ is performed, leading to

$$\mathcal{B}(B \to D_s^{(*)\pm}D^{(*)}X) = (9.4^{+4.0}_{-3.1}(st)^{+2.2}_{-1.8}(sy)^{+2.6}_{-1.6}(\mathcal{B}_D))\%.$$

Diagram	Channel	Number of	$\mathcal{B}(\mathrm{B} \to \mathrm{D}^{(*)}\bar{\mathrm{D}}^{(*)}\mathrm{K})$
	(B^0, B^+)	candidates	$(B^0/B^+ \text{ average})$
E	$D^-D^0K^+, \bar{D}^0D^+K^0$	3	$1.7^{+1.2}_{-0.8} \pm 0.2 \pm 0.1\%$
E	$(D^{*-}D^{0} + D^{-}D^{*0})K^{+}, (\bar{D}^{*0}D^{+} + \bar{D}^{0}D^{*+})K^{0}$	5	$1.8^{+1.0}_{-0.8} \pm 0.3 \pm 0.1\%$
E	$D^{*-}D^{*0}K^{+}, \bar{D}^{*0}D^{*+}K^{0}$	1	< 1.3%
I	$D^{0}D^{0}K^{0}, D^{+}D^{-}K^{+}$	1	< 2.0%
I	$(\bar{D}^0D^{*0} + \bar{D}^{*0}D^0)K^0, (D^{*+}D^- + D^+D^{*-})K^+$	1	< 1.6%
I	$\bar{\rm D}^{*0}{\rm D}^{*0}{\rm K}^{0},{\rm D}^{*+}{\rm D}^{*-}{\rm K}^{+}$	1	< 1.5%
EI	$D^{+}D^{-}K^{0}, D^{0}D^{0}K^{+}$	1	< 1.9%
EI	$(D^{*+}D^{-} + D^{+}D^{*-})K^{0}, (\bar{D}^{*0}D^{0} + \bar{D}^{0}D^{*0})K^{+}$	4	$1.6^{+1.0}_{-0.7} \pm 0.2 \pm 0.1\%$
EI	$D^{*+}D^{*-}K^{0}, \bar{D}^{*0}D^{*0}K^{+}$	1	< 3.0%
Sum E	$D^{(*)}-D^{(*)0}K^+, \bar{D}^{(*)0}D^{(*)}+K^0$	9	$3.5^{+1.7}_{-1.1} {}^{+0.5}_{-0.4} \pm 0.2\%$
Sum I	$\bar{\mathrm{D}}^{(*)0}\mathrm{D}^{(*)0}\mathrm{K}^{0}, \mathrm{D}^{(*)+}\mathrm{D}^{(*)-}\mathrm{K}^{+}$	3	$0.8^{+1.0}_{-0.4}^{+0.2}_{-0.1} \pm 0.1\%$
Sum EI	$D^{(*)+}D^{(*)-}K^0, \bar{D}^{(*)0}D^{(*)0}K^+$	6	$2.8_{-1.0}^{+1.6}_{-0.3}^{+0.4} \pm 0.2\%$
E+I+EI	Sum DDK	5	$2.3^{+1.5}_{-0.9} ^{+0.3}_{-0.3} \pm 0.2\%$
E+I+EI	Sum DD*K + D*DK	10	$3.8^{+1.6}_{-1.1} {}^{+0.5}_{-0.4} \pm 0.2\%$
E+I+EI	Sum D*D*K	3	$1.0^{+1.3}_{-0.6} {}^{+0.2}_{-0.2} \pm 0.1\%$
E+I+EI	Sum D(*) D(*) K	18	$7.1_{-1.5}^{+2.5}_{-0.8}^{+0.9} \pm 0.5\%$

Table 2: Summary of the various branching fractions $B \to D\bar{D}K$ measured in this analysis.

2.9 Conclusion on B meson decays

Summing the results of Sec. 2.4, 2.6, 2.7 and 2.8, one sees that $B \to D\bar{D}(X)$ and $B \to D_s^+\bar{D}(X)$ are a big part (about 25%) of B mesons decays.

2.10
$$B_s^0 \rightarrow D_s^+ D_s^- decay$$

One event ⁴ is reconstructed with a $D_s^+D_s^-$ mass at the B_s^0 mass, on a negligible background, with $D_s^+ \to \bar{K}^{*0}K^+$ and $D_s^- \to \phi\pi^-$. This can be only the pure CP even B_s^0 short state as explained in Sec. 3.1 below.

3 Width difference in the $B_s - \bar{B_s}$ system

3.1 Introduction

Most of the channels common to B_s and $\bar{B_s}$ are CP even (cf $D_s^+D_s^-$...). Hence the B_s short is the CP even state. Here a direct measurement of the B_s short lifetime is made using the mostly CP even decay modes $B_s^0 \to D_s^{(\star)+}D_s^{(\star)-}(X)$ with $D_s^+ \to \phi X$, that is a $\phi\phi X$ final state 5 .

3.2 $\phi\phi$ selection

The same method as for double charm (Sec. 2.2) is applied (table $m(K^+K^-)_1/m(K^+K^-)_2$). The number of $\phi\phi$ events measured in this way is $N_{\phi\phi}=50\pm15$, taking into account the non linear background shape near the K^+K^- threshold. In these events, 20% of charm contamination is expected from Monte Carlo;

the contribution of $\phi\phi$ coming from B_d and B_u decays is evaluated using $\mathcal{B}(B\to D_s^{(*)\pm}D^{(*)}(X))$ measured in Sec. 2.8. After subtracting these events, the number of $B_s^0\to D_s^{(*)+}D_s^{(*)-}(X)$ found is $N_{sig}=32\pm17$ (over a background of 78%). This number corresponds to a $B_s^0\to D_s^{(*)+}D_s^{(*)-}(X)$ branching ratio of approximately 10%.

3.3 B_s short lifetime

The $\phi\phi$ vertex (which has a resolution of about $200\mu m$) is a good approximation of the B_s vertex due to the short D_s lifetime. An unbinned maximum likelihood fit using background parametrisation from the sidebands gives a preliminary lifetime $\tau_s=1.42\pm0.23\pm0.16$ ps for this eigenstate. Using the world average B_s lifetime, $\bar{\tau}=1.61\pm0.10$ ps, it would correspond ⁵ to $\Delta\Gamma/\Gamma=(24\pm35)\%$ where the statistical and systematic errors are combined.

References

- 1. Paper # 946, Preprint CERN EP/98-017, submitted to *Phys. Lett.* B.
- 2. Paper # 941, Preprint CERN EP/98-037, submitted to *The European Physical Journal* C.
- 3. Paper # 1054, Preprint ALEPH 98-064.
- 4. Color displays of the events shown during the talk can be found in http://alephwww.cern.ch/.
- 5. See also A. Ribon, Talk # 802, these proceedings.