

本レポートは、日本原子力研究所が不定期に公刊している研究報告書です。

入手の問合わせは、日本原子力研究所研究情報部研究情報課(〒319-1195 茨城県那 珂郡東海村)あて、お申し越し下さい。なお、このほかに財団法人原子力弘済会資料セ ンター(〒319-1195 茨城県那珂郡東海村日本原子力研究所内)で複写による実費領布 を行っております。

This report is issued irregularly.

Inquiries about availability of the reports should be addressed to Research Information Division, Department of Intellectual Resources, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan.

② Japan Atomic Energy Research Institute, 1999
 編集兼発行 日本原子力研究所

New Options of Coupled Channels Optical Model Code OPTMAN Version 6 (1999)

Efrem Sh. SUKHOVITSKIĨ*, Osamu IWAMOTO, Satoshi CHIBA⁺ and Keiichi SHIBATA

Department of Nuclear Energy System Tokai Research Establishment Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken

(Received April 9, 1999)

This report is a supplement to JAERI-Data/Code 98-019, describing new options of soft-rotator CC code OPTMAN installed on computers at JAERI Nuclear Data Center. Due to the new options, the code is now applicable for analysis of neutron and proton induced reactions simultaneously up to projectile energy of around 200 MeV.

Keywords: Nuclear Data, Optical Model, Coupled Channels Calculations, Soft-rotator Model, Nucleon Scattering, Relativistic Kinematics, Nucleus Mass Conservation, E=0.001 to 200 MeV

⁺ Advanced Science Research Center

^{*} Radiation Physics and Chemistry Problems Institute

チャンネル結合光学模型計算コード OPTMAN Version 6 (1999 年版) に おける新しいオプション

日本原子力研究所東海研究所エネルギーシステム研究部 Efrem Sh. SUKHOVITSKII*・岩本 修・千葉 敏⁺・柴田 恵一

(1999年4月9日受理)

このレポートはJAERI-Data/Code 98-019に対する補足であり、原研核データセンター の計算機にインストールされた、軟回転体模型に基づくチャンネル結合計算コード OPTMANに付与された新しい機能を説明するものである。本レポートで説明される機能に より、本コードを用いて200MeV程度までの中性子と陽子入射により引き起こされる反応を 同時に解析することが可能になった。

東海研究所:〒319-1195 茨城県那珂郡東海村白方白根2-4

⁺ 先端基礎研究センター

^{*} 放射線物理化学問題研究所

Contents

1. I	Introduction ·····	1
2. 1	New Options of the Code	1
2.1	1 Account of Nuclear Volume (mass) Conservation	1
2.2	2 Relativistic Generalization of the Non-relativistic	
	Schrödinger Formalism	2
2.3	3 Account of Imaginary Spin-orbit Optical Potential	3
2.4	4 Account of Isospin Terms in Optical Potentials	3
3. (Changes in Code Input due to New Options	4
4. (Other Minor Useful Changes	5
4.1	1 Input	5
4.2	2 Output ·····	5
5. I	Examples ·····	5
5.1	1 Input ·····	5
5.2	2 Output ·····	6
6. (Concluding Remarks1	0
Ack	nowledgments · · · · · · · · · · · · · · · · · · ·	0
Refe	erences ······1	1

目

次

-

1.	J	序		論	••••	•••••	•••••		••••	• • • • •	••••	••••	•••••		••••	•••••	•••••		••••	•••••	••••	••••	••••	1
2.		コ	ード	の	新し	い機	能	••••	••••	• • • • •	••••	••••	•••••		••••	•••••	•••••		••••	• • • • • • •	•••••	•••••	••••	1
-	2.1	1	原-	子核	亥の	体積	(質	量)	保存	氵	••••	••••	•••••		••••	•••••			•••••	•••••	••••	••••	••••	1
-	2.2	2	非	相対	討論	的 So	hrö	ding	ger I	形式	の材	目対	論的	的拡張	長	•••••	•••••		••••	•••••	• • • • •	••••	••••	2
2	2.3	3	ス	ピン		軌道	項虛	数剖	の対	尊入	••••	••••	•••••		••••	• • • • •	•••••		•••••	• • • • • • •	• • • • •	•••••	••••	3
2	2.4	4	光	学才	ドテ	ンシ	ャル	$\sim \sigma$)ア・	イソ	スヒ	ニン	項の)導)	ι	• • • • •	•••••		••••	• • • • • •	• • • • •	••••	••••	3
3.		新	しい	機	能に	伴う	入り	りデ ・	- タ	の作	多正	••	•••••		•••••	•••••	•••••		• • • • •	•••••	•••••	•••••	••••	4
4.		そ	の他	の	修正	三事項	į.		••••	• • • • •	•••••	••••	•••••		••••	••••	•••••		••••	•••••	•••••	•••••		5
	4.:	1	入		カ	•••••	•••••	• • • • • •	••••	••••	•••••	••••	•••••		•••••	•••••	•••••	••••	••••	•••••	•••••	•••••	••••	5
	4.2	2	出		カ		••••	• • • • • •	••••	• • • • •	•••••	••••	•••••		••••	•••••	•••••	•••••	••••	• < • • • • •	•••••	•••••	••••	5
5.		入	出力	例	•••••	•••••	••••	• • • • • • •	••••	••••		••••	•••••		•••••	•••••		• • • • • •	••••	• • • • • •	•••••	••••	••••	5
ł	5.:	1	入	カ	例		•••••	•••••	••••	• • • • •	• • • • • •	••••	•••••		••••	•••••	•••••	••••	••••	• • • • • •	•••••	•••••		5
ł	5.2	2	出	カ	例		•••••	• • • • • •	• • • • •	• • • • •	•••••	••••	•••••	••••	•••••	••••	••••	••••	• • • • •	•••••	•••••	•••••	••••	6
6.	į	結		論				•••••	••••	• • • • •	•••••	••••	•••••		••••	••••	•••••	••••	••••	•••••		•••••	••••	10
謝			辞		•••••	•••••	••••	• • • • • • •	••••	••••	••••	••••	•••••		•••••	•••••	•••••		••••	•••••	•••••	•••••	••••	10
参	考	文	献				••••	• • • • • •	••••	• • • • •		••••	••••		•••••	••••	•••••	• • • • • •	•••••	•••••		••••	••••	11

1 Introduction

Coupled channels optical model code was installed at JAERI Nuclear Data Center two years ago. A manual describing algorithms, possible options, input and output examples was issued in 1998[1]. The code was intensively used for interpretation of experimental data for ${}^{12}C[2, 3]$, ${}^{58}Ni[4]$ and ${}^{238}U[5]$. Such investigation led to a necessity for a development of new code options, taking account of some fundamental physical laws, such as nuclear mass conservation in nuclear shapes oscillations[6], effects of the relativistic kinematics, complex spin-orbit potential, and isospin dependence (Lane term) of optical potential. These additional options will make this code more applicable to solve a wider scope of existing problems.

This report is aimed at a description of the changes in the code input made after Ref. [1] is published to allow usage of the new code options.

2 New options of the code

2.1 Account of nuclear volume (mass) conservation

Deformed nuclear optical potential arises from deformed radius, representing the instant nuclear shape,

$$R(\theta',\varphi') = R_0 \left\{ 1 + \sum_{\lambda\mu} \beta_{\lambda\mu} Y_{\lambda\mu}(\theta',\varphi') \right\},\tag{1}$$

with $\lambda \geq 2$, presented with evident dependences on the nuclear collective variables (deformations).

Recently we demonstrated [3] that account of nuclear charge conservation leads to a correct behavior in the multipole expansion of the Coulomb potential, spherical multipole term of which must be equal to $ZZ'e^2/r$. This solves the well-known problem of matching numerical CC-internal solutions for charged particles with the (outer) Coulomb functions[7] used to get the scattering matrix.

As in soft-rotator nuclear model we consider $\beta_{\lambda\mu}$ to be dynamical. Thus nuclear shape described in Eq. (1) will describe nuclei with non-conserving mass (number of particles). To conserve nuclear mass for uniform nuclear density case one must add a dynamic negative deformation β_{00} to the radial expansion given in Eq. (1)

$$\beta_{00} = -\sum_{\lambda} (-1)^{\lambda} \frac{\hat{\lambda}}{(4\pi)^{1/2}} \left(\beta_{\lambda} \otimes \beta_{\lambda}\right)_{00}, \qquad (2)$$

where $\hat{\lambda} = \sqrt{2\lambda + 1}$. This is required as the condition to conserve the nuclear volume[8] which is equivalent to mass and nuclear charge conservation for uniform nuclear and nuclear charge density case adopted in Ref. [8]. So the radius describing shape of nuclei with constant volume becomes

$$R(\theta',\varphi') = R_0 \left\{ 1 + \beta_{00} Y_{00} + \sum_{\lambda\mu} \beta_{\lambda\mu} Y_{\lambda\mu}(\theta',\varphi') \right\}$$
(3)

Additional β_{00} deformation leads to additional zero nuclear potential multipole that couples levels with equal spin and parity I^{π} .

In case of nuclear density with diffuseness one must use another additional zero multipole deformation β'_{00} to conserve nuclear mass[6].

$$\beta_{00}' = -\frac{R_0}{2a}\beta_{00} \left[\int \left. \frac{\partial^2 f(r,R,a)}{\partial x^2} \right|_{x_0} r^2 dr \right] / \left[\int \left. \frac{\partial f(r,R,a)}{\partial x} \right|_{x_0} r^2 dr \right]$$
(4)

Here f(r, R, a) = f(x) denotes the nuclear density form factor, $x = \frac{r-R}{a}$, and $x_0 = \frac{r-R_0}{a}$, Integrals in Eq.(4) are just constants, so we can write as

$$\beta_{00}' = C_\beta \beta_{00}.\tag{5}$$

In our code we use nuclear real potential form factor $f_R(r, R, a)$ instead of nuclear density form factor. As C_β appears to be close to unity, we take substitution of nuclear density form factor by real potential one as an acceptable approximation. Such an approximation leads to simultaneous conservation of nuclear volume and real potential volume integral in nuclear shape oscillations, so there is an additional reason to use it.

As usually we obtain multipoles of deformed nuclear potential, which determine coupling, by inserting deformed nuclear radius $R(\theta', \varphi') = R_0(1 + \beta'_{00}Y_{00} + \sum \beta_{\lambda\mu}Y_{\lambda\mu}(\theta', \varphi'))$ in potential form factors and expanding them in Taylor series, assuming $(\beta'_{00}Y_{00} + \sum \beta_{\lambda\mu}Y_{\lambda\mu})$ to be small:

$$V(R) = V_i f_i(R_0) + \sum_{t=1}^{max} \left. \frac{\partial^t f_i}{\partial R^t} \right|_{R=R_0} \left. \frac{R_0^t}{t!} (\beta_{00}' Y_{00} + \sum \beta_{\lambda\mu} Y_{\lambda\mu})^t \right.$$
(6)

One can see that account of nuclear volume conservation leads to additional zero multipole term starting with the first nuclear potential derivative, which will additionally couple states with equal spins and parity I^{π} and themselves. This term $\beta'_{00}Y_{00}$ is proportional to $(\beta_{\lambda\mu})^2$ and must be taken into account, as account of terms up to $(\beta_{\lambda\mu})^4$ is necessary to get calculated values accurate enough to describe experimental data consistently[9].

2.2 Relativistic generalization of the non-relativistic Schrödinger formalism

As nucleon mass is ~ 1000 MeV, one must understand that for nucleon incident energies above 50 MeV accuracy of non-relativistic kinematics involved in non-relativistic Schrödinger formalism is worse than $\sim 5\%$

Due to requests arising from nuclear data needs for transmutation and other applications it was decided to extend possible upper energy of incident particles at least up to 200MeV. So we included account of relativistic kinematics in the code.

It was done following relativistic generalization suggested by Elton[10], allowing relativistic corrections be easily incorporated in the usual non-relativistic formalism. This requested the following adding in the code:

1. Nucleon wave number k is calculated in the relativistic form:

$$(\hbar k)^2 = \left[E^2 - (M_p c^2)^2\right]/c^2 \tag{7}$$

where E denotes the total energy of projectile, M_p the projectile mass, and c the light velocity.

2. To allow non-relativistic motion of the target nucleus with mass M_T , incident particle mass M_p is changed by relativistic projectile energy E in reduced mass formulae, so that the quantity k^2 and optical potential values U(r) must be both multiplied by coefficient:

$$\frac{1}{1+E/(M_T c^2)}$$
 (8)

3. Optical potentials depth values, excluding spin-orbit potential depth V_{SO} , are multiplied by ratio $E/(M_pc^2)$. Of course optical potential parameters can be in any case fitted to the experimental data, so that potential relativistic corrections can be included while fitting. However we agree with Elton[10] that "it is advantageous to separate out the known relativistic factor $E/(M_pc^2)$ in the central part of optical potential". This may allow successful extrapolation of optical potential from low incident projectile energy region to higher and vice versa.

One can see that for low energies all this factors have non-relativistic kinematic limit.

2.3 Account of imaginary spin-orbit optical potential

Account of imaginary spin-orbit optical potential was included for the same reasons, as we intend to extend applicable incident particle energies, while it is known that imaginary spin-orbit part of optical potential increases with incident projectile energy. In the present code, the optical potential has the form:

$$V(r) = -V_R f_R(r) + i \left\{ 4W_D a_D \frac{d}{dr} f_D(r) - W_V f_V(r) \right\} \\ + \left(\frac{\hbar}{\mu_{\pi}c}\right)^2 (V_{SO} + iW_{SO}) \frac{1}{r} \frac{d}{dr} f_{SO}(r) \hat{\sigma} \cdot \hat{L} + V_{Coul}(r),$$
(9)

with linear dependence of imaginary spin-orbit potential strength from incident energy of nucleon:

$$W_{SO} = W_{SO}^0 + W_{SO}^1 E_p \tag{10}$$

where W_{SO}^0 and W_{SO}^1 are constant and linear terms of imaginary spin-orbit optical potential.

2.4 Account of isospin terms in optical potentials

Our experience showed that the most reliable results can be got if optical potential is adjusted on scattering experimental data base including neutron and proton data simultaneously, so this is the reason to include isospin terms $(-1)^{Z'+1}C_{viso}(A-2Z)/A$ and $(-1)^{Z'+1}C_{wiso}(A-2Z)/A$ in optical potentials, which in current version are:

$$V_{R} = V_{R}^{0} + V_{R}^{1}E_{p} + V_{R}^{2}E_{p}^{2} + (-1)^{Z'+1}C_{viso}(A - 2Z)/A + ZZ'/A^{1/3}C_{coul},$$

$$W_{D} = W_{D}^{0} + W_{D}^{1}E_{p} + (-1)^{Z'+1}C_{wiso}(A - 2Z)/A,$$

$$W_{V} = W_{V}^{0} + W_{V}^{1}E_{p}.$$
(11)

The symbols Z', Z and A are charges of incident particle, nucleus and nucleus mass number, respectively, and potential slopes W_D^1 and W_V^1 may change at $E_p = E_{change}$. The last term in the right-hand side of V_R denotes the Coulomb correction term.

3 Changes in code input due to new options

Below we describe changes in input. For details of the card number, see Ref. [1]

Card 2 - FORMAT(20I2)

MEJOB, MEPOT, MEHAM, MECHA, MEPRI, MESOL, MECHA, MESHO, MEHAO, MEAPP, MEVOL, MEREL

Switches describing the options of the model are described in[1]. New switches MEVOL allows different options of nuclear mass (volume) conservation[6], MEREL - allows relativistic generalization of the non-relativistic Schrödinger formalism.

- MEVOL = 0 - without account of conservation, =1 - account of volume conservation in uniform nuclear density approximation[8], =2 - common case[6], presenting nuclear density distribution by real potential form factor.

- MEREL = 0 - Calculations using non-relativistic Schrödinger formalism, =1- account of relativistic kinematics.

Account of relativistic kinematics follows suggestions from Ref. [10]

Cards 11a, 11b, 11c, 11d, 11e, 11f, 11g -FORMAT(6e12.7)

Optical potential parameters

Card 11f -additional variables as comparing with the last version:

WDA1, WCA1, CCOUL, AZ, CISO, WCISO

AZ - diffuseness of nuclear charge distribution,

CISO - constant for real potential isospin term, C_{viso}

CWISO - constant for complex potential isospin term, C_{wiso} .

Card 11g -new card in input

WS0, WS1

WS0 - constant imaginary spin-orbit term W_{SO}^0 ,

WS1 - linear imaginary spin-orbit term W_{SO}^1

Card 13 - FORMAT(5012) - a new input card format allowing adjustment of the new additional optical potential parameters

New flags allowing adjustment of additional optical parameters as comparing with previous code version:

- NPJ(36) flag for nucleus charge density diffuseness a_Z adjustment AZ;
- NPJ(37) flag for real optical potential isospin term C_{viso} adjustment CISO;
- NPJ(38) flag for imaginary optical potential isospin term C_{wiso} adjustment WCISO;
- NPJ(39) flag for real optical potential square term V_R^2 adjustment VR2;

- NPJ(40) flag for imaginary spin-orbit optical potential constant term W_{SO}^0 adjustment WS0;
- NPJ(41) flag for imaginary spin-orbit optical potential linear term W_{SO}^1 adjustment WS1;
- NPJ(42) flag for adjustment of axial rigid-deformation β_{60} BET(6).

4 Other minor useful changes

4.1 Input

Card 6 : NST - possible number of energy points for which optical model calculations will be carried out (MEJOB=1), or number of experimental data energy points that will be used for optical potential parameter adjustment (MEJOB=2) is increased up to 30 (was 20 in previous code version).

Card 14 : NGN(I) and NGD(I) - number of groups of excited levels and groups of angular distributions with excitation of a group of levels must now be no more than 5 (it was 4 in previous code version).

Cards 6, 18 : MTET and MTD(I,K) - number of angles in which angular distributions are calculated (MEJOB=1) or adjusted (MEJOB=2) now can be up to 50 (it was 40 in previous code version).

4.2 Output

Now volume integrals of optical potential form factors and their first three derivatives are calculated in the code. They are printed for each soft-rotator case (MEPOT ≥ 2) CC calculation.

5 Examples

5.1 Input

Below we are giving an input including the described changes. In preparing input, one must follow detailed instructions given in Ref.[1] and this supplement.

```
U-238
       SOFT-ROTATOR EXAMPLE INPUT
010205010001040202000201
 .9881145+00 .2134703-00 .2882296+00 .1437403-00 .2290000-00 .4400000-01
 .2587913-01 .7455641-01 .7029708-00 .2144000-00 .3200000-02 .5608000-00
 .3500000-00 .2000000-02 .0000000-00 .1488000+02
060204041023456001
 .3400000+01 .6500000+02
0001
 .1000000-03 .5000000+01 .1000000+02 .1500000+02 .2500000+02 .3500000+02
 .500000+02 .700000+02 .100000+03 .1800000+03
 .0000000-0000+101000000
 .4490000-0104+101000000
 .1490000-0008+101000000
 .6630000+0002-101000001
 .9930000+0000+101010000
 .1060300+0104+102000000
 .4840000+02-.3070000-00 .0004000+00 1.27040000 .6600000-00 .1700000-02
```

```
      .4360000+01
      .4670000-00
      1.24180000
      .4240000-00
      .1560000-01
      .0000000+01

      .0000000-00
      1.236800000
      .480000+00
      .0000000-02
      .1000000+01
      .1000000+01

      .0000000-00
      .3920000+01
      1.12000000
      .4600000-00
      .1000000-02
      .1000000+01

      .2380000+031.00866520
      1.004900000
      .920000+02
      .5000000-00
      .1000000+02

      -.095
      .1420
      .560
      .440000
      .160000+02
      .800000+01

      .20
      -.01
      -.01
      .1000000+02
      .100000+02
      .800000+01
```

5.2 Output

We are giving here the code output for the input shown above. So code user can check if the code is running correctly by making calculations with the suggested input and comparing with the one supplemented here.

The other reason for including example of output is to show volume integrals of optical potential form factors, that now are calculated for soft-rotator case and are included in output.

```
U-238
        SOFT-ROTATOR EXAMPLE INPUT
       INTERACTION OF PARTICLE HAVING CHARGE = 1 AND SPIN =
                                                                  .50
                    WITH NUCLEI A= 238.0000000
                COUPLED CHANNELS METHOD
          WITH AC. NONAXIAL HEXADECAPOLE DEFORMATIONS
                                  POTENTIAL EXPANDED BY
          HAMILTONN-A 5PAO
                                                                 BETO
          WITH AC. NONAXIAL OCTUPOLE
                                                      DEFORMATIONS
                                             SOFT
                NUMBER OF COUPLED LEVELS 6
                                                  NPD \approx 4
               NUMBER OF TERMS IN POTENTIAL EXPANSION
                                                            4
                             LEVEL'S SPIN+2
                 ENERGY
                                                 NTU
                                                            NNB
                                                                                      NNO
                                                                                                   NPO
                                                                         NNG
              .0000000E+00
                                      0
                                                  1
                                                              0
                                                                          0
                                                                                      0
                                                                                                  1
    2
              .4490000E-01
                                      4
                                                  1
                                                              0
                                                                          0
                                                                                      0
                                                                                                  1
    3
              .1490000E+00
                                     R
                                                 1
                                                              0
                                                                          0
                                                                                      0
                                                                                                  1
              .6630000E+00
                                     2
                                                  1
                                                              0
                                                                          0
                                                                                      1
                                                                                                 -1
    4
              .9930000E+00
                                                                                      0
    Б
                                     0
                                                  1
                                                              1
                                                                          0
                                                                                                  1
              .1060300E+01
                                                  2
                                                              0
                                                                          0
                                                                                      0
    6
                        PARAMETERS OF HAMILTONIAN
     H₩≠
             98811
                      AMBO=
                             .21347
                                       AMGO=
                                               .28823
                                                         GAMO=
                                                                 .14374
                                                                           BETO=
                                                                                   .22900
     BET4=
               .04400
                        BB42=
                                .02588
                                          GAMG=
                                                  .07456
                                                           DELG=
                                                                    .70297
     BET3=
               21440
                        ET0=
                               .00320
                                         AMU0=
                                                .56080
                                                          HW0=
                                                                 .35000
                                                                           BB32=
                                                                                   00200
                                                                                            GAMDE=
                                                                                                     . 00000
                                                                                                               DPAR=14.88000
     GSHAPE=
               .00000
               1 NNT=
       1 IO2=
                            FOLAR=
                                      .0000000D+00 ANU1=
                                                             .6242140D+00
 I01=
                        1
                                                                            ANU2=
                                                                                     .6242140D+00
 I01=
       1 IO2=
               1
                  NNT=
                        2
                            FOLAR=
                                      3957345D+01 ANU1=
                                                             6242140D+00
                                                                            ANU2=
                                                                                     .6242140D+00
 I01=
       1 IO2=
               2
                  NNT=
                        1
                           FOLAR=
                                      .1986251D+01 ANU1=
                                                             .6242140D+00
                                                                            ANU2≂
                                                                                     .2412730D+01
 I01=
       1
         102=
               2
                  NNT=
                        2
                            FOLAR=
                                      .0000000D+00 ANU1=
                                                             .6242140D+00
                                                                            ANII2=
                                                                                     .2412730D+01
                                      .000000D+00 ANU1=
T01 =
       2 T02 =
               2 NNT =
                        1
                            FOLAR=
                                                             .2412730D+01
                                                                            ANII2=
                                                                                     .2412730D+01
                                      1077478D+02 ANU1=
               2 NNT=
                            FOLAR=
                                                             .2412730D+01
I01=
       2 102=
                        2
                                                                            ANU2=
                                                                                     .2412730D+01
                       FOV(JU1, JU2,
                                                  .1000000D+01
                                                                          6773400D-09
               NNT= 1
                                         NNT)=
                                                                                                  6773400D-09
 JU1= 1 JU2= 1
                                                                ANU1=
                                                                                         ANU2=
 JU1= 1
        JU2≠
               NNT = 2
                       FOV(JU1, JU2,
                                         NNT)=
                                                  .1022785D+01
                                                                 ANU1=
                                                                          .6773400D-09
                                                                                         ANU2=
                                                                                                  .6773400D-09
             1
 JU1=
        JU2=
               NNT= 3
                       FOV(JU1.JU2.
                                         NNT)=
                                                  .1068354D+01
                                                                 ANU1=
                                                                          .6773400D-09
                                                                                         ANU2=
                                                                                                  .6773400D-09
      1
 JU1= 1
        JU2≠
                       FOV(JU1, JU2,
                                         NNT)=
                                                  .1138266D+01
                                                                 ANU1=
                                                                          .6773400D-09
               NNT = 4
                                                                                         ANU2=
                                                                                                  .6773400D-09
 JU1= 1
        JU2≠
               NNT=
                       FOV(JU1,JU2,
                                         NNT)=
                                                  .1001868D+01
                                                                 ANU1=
                                                                          .6773400D-09
                                                                                         ANU2=
                                                                                                  4878343D-09
             2
                     1
JU1= 1
        JU2≠
               NNT=
                       FOV(JU1.JU2.
                                         NNT) =
                                                  .1026542D+01
                                                                 ANU1=
                                                                          6773400D-09
                                                                                         ANII2=
                                                                                                   4878343D-09
             2
                     2
                                                  .1074070D+01
                       FOV(JU1.JU2.
                                                                          6773400D-09
 JU1= 1
        JU2=
             2
               NNT=
                     3
                                         NNT)=
                                                                 ANU1=
                                                                                         ANU2=
                                                                                                   48783430-09
                       FOV (JU1, JU2,
                                                  .1146134D+01
 JU1=
        JU2≠
               NNT=
                                         NNT)=
                                                                 ANU1=
                                                                          .6773400D-09
                                                                                         ANU2=
                                                                                                  .4878343D-09
     1
             2
 JU1= 1
        JU2≠
             3
               NNT=
                       FOV(JU1, JU2,
                                         NNT)=
                                                  . 1005467D+01
                                                                 ANU1=
                                                                          .6773400D-09
                                                                                         ANU2=
                                                                                                  . 2233772D-09
                                                                          .6773400D-09
 JU1= 1
        JU2≠
             3
               NNT=
                     2
                       FOV(JU1, JU2,
                                         NNT) =
                                                  .1034436D+01
                                                                 ANU1=
                                                                                         ANU2=
                                                                                                  2233772D-09
JU1= 1
        JU2≠
             3
               NNT=
                       FOV(JU1.JU2
                                         NNT) =
                                                  .1086431D+01
                                                                 ANU1=
                                                                          6773400D-09
                                                                                         ANU2=
                                                                                                  2233772D-09
                     3
JU1 = 1
        JU2≠
               NNT=
                       FOV(JU1.JU2.
                                         NNT)=
                                                  .1163419D+01
                                                                 ANU1=
                                                                          .6773400D-09
                                                                                         ANU2=
                                                                                                  2233772D-09
             3
                     4
                       FOV(JU1.JU2.
                                                  .1010760D+01
                                                                          .6773400D-09
                                                                                         ANU2=
JU1= 1 JU2=
             4
               NNT=
                                         NNT)=
                                                                 ANU1=
                                                                                                  .1210580D-10
                     1
                       FOV(JU1, JU2,
                                                  .1060584D+01
                                                                          .6773400D-09
        JU2≠
               NNT=
                                         NNT)=
                                                                 ANU1=
                                                                                         ANU2=
JU1= 1
                                                                                                  .1210580D-10
                                                                                         ANU2=
JU1= 1 JU2=
               NNT=
                       FDV(JU1.JU2.
                                         NNT) =
                                                  .1134611D+01
                                                                 ANU1=
                                                                          .6773400D-09
                                                                                                  .1210580D-10
                       FOV(JU1, JU2,
JU1= 1 JU2=
             4
               NNT=
                     4
                                         NNT)=
                                                  .1236197D+01
                                                                 ANU1=
                                                                          .6773400D-09
                                                                                         ANU2=
                                                                                                  .1210580D-10
JU1= 1 JU2= 5
               NNT= 1
                       FOV(JU1, JU2,
                                         NNT)=
                                                  . 1509463D+00
                                                                 ANU1=
                                                                          .6773400D-09
                                                                                         ANU2=
                                                                                                  .1000000D+01
JU1= 1 JU2= 5 NNT=
                    2 FOV(JU1, JU2
                                         NNT)=
                                                  .3018926D+00
                                                                 ANU1=
                                                                          .6773400D-09
                                                                                         ANU2=
                                                                                                  .1000000D+01
JU1= 1 JU2= 5 NNT= 3 FOV(JU1, JU2,
                                         NNT) =
                                                  46315670+00
                                                                 ANU1=
                                                                          .67734000-09
                                                                                         ANII2m
                                                                                                  .1000000D+01
                                                  .6450566D+00
JU1= 1 JU2= 5 NNT= 4 FOV(JU1, JU2,
                                         NNT)=
                                                                 ANU1=
                                                                          .67734000-09
                                                                                         ANU2=
                                                                                                  .1000000D+01
JU1= 1 JU2= 6 NNT= 1 FOV(JU1, JU2.
                                         NNT) =
                                                  .1003245D+01
                                                                ANU1=
                                                                          .6773400D-09
                                                                                         ANU2=
                                                                                                  .1403811D-11
```

JU1= 1 JU2= 6	NNT= 2 FOV	/(JU1,JU2,	NNT)=	.1066716D+01	ANU1=	.6773400D-09	ANU2=	.1403811D-11
JU1= 1 JU2= 6	NNT= 3 FOV	(JU1,JU2,	NNT)=	.1155472D+01	ANU1=	.6773400D-09	ANU2=	.1403811D-11
JU1= 1 JU2= 6	NNT= 4 FOV	(JU1.JU2.	NNT)=	.1273822D+01	ANU1=	.6773400D-09	ANU2=	.1403811D-11
JU1 = 2 JU2 = 2	NNT= 1 FOW	(JU1. JU2.	NNT) =	1003896D+01	ANU1=	4878343D-09	ANU2=	4878343D-09
III1 = 2 $III2 = 2$	NNT= 2 FON		NNT)=	1030461D+01	ANTII	48783430-09	ANTI2=	48783430-09
III1- 2 III2- 2	NWT- 2 FOU	/ 101 102	NWT) -	10700500+01	ANII1-	49793430-00	ANTIO-	49792430_00
$101 = 2 \ 102 = 2$	NNT= 4 FOU	1(101, 302, 10)	NNT)=	11541960+01	ANII1=	49793430-09	ANU2=	48783430-09
TII1= 2 TII2= 3	NNT- 1 FOU	(1111 1112)	NNT)=	10078580+01	ANTI1=	48783430-09	ANIIO	22337720-09
101- 2 102- 3	NNT- 2 FOU	1 1111 1112	NNT)-	10387200+01	ANTI1-	48793430-00	ANIIO-	22227720-00
JU1- 2 JU2- 3	NNT- 2 FOU	/ 101, 302,	NNT)-	10007100+01	ANTI1 -	40703430-09	ANUO-	22337720-03
JUI 2 JU2 3	NNT- A FOU	/ U1, JU2,	NNT)-	11710040-01	ANTI1-	49793430-09	ANULO	.22337720-09
JUI = 2 JU2 = 3	NNT- 4 FOV	(JUI,JUZ,	NNT)-	10140750-01	ANU1=	40703430-09	ANUZ=	.2233772D-09
JUI= 2 JU2= 4	NNT 1 FUV	(JU1,JU2,	NNI)=	.10148/50+01	ANU1=	.40/83430-09	ANU2=	.12105800-10
JU1= 2 JU2= 4	NNI= 2 FUV	(JUI,JU2,	NNI)=	.10000370+01	ANUI	.48783430-09	ANU2=	.12105800-10
JUI= 2 JU2= 4	NNI= 3 FUV	(JUI,JUZ,	NNI)=	.11428160+01	ANU1=	.48783430-09	ANU2=	.12105800-10
JU1= 2 JU2= 4	NNI= 4 PUV	(JU1,JU2,	NNI)=	.1246899D+01	ANU1=	.4878343D-09	ANU2=	.12105800-10
JU1= 2 JU2= 5	NNT= 1 FUV	/(JU1,JU2,	NNT)=	.1634637D+00	ANU1=	.4878343D-09	ANU2=	.1000000D+01
JU1= 2 JU2= 5	NNT= 2 FOV	(JU1,JU2,	NNT)=	.3148677D+00	ANU1=	.4878343D-09	ANU2=	.1000000D+01
JU1= 2 JU2= 5	NNT= 3 FOV	(JU1,JU2,	NNT)=	.4774146D+00	ANU1=	.4878343D-09	ANU2=	.1000000D+01
JU1= 2 JU2= 5	NNT= 4 FOV	/(JU1,JU2,	NNT)=	.6614654D+00	ANU1=	.4878343D-09	ANU2=	.1000000D+01
JU1 = 2 JU2 = 6	NNT= 1 FOV	/(JU1,JU2,	NNT)=	.1008456D+01	ANU1=	.4878343D-09	ANU2=	.1403811D-11
JU1= 2 JU2= 6	NNT= 2 FOV	(JU1,JU2,	NNT)=	.1073917D+01	ANU1=	.4878343D-09	ANU2=	.1403811D-11
JU1= 2 JU2= 6	NNT= 3 FOV	/(JU1,JU2,	NNT)=	.1164952D+01	ANU1=	.4878343D-09	ANU2=	.1403811D-11
JU1= 2 JU2= 6	NNT= 4 FOV	/(JU1,JU2,	NNT)=	.1286006D+01	ANU1=	.4878343D-09	ANU2=	.1403811D-11
JU1= 3 JU2= 3	NNT= 1 FOV	(JU1,JU2,	NNT)=	.1012641D+01	ANU1=	.2233772D-09	ANU2=	.2233772D-09
JU1= 3 JU2= 3	NNT= 2 FOV	/(JU1,JU2,	NNT)=	.1047811D+01	ANU1≈	. 2233772D-09	ANU2=	.2233772D-09
JU1= 3 JU2= 3	NNT= 3 FOV	/(JU1,JU2,	NNT)=	.1106361D+01	ANU1≃	.2233772D-09	ANU2=	.2233772D-09
JU1= 3 JU2= 3	NNT= 4 FOV	(JU1,JU2,	NNT)=	.1190664D+01	ANU1≈	.2233772D-09	ANU2=	.2233772D-09
JU1= 3 JU2= 4	NNT= 1 FOV	/(JU1,JU2,	NNT)=	.1023592D+01	ANU1=	.2233772D-09	ANU2=	.1210580D-10
JU1= 3 JU2= 4	NNT= 2 FOV	/(JU1,JU2,	NNT)=	.1079776D+01	ANU1≈	.2233772D-09	ANU2=	.1210580D-10
JU1= 3 JU2= 4	NNT= 3 FOV	(JU1,JU2,	NNT)=	.1160880D+01	ANU1≃	.2233772D-09	ANU2=	.1210580D-10
JU1= 3 JU2= 4	NNT= 4 FOV	/(JU1,JU2,	NNT)=	.1270690D+01	ANU1≈	.2233772D-09	ANU2=	.1210580D-10
JU1= 3 JU2= 5	NNT= 1 FOV	(JU1,JU2,	NNT)=	.1919110D+00	ANU1≈	.2233772D-09	ANU2=	.1000000D+01
JU1= 3 JU2= 5	NNT= 2 FOV	(JU1, JU2,	NNT)=	.3444648D+00	ANU1≈	.2233772D-09	ANU2=	.1000000D+01
JU1= 3 JU2= 5	NNT= 3 FOV	(JU1, JU2,	NNT) =	.5100360D+00	ANU1≈	.2233772D-09	ANU2=	.1000000D+01
JU1= 3 JU2= 5	NNT= 4 FOV	(JU1.JU2.	NNT)=	.6991041D+00	ANU1≈	.2233772D-09	ANU2=	.1000000D+01
JU1= 3 JU2= 6	NNT= 1 FOV	(JU1.JU2.	NNT)=	.1019696D+01	ANU1=	.2233772D-09	ANU2=	.1403811D-11
JU1 = 3 JU2 = 6	NNT= 2 FOV	/(JU1.JU2.	NNT)=	.1089709D+01	ANU1 =	.2233772D-09	ANU2=	.1403811D-11
JU1 = 3 JU2 = 6	NNT= 3 FOW	(101.102.	NNT)=	1185966D+01	ANU1=	2233772D-09	ANU2=	1403811D-11
JII1= 3 JU2= 6	NNT = 4 FOW		NNT)=	1313233D+01	ANII1=	22337720-09	ANU2=	1403811D-11
III1 = 4 III2 = 4	NNT= 1 FOU		NNT)=	10539150+01	ANII1=	1210580D-10	ANII2=	12105800-10
111 = 4 $112 = 4$	NNT= 2 FOV	(101,302,	NNT)=	1131951D+01	ANTI1=	1210580D-10	ANU2=	12105800-10
101 - 4 102 - 4	NNT- 2 FOU	1(1111 1112)	NNT)=	12376970+01	AN771=	1210580D-10	ANTIO-	12105800-10
101 - 4 102 - 4	NNT- 4 FOU	/(101,302,	NNT)=	13764700+01	ANU1-	1210580D-10	ANIIO	12105800-10
101- 4 102- 5	NNT- 1 EOU	/ TH1 102,	NNT)=	33009130+00	ANTI1-	12105800-10	ANU2-	10000000-10
JUI- 4 JUZ- 5	NNT- 1 FOV	(JU1, JU2,		40041000+00	ANUL-	12105800-10	ANU2-	10000000+01
JUI = 4 JUZ = 5	NNT- 2 FON	(JU1,JU2,	NNT)-	6720064D+00	ANULA	1210580D-10	ANUID-	1000000000000
JUI= 4 JUZ= 3	NNT- 3 FUV	(JUI,JUZ,	NNT)-	.07299040+00	ANUL-	1210580D-10	ANU2-	10000000+01
JUI = 4 JUZ = 6	0 NNT= 4 FU¥	(JUI,JUZ,	NNT)-	10600160-01	ANUI-	1210580D-10	ANU2=	14020110 11
JUI= 4 JUZ= 0	NNT O TOW	(JUI,JUZ,	NNI) =	.10029100+01	ANU1=	.12105600-10	ANUZE	.14038110-11
JU1= 4 JU2= 0	NMI = 2 FUV	(JU1,JU2,	NNI)=	.11556040+01	ANUL=	.12105800-10	ANU2=	.14038110-11
JU1= 4 JU2= 6	NNI= 3 FUV	(JU1,JU2,	NNT)=	.12/81/9D+01	ANU1=	.1210580D-10	ANU2=	.14038110-11
JU1= 4 JU2= 6	NNT= 4 FUV	/(JU1,JU2,	NNT)=	.143/06/D+01	ANU1=	.12105800-10	ANU2=	.1403811D-11
JU1= 5 JU2= 5	NNT= 1 FUV	(JU1,JU2,	NNT)=	.1000000D+01	ANU1=	.1000000D+01	ANU2=	.1000000D+01
JU1= 5 JU2= 5	NNT= 2 FUV	(JU1,JU2,	NNT)=	.1068354D+01	ANU1≒	.1000000D+01	ANU2=	.1000000D+01
JU1= 5 JU2= 5	NNT= 3 FOV	(JU1,JU2,	NNT)=	.1205063D+01	ANU1=	.1000000D+01	ANU2=	.1000000D+01
JU1= 5 JU2= 5	NNT= 4 FOV	(JU1, JU2,	NNT)=	.1417913D+01	ANU1=	1000000D+01	ANU2=	.100000D+01
JU1= 5 JU2= 6	NNT= 1 FOV	(JU1,JU2,	NNT) =	.4204871D+00	ANU1=	.1000000D+01	ANU2=	.1403811D-11
JU1= 5 JU2= 6	NNT= 2 FOV	(JU1,JU2,	NNT)=	.5879991D+00	ANU1=	.1000000D+01	ANU2=	.1403811D-11
JU1= 5 JU2= 6	NNT= 3 FOV	(JU1,JU2,	NNT)=	.7840570D+00	ANU1=	.1000000D+01	ANU2=	.1403811D-11
JU1= 5 JU2= 6	NNT= 4 FOV	(JU1,JU2,	NNT)=	.1021136D+01	ANU1=	.1000000D+01	ANU2=	.1403811D-11
JU1= 6 JU2= 6	NNT= 1 FOV	(JU1,JU2,	NNT)=	.1080936D+01	ANU1=	.1403811D-11	ANU2=	.1403811D-11
JU1= 6 JU2= 6	NNT= 2 FOV	(JU1,JU2,	NNT)=	.1189012D+01	ANU1=	.1403811D-11	ANU2=	.1403811D-11
JU1= 6 JU2= 6	NNT= 3 FOV	(JU1,JU2,	NNT)=	.1329758D+01	ANU1=	.1403811D-11	ANU2=	.1403811D-11
JU1= 6 JU2= 6	NNT= 4 FOV	(JU1,JU2,	NNT)=	.1510826D+01	ANU1=	.1403811D-11	ANU2=	.1403811D-11
	POTENTIAL	PARAMETERS	V(R)					

VR0=48.4000	VR1=3070	VR2= .0004	RR= 1.2704	ARO= .6600	AR1= .0017
WDO= 4.3600	WD1= .4670		RD= 1.2418	ADO= .4240	AD1= .0156
WCO= .0000	WC1= .0000		RC= 1.2368	ACO= .4800	AC1= .0000
			RW= 1.0000	AWO= 1.0000	AW1= .0000
VSO= 3.9200			RS= 1.1200	ASO= .4600	AS1= .0010
ALF= 1.0000	ANEU= 1.0087		RZ= 1.0049		
BNDC=10.0000	WDA1=0950	WCA1= .1420	CCOUL≃ .5600	AZ≃ .4400	CISO=16.0000
WCISD= 8.0000	WSO= .2000	WS1=0100			

NUCLEUS CHARGE 92.0000

 $\label{eq:spherical_volume_integrals_of_real_potential_f-factors_and_derivatives: $$ VIR0= 174.139 VIR1= 499.457 VIR2= 487.976 VIR3= 162.657 CBET0= .977 $$ Spherical_volume_integrals_of_imaginary (wd) f-factors_and_derivatives: $$ WIC0= 155.901 WIC1= 456.082 WIC2= 450.273 WIC3= 150.087 CBETC= .987 $$ Spherical_volume_integrals_of_imaginary (wd) f-factors_and_derivatives: $$ WID0= 114.435 WID1= 226.013 WID2= 113.003 WID3= -.003 CBETD= .500 $$ Spherical_volume_integrals_of_imaginary (wd) f-factors_and_derivatives: $$ WID0= .000 WIW1= .000 WIW2= .000 WIW3= .000 CBETW= .000 $$ WIM3= .000 CBETW= .000 $$ VIM3= .000 $$ VIM3= .000 CBETW= .000 $$ VIM3= .000 $$ VIM3$

ORB. MOMENT	TRANSITION	5 SF	ı	SI			
0	4959137056	31216	324435	- 4455220	537		
1	6025985753	03585	65337	1706307	317		
2	.4786961777	41218	370954	4230030	615		
3	.7838745707	.02391	134350	1597656	533		
4	. 3005656548	.78128	300248	0527857	984		
5	. 1811893615	. 88982	209683	0278486	519		
6	.0183023525	. 98929	012687	.0093458	795		
7	.0009590599	. 99951	26944	.0007473	581		
8	.0000717553	. 47054	140495	. 0000550	402		
10	.000000000	.00000	00000	.0000000	000		
11	.000000000	. 00000	00000	. 0000000	000		
12	.0000000000	.00000	00000	.0000000	000		
13	.000000000	.00000	00000	.0000000	000		
14	.000000000	.00000	00000	.0000000	000		
	ANGULAR DISTR	BUTIONS OF SCA	TTERED PAR	RTICLES			
					••••		
.100E-03	.713E+01 .991E-0	01 .207E-01	.106E-02	.699E-03	.296E-01		
.500E+01	.687E+01 .974E-0	01 .206E-01	.125E-02	.694E-03	.294E-01		
.100E+02	.012E+01 .920E-0	01 .203E-01	.1/8E-02	.002E-03	.290E-01		
250E+02	257F+01 693F-0	01 .197E-01	373E-02	626F-03	255F-01		
.350E+02	.802E+00 .559E-	01 .165E-01	.363E-02	.622E-03	.207E-01		
.500E+02	.491E-02 .456E-0	01 .160E-01	.205E-02	.708E-03	.113E-01		
.700E+02	.136E+00 .456E-0	01 .164E-01	.405E-02	.730E-03	.139E-01		
.100E+03	.244E-01 .304E-0	01 .110E-01	. 200E-02	.774E-03	.155E-01		
.180E+03	.410E-01 .665E-0	03 .975E-03	.430E-02	.645E-02	.126E-01		
LE	GENDR. COEFFICIENTS	FOR SCATTERED	NEUTRONS				
24261405+00	ANGULAR DISIRIBUII	100306ET00 1	9069565+00	14140095	+00 0600699	E-01 E16000EE-01	01700018-01
8419573F-02	2065208E-02 5	250350E+00 .1	411992E-04	9169704E	-05 9504160	E-01 .5169905E-01	45406108-08
.04100/02/02	.20002002 02 .0.						.40400102 00
LE	GENDR. COEFFICIENTS I	OR SCATTERED	NEUTRONS				
	ANGULAR DISTRIBUTIO	DNS					
.3873495E-01	.7634065E-02 .1	505103E-02 .9	329252E-03	.5338102E	-03 . 2034686	E-026909055E-03	.7123604E-04
.3428197E-03	1695966E-03 .88	823892E-041	514246E-04	. 5534009E	-0526794901	E-05 .1618558E-06	.5456252E-07
LE	GENDR. COEFFICIENTS I	FOR SCATTERED	NEUTRONS				
40054607 04	ANGULAR DISTRIBUTIO		040000R 02	14101045			
.1200402E-01 - 4638237E-04	- 1608627E-05 63	332401E-05 = 1	214317F-05	33778688	-04 .1591504	-03 .1329032E-03	20044/3E-04 7651176E-10
.40502512-04	.10000271 00 .00	552051 00 .1	2140172 00		1013300	.2000/141-00	./0011/02-10
LE	GENDR. COEFFICIENTS H	OR SCATTERED	NEUTRONS				
	ANGULAR DISTRIBUTIO)NS					
.3310489E-02	1491621E-03 .11	37081E-032	2094073E-03	. 6809293E	-04 .22009431	E-031864236E-03	1406685E-03
.3089410E-04	1224599E-05 .41	175169E-05 .1	663386E-06	.1980592E	-07 . 16821351	E-086532862E-09	3428964E-10
			NEVERONG				
LE	ANCINAR DISTRIBUTIO	UK SCATTERED	NEUIRONS				
86461595-03	- 1350608F-03 7	SR4075E-04 - 6	5503978-04	74405395	-04 - 09171071	-04 97939475-04	- 53667675-04
.2113752E-04	6640882E-05 .11	07709E-057	051691E-07	.3617209E	-07 .1102467	C-08 .1519264E-09	.1946095E-11
LE	GENDR. COEFFICIENTS H	OR SCATTERED	NEUTRONS				
	ANGULAR DISTRIBUTIO	INS					
.1499458E-01	.1338726E-02 .53	397430E-03 .2	110343E-03	.1157855E	-02 .49588471	E-03 - 7963465E-03	1504840E-03
. 1883873E-03	9361813E-05 .5	18/58E-052	341049E-00	.1352410E	-071351330	-09 .9312544E-10	.3355397E-11
NEITTRON ENERGY	= 3.400000						
TOTAL CR-SECT.	= 8,102070						
REACTION CR-SEC	$T_{.} = 2.917521$						
NMAX	CR-SECT. OF I	EVEL EXCITATIO	N				
1	4.30	5415					
2	. 48	6758					
3	.18	1483					
4 5	.04	0965					
6	.05	8427					
U U							
	STRENG	H FUNCTIONS					
SF0= .4280423	E-04 SF1= .5	651124E-04	SF2=	.5482083E-04	4		
SPHERICAL VOLU	ME INTEGRALS OF REAL	POTENTIAL F-FA	CTORS AND	DERIVATIVES:			
VIRO= 178.035	VIK1= 503.352 VIR2=	487.978 VIR3	= 162.653	CBETU= .	40.4		
STREKICAL VULU	NTC1 - ALE ARD UP IMAGI	.88451 (WU) ドードA : 450 973 - ロエペタ		CRETC=	987		
SPHERICAL VOLU	NE INTEGRALS OF THAC	NARY (WD) F-FA	CTORS AND	DERIVATIVES			
WIDO= 139.964	WID1= 274.793 WID2=	137.396 WID3	= .001	CBETD=	500		
SPHERICAL VOLU	ME INTEGRALS OF IMAGI	NARY (WW) F-FA	CTORS AND	DERIVATIVES:			
WIW0= .000	WIW1= .000 WIW2=	.000 WIW3	000	CBETW=	000		

ORB.	MOMENT	TRA	NSITIONS	5	SR	SI				
(0	.976	6733374	1312	2721762	.038915	7899			
	1	. 975	1059139	. 1039	9109031	.097353	8518			
	2	.975	9394040	. 1062	2574364	089108	4049			
:	3	. 973	8970165	0307	777044	143045	6996			
4	4	.973	4582507	128	5873529	068880	1521			
1	5	.9719	9222493	1458	5580934	.042910	0309			
(5	. 969:	1534237	0938	5152051	.127161	7803			
	7	. 968:	1545446	.0000	5881496	. 158753	2048			
	5	. 965	2993848	.0946	5421954	.134647	4585			
		. 903	5116/32	. 1522	2555085	.052532	9950			
1.	1	. 535.	7544030	. 152-	+330929	- 120007	1010			
1	1 7	. 547	0991763	0541	909437	- 103500	7040			
11	2	927	4169649	0522	181463	034882	2367			
14	4	.776	6473875	.2384	101100	278264	3953			
1	5	.460	9750987	.583	1547296	.361572	8753			
10	5	. 204	6374842	.8309	976673	. 260795	1577			
1	7	. 0841	1025090	. 9367	296220	. 151212:	1782			
18	3	.0320	0915201	. 9784	166789	.079670	1434			
19	9	.0118	8897929	. 9926	5835000	.038796	7533			
20	2	. 0044	4321652	. 9973	3383995	.017590	4938			
2:	1	.0010	6775581	. 9988	8696468	.006974	6821			
2:	2	.0000 ANGULAI	5323612 R DISTRIBUT	.9995 IDNS DF SC	5227308 CATTERED PART	.0016029 ICLES	9479			
	.100E-03	.418E+22	.256E+00	.151E-02	.614E-02	.691E-02	.41	9E-01		
	.500E+01	.613E+03	.128E+00	.119E-02	.721E-02	.225E-02	.23	26-01		
	100E+02	.315E+02	.115E+00	.201E-02	.491E-02	.138E-03	. 11	3E-01		
	.150E+02	.150E+01	.899E-01	.439E-02	.131E-02	.507E-03	.90	2E-02		
	2505+02	9705-01	.033E-01	167E-03	125E-03	.408E-03	.50	9E-02 7E-02		
	500E+02	804E-02	7695-02	610E-02	1355-03	1205-03	.13	7E-02		
	700E+02	186F-02	1065-02	294F-03	140F-03	106F-04	26	35-03		
	100E+02	220E-03	196E-03	.591E-04	191E-04	205E-05	. 42	5E-04		
	.180E+03	.859E-05	.134E-04	.111E-04	.479E-03	.117E-04	. 11	0E-04		
	1002/00						••••			
	LEG	ENDR. COEFFIC	CIENTS FOR	SCATTEREI	NEUTRONS					
		ANGULAR DIST	TRIBUTIONS							
•	1678275E+00	.1460223E+0	.11773	52E+00	8864568E-01	.6228184	E-01	.4079265E~01	.2507310E-01	.1503544E-01
. 9	9677572E-02	.7369771E-0	02 .65759	38E-02	6318213E-02	.6112433	E-02	.5737476E-02	.5152826E-02	.4383996E-02
.:	3296190E-02	.2338646E-0	.26936	95E-02	4947865E-02	.86076831	E-02	.1262693E-01	.1597560E-01	.1795896E-01
•	1830986E-01	.1714481E-0	01 .14857	32E-01 .	1198175E-01	.9039134	E-02	.6410240E-02	.4290438E-02	.2717173E-02
	1628970E-02	.9222123E-0	J3 .49019	25E-03 .	2423630E-03	. 1102506	E-03	.4597364E-04	.1787236E-04	.6498385E-05
••	20092915-02	.5032004E-0	.30340	8/E-0/	5065922E-07	34293441	2-07	9038/SUE-08	.3519800E-08	
	LEG	ENDR. CDEFFI	CIENTS FOR	SCATTEREI	NEUTRONS					
		ANGULAR DIST	RIBUTIONS							
	5899556E-02	.5023932E-0	. 38366	00E-02	2752341E-02	.19244871	E-02	.1347048E-02	.9640510E-03	.7154470E-03
	5570876E-03	.4563546E-0	.38515	74E-03	3213348E-03	.2609132	E-03	.2011112E-03	.1443058E-03	.9260688E-04
. 4	1632929E-04	.4301914E-0	0534673	75E-04	7063933E-04	10610471	E-03	1391562E-03	1699857E-03	1919522E-03
:	1764918E~03	8831531E-0	.67172	20E-04 .	2402040E-03	.3707810	E-03	.4258670E-03	.4060321E-03	.3343602E-03
. :	2384626E~03	.1424507E-0	03 .61883	07E-04 .	4994583E-05	26677971	E-04	3541823E-04	2625332E-04	~.1282165E-04
4	4372543E~05	.1455444E-0	.19434	04E-05 .	2287731E-05	. 18799811	E-05	.1138126E-05	.5718993E-06	
	LEG	ENDR. CUEFFIC	CIENTS FOR	SCATTEREI	NEUTRONS					
		ANGULAR DIST	TRIBUTIONS	~~~						
	1297804E-03	. 309951/E-0	JJ .18209	01E-03 .	9329984E-04	.4410908	E-04	.1919626E-04	.5243118E-05	~.416/034E-05
	2046545-04	- 1033043E-	34 - 20193	40E-04 93E-05	22210785-04	70828201	5-04 F-05	2218182E-04	2031814E-04	~.1/00994E-04
	17750115-04	12723635-0	14 37514	78E-05 -	5375115E-05	- 11125001	E-03	- 1214869F-04	- 9476560E-05	- 5031017E-05
	1267886E-05	1389876E-0	05 .26561	73E-05	2866582E-05	2469736	E-05	1763149E-05	.9992857E-06	4576584E-06
	1818679E-06	.6363897E-0	.18494	35E-07 .	2838236E-08	.44973271	E-09	2457490E-10	.5160593E-10	. 101 000 12 00
	•									
	LEG	ENDR. COEFFIC	CIENTS FOR	SCATTERED	NEUTRONS					
		ANGULAR DIST	TRIBUTIONS							
. :	2215854E-03	.1668565E-0	.13009	85E~03 .	9135077E-04	.7175638	E-04	.5461927E-04	.4642810E-04	.3560452E-04
.:	3295817E-04	.2823283E-0	.25371	90E-04 .	2104075E-04	. 18693491	E-04	.1476572E-04	.1256392E-04	.8654051E-05
	7274300E-05	.4244092E-0	05 .26391	03E-05 .	7548687E-06	73600841	E-06	1710707E-05	2177499E-05	~.3080567E-05
:	L506578E-05	.7640080E-0	.85460	49E-06	2465302E-05	6610709E	2-05	1037644E-04	1048414E-04	9194095E-05
(D120027E-05	2998172E-0	.45990	/8E-06 .	2040180E-05	41347771	-05	.3863362E-05	.32/3128E-05	.1228218E-05
	291131/E-07	- 8030834E-0	Jo ~./7572	98E-06	1999160E-06	30397711	06	4096483E-06	.000000E+00	
	LEG	ENDR. COEFFIC	CIENTS FOR	SCATTEREE	NEUTRONS					
		ANGULAR DIST	TRIBUTIONS							
. 8	5131597E-04	.3843131E-0	. 26207	16E~04 .	1763655E-04	. 12982251	E-04	.1063330E-04	.9563951E-05	.8871493E-05
.8	3528115E-05	.8131119E-0	05 . 78959	62E~05 .	7607028E-05	.73736888	E-05	.7117099E-05	.6860153E-05	. 6626209E-05
.6	5328896E-05	-6121972E-0	5 .58195	52E~05 .	5540297E-05	. 53678031	E-05	.4900492E-05	4747189E-05	.4504904E-05
. 3	8665541E-05	2915786E-0	.32345	29E-05 .	4383171E-05	.55356591	E-05	.6010092E-05	.5762215E-05	.4948866E-05
. :	902121E-05	.2858931E-0	.19672	61E-05 .	1276952E-05	.78178728	-06	.4454079E-06	.2336711E-06	.1089419E-06
. 4	1753320E-07	.1980519E-0	.80148	15E~08 .	3079856E-08	. 1098949E	08	.3211100E-09	.8404114E-10	

LEGENDR. COEFFICIENTS FOR SCATTERED NEUTRONS ANGULAR DISTRIBUTIONS

```
.1190611E-03
   .6810649E-03
                   .5685514E-03
                                   .4267672E~03
                                                  .3101934E-03
                                                                  .2301653E-03
                                                                                  .1780301E-03
                                                                                                  .1435943E-03
   .1011008E-03
                   .8750899E-04
                                   .7615618E~04
                                                  .6573441E-04
                                                                  .5610648E-04
                                                                                  .4713685E-04
                                                                                                  .3905039E-04
                                                                                                                  .3208085E-04
   .2629209E-04
                   .2142573E-04
                                   .1733812E-04
                                                  .1371606E-04
                                                                  .9969905E-05
                                                                                  .5893483E-05
                                                                                                  .1071480E-05
                                                                                                                -.2305723E-05
   .1242238E-05
                   .1350063E-04
                                  .2903013E~04
                                                   4012465E-04
                                                                   4297068E-04
                                                                                  .3840787E-04
                                                                                                  2982949E-04
                                                                                                                  .2025572E-04
                                   7175307E-06
   1175013E-04
                   .5157152E-05
                                                 - 1744648E-05
                                                                 - 2582269E-05
                                                                                 - 2311413E-05
                                                                                                 14062028-05
                                                                                                                -.5152915E-06
                                  .9791397E-07
                   4881347E-07
                                                  9978109E-07
  - 1061565E-06
                                                                  .7761308E-07
                                                                                  4548255E-07
                                                                                                  2242581E-07
NEUTRON ENERGY = 65.000000
TOTAL CR-SECT. = 4.504600
REACTION CR-SECT. =
                     2.304093
  NMAX
                        CR-SECT. OF LEVEL EXCITATION
                                 2.108982
    1
    2
                                   .074136
    3
                                   .005401
    4
                                   .002785
                                   .000645
    5
                                   .008559
    6
                              STRENGTH FUNCTIONS
                                   .1933368E-04
SFO=
       .1928025E-04
                            SF1=
                                                        SF2=
                                                                .1952242E-04
```

In any case those who are interested in calculations using code OPTMAN are welcome to address for help to the authors if necessary.

6 Concluding remarks

The coupled-channels optical model code OPTMAN was extended to have new options which were added after the first version was published[1]. The main changes are inclusion of the (1) volume conservation option, (2) relativistic kinematics, (3) imaginary spin-orbit term, and (4) isospin dependence (Lane term) of the potential depth parameters. We hope the current code can be used for nuclear data evaluation and analyses of nucleon-induced reaction mechanisms up to projectile energy of 200 MeV.

Acknowledgments

The authors would like to thank Dr. Akira Hasegawa of JAERI nuclear data center for his support on this work

References

- E. Sh. Soukhovitskii, Yu. V. Porodzinskii, O. Iwamoto, S. Chiba and K. Shibata, JAERI Data/Code 98-019 (1998)
- [2] S. Chiba, O. Iwamoto, Y. Yamanouti, M. Sugimoto, M. Mizumoto, K. Hasegawa, E. Sh. Soukhovitskii, Y.V. Porodzinskii and Y. Watanabe, Nucl. Phys. A 624, 305 (1997).
- [3] E. Sh. Soukhovitskii, S. Chiba, O. Iwamoto and Y.V. Porodzinskii, Nucl. Phys. A 640, 147 (1998).
- [4] O. Iwamoto, E. Sh. Soukhovitskiï and S. Chiba, to be published.
- [5] E. Sh. Soukhovitskii, O. Iwamoto and S. Chiba, to be published.
- [6] E. Sh. Soukhovitskii, O. Iwamoto, S. Chiba, Nucl. Phys. A 646, 19 (1999).
- [7] J.Raynal, Phys.Rev. C23, 2571 (1980).
- [8] J.M. Eisenberg and W. Greiner, "Nuclear Models", North-Holland, Amsterdam (1970).
- [9] Y. Kikuchi, INDC(FR)-5/L (1972).
- [10] L. R. B. Elton, Nuovo Cimento XLIII B, 277 (1966)

This is a blank page.

国際単位系 (SI) と換算表

表1 SI基本単位および補助単位

記号	名称	量
m	メートル	長 さ
kg	キログラム	質 量
s	秒	時 間
Α	アンペア	電 流
К	ケルビン	熱力学温度
mol	モル	物質量
cd	カンデラ	光 度
rad	ラジアン	 平面角
sr	ステラジアン	立体 角

表3 固有の名称をもつ SI 組立単位

量	名称	記号	他の SI 単位 による表現
周 波 数	ヘルツ	Hz	s^{-1}
カ	ニュートン	Ν	m·kg/s ²
圧 力 , 応 力	パスカル	Pa	N/m^2
エネルギー,仕事,熱量	ジュール	J	N∙m
工率,放射束	ワット	W	J/s
電気量,電荷	クーロン	C	A·s
電位,電圧,起電力	ボルト	V	W/A
静電容量	ファラド	F	C/V
電 気 抵 抗	オ ー ム	Ω	V/A
コンダクタンス	ジーメンス	s	A/V
磁 束	ウェーバ	Wb	V∙s
磁束密度	テスラ	Т	Wb/m²
インダクタンス	ヘンリー	Н	Wb/A
セルシウス温度	セルシウス度	°C	
光 束	ルーメン	lm	cd∙sr
照 度	ルクス	lx	lm/m²
放 射 能	ベクレル	Bq	ຮ້
吸収線量	グレイ	Gy	J/kg
線量,当量。	シーベルト	Sv	J/kg

カ	$N(=10^{5}dyn)$	kgf	lbf
	1	0.101972	0.224809
	9.80665	1	2.20462
	4.44822	0.453592	1

動粘度	$1 \text{ m}^{2}/\text{s} = 10^{4} \text{St}(\pi - 2 \pi) (\text{cm}^{2}/\text{s})$	

表 2	SIと併用される単位	

名称	記号
分,時,日	min, h, d
度,分,秒	°, , ,
リットル	l, L
トン	t
電子ボルト	eV
原子質量単位	u

 $1 eV = 1.60218 \times 10^{-19} J$ $1 u = 1.66054 \times 10^{-27} kg$

表4	SIと共に暫定的に
	維持される単位

名称	記号
オングストローム	Å
バーン	b
バール	bar
ガル	Gal
キュリー	Ci
レントゲン	R
ラ ド	rad
V 4	rem

1 Å= 0.1 nm=10⁻¹⁰ m 1 b=100 fm²=10⁻²⁸ m² 1 bar=0.1 MPa=10⁵ Pa 1 Gal=1 cm/s²=10⁻² m/s² 1 Ci=3.7×10¹⁰ Bq 1 R=2.58×10⁻⁴ C/kg 1 rad = 1 cGy = 10⁻² Gy 1 rem = 1 cSy = 10⁻² Sy

換算表

圧	MPa(=10 bar)	kgf/cm ²	atm	mmHg(Torr)	lbf/in²(psi)		
	1	10.1972	9.86923	7.50062×10^{3}	145.038		
力	0.0980665	1	0.967841	735.559	14.2233		
	0.101325	1.03323	1	760	14.6959		
	1.33322 × 10 ⁻⁴	1.35951 × 10⁻³	1.31579 × 10⁻³	1	1.93368 × 10 ⁻²		
	6.89476×10^{-3}	7.03070 × 10 ⁻²	6.80460×10^{-2}	51.7149	1		

н	$J(=10^7 erg)$	kgf• m	kW∙h	cal(計量法)	Btu	ft•lbf	eV	1 cal = 4.18605 J (計量法)
イルゴ	1	0.101972	2.77778×10^{-7}	0.238889	9.47813 × 10 ^{- 4}	0.737562	6.24150 × 10 ¹⁸	= 4.184 J (熱化学)
+	9.80665	1	2.72407 × 10 ⁻⁶	2.34270	9.29487 × 10 ⁻³	7.23301	6.12082 × 10 19	$= 4.1855 \text{ J} (15 ^{\circ}\text{C})$
住	3.6×10^{6}	3.67098 × 10⁵	· 1	8.59999 × 10 ⁵	3412.13	2.65522 × 10 ⁶	2.24694 × 1025	= 4.1868 J (国際蒸気表)
争	4.18605	0.426858	1.16279 × 10 ⁻⁶	1	3.96759×10^{-3}	3.08747	2.61272 × 10 ¹⁹	仕事率 1 PS (仏馬力)
翲量	1055.06	107.586	2.93072 × 10 ⁻⁴	252.042	1	778.172	6.58515×10^{21}	$= 75 \text{ kgf} \cdot \text{m/s}$
	1.35582	0.138255	3.76616×10^{-7}	0.323890	1.28506 × 10 ⁻³	1	8.46233 × 1018	= 735.499 W
	1.60218 × 10 ⁻¹⁹	1.63377 × 10 ⁻²⁰	4.45050 × 10 ⁻²⁶	3.82743 × 10 ⁻²⁰	1.51857 × 10 ⁻²²	1.18171 × 10 ⁻¹⁹	1	

放	Bq	Ci	吸	Gy	rad	照	C/kg	R	線	Sv	rem
射	1	2.70270 × 10 ⁻¹¹	線	1	100	制線	1	3876	重当	1	100
RE	3.7 × 10 ¹⁰	1	मा	0.01	1	I I	2.58×10^{-4}	1	· 重	0.01	1

表5 SI接頭語 倍数 接頭語 記号 1018 エク ++ Е 1015 ペ 9 P 1012 Ŧ Т ラ 10° ¥ ガ G 10⁶ × ガ М 10³ + k 10² ヘク ŀ h 101 Ŧ カ da 10^{-1} デ Ÿ d 10-2 セ $\boldsymbol{\nu}$ チ с 10⁻³ ž ŋ m 10-6 マイクロ μ 10-9 ナ 1 n 10-12 ピ J р 10-15 フェムト f

(注)

10-18

7

ŀ

 表1 5は「国際単位系」第5版、国際 度量衡局 1985年刊行による。ただし、1 eV および1 uの値は CODATA の 1986年推奨 値によった。

я

- 表4には海里、ノット、アール、ヘクタ ールも含まれているが日常の単位なのでこ こでは省略した。
- barは、JISでは流体の圧力を表わす場合に限り表2のカテゴリーに分類されている。
- EC閣僚理事会指令では bar, barn および「血圧の単位」 mmHg を表2のカテゴリ ーに入れている。

