KAERI/TR-1157/98

KR9900091

DUPIC 핵연료 조사시험 설계 및 안전성분석 보고서 Design and Safety Analysis Report for Irradiation of DUPIC Fuel

1998. 10.

DUPIC 핵연료 조사시험 및 성능평가

2 30-46

제 출 문

한국원자력연구소장 귀하

본 보고서를 "DUPIC 핵연료 조사시험 설계 및 안전성분석 보고서"로 제출합니다.

1998년 10월

주저자 : 배기광 (DUPIC)

공저자 : 양명승, 정인하, 이철용, 박희성, 강권호, 문제선, 이도연, 이영순 (DUPIC) 김학노, 이기홍, 김헌일, 서철교, 한기양 (하나로운영팀) 정흥준, 민경호 (열수력안전연구팀) 김봉구, 강영환, 박승재, 신윤택 (하나로이용기술개발팀) 박종만 (핵연료제조기술개발팀) 호광일 (수원대학교)

감수위원 : 이영우

하나로에서 DUPIC 핵연료 조사시험을 수행하기 위한 핵연료 설계와 mini-element 및 무계장 캡슐에 대하여 설계 해석과 조사시의 안전성 분석을 수행하였다. 조사 핵연료는 소결체 5개를 한 개의 mini-element로 구성하며 3개의 mini-element를 동시에 장전하도록 하였으며, 냉각수는 mini-element 외부를 직접 통과하면서 냉각을 하도록 설계하였다. 소결체의 조성과 출력은 DUPIC 소결체의 조성과 출력이 동일하게 구성하였으며 핵연료가 조사될 하나로의 조사공은 OR공으로 하였다. Mock-up 캡슐을 제조하여 진동시험과 압력강하시험을 수행하여 하나로와의 양립성을 얻었으며, 핵연료의 최대온도와 내압을 해석하여 안전성을 확인하였다. 피복관의 건전성을 확인하기 위하여 열응력을 계산하여 ASME의 허용 응력을 만족함을 확인하였으며 또한 하나로의 반응도사고, Locked rotor 사고 등의 사고시 핵연료봉을 분석하여 핵연료의 안전성에 영향이 없음을 확인하였다.

Abstract

Design and safety analysis of fuel, mini-element and capsule for DUPIC fuel irradiation at HANARO were carried out. Three mini-elements shall be installed in the irradiation capsule, of which one mini-element shall include 5 pellets, and irradiated simultaneously. Cooling water flows around the mini-elements. Linear power and composition of fuel are the same as those for DUPIC fuel, and OR hole of HANARO is selected for irradiation. Mock-up capsule was fabricated and tested for vibration and pressure drop, and the result of the tests proved to be compatible to HANARO. Analyzing maximum temperature and inner pressure of mini-element showed to be safe during irradiation. Thermal stress of cladding was calculated to be lower than the limit of stress intensity defined in ASME code. Accident analysis of RIA and locked rotor of HANARO showed that fuel is safe.

초록i
Abstractii
목차
표목차
그림목차vi
1. 서론1
2. 조사시험 계획2
2.1 조사시험 목적2
2.2 조사시험 일정2
2.3 조사조건
2.3.1 조사 연료
2.3.2 조사 방법
2.3.3 조사 기간
2.4 조사전시험
2.5 조사후 평가 계획
2.5.1 NDA 검사
2.5.2 외관검사
2.5.3 치수
2.5.4 Fission gas분석
2.5.5 핵연료 미세구조
2.5.6 연소도
2.5.7 핵종분포 및 형상
3. 조사 핵연료 설계
3.1 핵연료봉 설계7
3.2 무계장캡슐 설계7
3.3 기계 구조 검토10
3.3.2 DUPIC 핵연료용 무계장캡슐의 기계적강도 검토10
3.3.3 DUPIC 핵연료용 캡슐의 치수 안정성11
3.3.4 Capsule 취급계통에 대한 설계요건 검토11
3.4 압력강하 시험 및 열수력 평가11
3.4.1 서론
3.4.2 실 혐
3.4.3 실험결과 및 고찰14
3.4.4 결 론

.

4. 노내성능 및 안전성 평가	
4.1 핵연료 노내 성능평가	
4.1.1 핵연료 온도 해석	17
4.1.1.1 열전도도	17
4.1.1.2 핵연료의 온도 분석	
4.1.2 성능평가	
4.1.2.1 자료 분석	
4.1.2.2 입력부	
4.1.2.3 연료봉 해석	
4.1.3 결론	
4.2 하나로 사고시 핵연료봉의 건전성 분석	
4.2.1 반응도 사고	
4.2.2 Locked rotor 사고	
4.2.3 환경영향 평가	24
4.3 반응도 해석	
4.3.1 계산 가정 사항	
4.3.2 계산 모델	
4.3.3 반응도 해석 결과	
4.4 응력 해석	
4.4.1 개 요	
4.4.2 내압에 의한 응력 계산	
4.4.3 좌굴응력	27
4.4.4 온도 계산	
4.4.5 열응력	29
4.4.6 강도 평가	
4.4.7 응력 해석 결과	
5. 결 론	
참 고 문 헌	
부록 피복관의 응력 계산	

,

Table 2.1-1 DUPIC Pellet Irradiation Plan 35
Table 2.3-1 조사 핵연료 성분표(g/TU)
Table 2.3-1 조사 핵연료 성분표(g/TU)(계속)
Table 2.3-2 30MW 출력에서의 SEU와 2개의 SIMFUEL(2.35w/o) Z방향의
위치별 선출력(KW/m)38
Table 3.4-1 Calibration Equation of Each Instrument
Table 3.4-2 DUPIC Capsule Vibration Test Results (Single Tube)
Table 3.4-3 DUPIC Capsule Vibration Test Results(Double Tube)40
Table 4.1-1 핵연료의 참고자료40
Table 4.1-2 핵연료 물성 자료
Table 4.1-3 피복관 특성 (Type316L)[9]41
Table 4.1-4 선출력별 온도 및 핵분열성 기체 방출 분포
Table 4.2-1 Libraries for Calculating Radioactivity
Table 4.2-2 Activity Stored in 3 Mini-elements(Ci, 1tonU base)
Table 4.2-2 Activity Stored in 3 Mini-elements(Ci, 1tonU base)(continued)45
Table 4.2-3 Activity % Stored in 3 Mini-elements Compared to HANARO Fuel .
Table 4.4-1 Material of the capsule
Table 4.4-2 Stresses of the capsule under the thermal load condition

,

ユ	림	목	차
---	---	---	---

그림 3	3.1-1 Mini-element	48
그림 3	3.1-2 봉단마개	49
그림 3	3.1-3 Element assembly	50
그림 3	3.2-1 무계장 캡슐	51
그림 :	3.2-2 Rid tip	52
그림	3.2-3 Guide	53
그림	3.2-4 Spring	54
그림	3.2-5 Collar, Pin, Bushing	55
그림 (3.2-6 Lower endplate	56
	3.2-7 캡슐외통	
그림 :	3.2-8 중심축	58
그림	3.2-9 Support tube	59
	3.2-10 Upper end plate	
	3.2-11 Top guide	
	3.2-12 Grapple head lock, clamping nut	
	3.2-13 Grapple head	
	3.2-14 Lower housing	
	3.2-15 Upper housing	
	3.2-16 Housing support	
	3.2-17 Cooling block	
	3.4-1 Pressure Drop vs. Flow Rate(single)	
	3.4-2 Pressure Drop vs. Flow Rate(double)	
	3.4-3 Frequency as a Function of Flow Rate(single)	
	3.4-4 RMS Displacement as a Function of Flow Rate(single)	
	3.4-5 Maximum Displacement as a Function of Flow Rate(single)	
	3.4-6 Frequency as a Function of Flow Rate(double)	
	3.4-7 RMS Displacement as a Function of Flow Rate(double)	
	3.4-8 Maximum Displacement as a Function of Flow Rate(double)	
	4.1-1 DUPIC핵연료 인자별 열전도도	
	4.1-2 코드별 핵연료 중심온도 비교	
	4.2-1 Actual and Design Power History of Accident	
	4.2-2 Temperature Change Due to Accident	
	4.2-3 Stress of Cladding	
그림	4.2-4 Locked Rotor History	. 81

그림	4.2-5	Temperature Change of Locked Rotor Accident	82
그림	4.2-6	Stress of Cladding of Locked Rotor Accident	83
그림	4.3-1.	. 무계장 Capsule을 OR4에 장전하였을 경우의 MCNP 모델	84
그림	4.4-1	Analysis grid of capsule for the temperature calculation	85
그림	4.4-2	Grid number of analysis model.	86
그림	4.4-3	Temperature profile of the capsule	. 87

DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) 핵연료는 사용후 경수로 핵연료를 직접 재가공하여 중수로에 다시 사용하고자 하는 자원 재활용 개념의 핵연료이다. 사용후 경수로 핵연료에는 약 1.5%의 핵분열 물질이 잔존하고 있어 천연우라늄(0.71%)을 연료로 사용하는 중수로에 재사용이 가능하며, 특히 우리 나라는 경수로형 원자로와 중수로형 원자로를 동시에 보유하고 있는 국가로서 이와 같은 핵연료주기의 적용에 적합한 국가이다. 경수로에서 연료로서 수명을 다한 사용후 핵연료를 중수로용으로 재사용 한다면 사용후 핵연료의 처분량 감소는 물론 자원의 재활용이라는 두 가지 목적을 동시에 달성할 수 있다. 이 기술은 플루토늄은 물론 기타 핵물질의 분리를 근본적으로 지양하고 있는 기술이기 때문에, 핵확산 저항성 핵연료에 잘 부합되는 모범적인 후행 핵연료주기 연구과제로서 국제적으로 인정을 받고 있다. 이러한 개념을 바탕으로 DUPIC 핵연료 개발은 한국과 캐나다 및 미국이 참여하여 수행되고 있으며, 1996년부터는 국제 핵물질 감시기구인 IAEA도 참여하는 국제공동연구로서 활발히 진행되고 있다[1-4].

1993년도까지 수행한 타당성 연구의 결과로서 OREOX(Oxidation and Reduction of Oxide fuel)가 가장 바람직한 제조공정이라는 결론을 바탕으로 OREOX 공정을 이용한 핵연료 제조 및 이의 성능검증 연구를 수행 중에 있다. DUPIC 핵연료의 조사시험은 여러 차례에 걸쳐 수행될 예정이며, 1998년 12월에 예정된 조사시험에서는, DUPIC 핵연료의 노내 거동과 비교를 위한 자료확보와 국내기술로 제작되는 조사용 캡슐의 성능입증, 하나로의 조사조건, 장전, 조사, 제거, 운반 등의 관련기술 분석을 수행할 목적으로 계획되어 있으며, 여기서 확보한 기반 기술은 1999년 9월 이후부터 계속해서 수행 예정인 DUPIC 핵연료의 성능검증을 위한 조사시험에 이용할 계획이다.

DUPIC 핵연료의 특징은 약 0.6%의 Pu를 비롯하여 다량의 핵분열 생성물을 포함하고 있으므로 물리적 및 핵적 성질이 일반 핵연료와는 다르다는 것이다. 즉, 핵연료의 열전도도, 핵분열기체 방출 및 입자성장 등이 일반 핵연료와 다를 것으로 예상되므로 이러한 물성의 확보와 노내 거동 및 핵연료로서의 성능을 분석하기 위한 기초자료를 확보하는 것이 중요하다.

DUPIC 핵연료의 노내 조사시험은 소결체 조사시험, 연료봉 조사시험, 연료다발 조사시험으로 구분되어 수행할 예정이며, 연료봉 조사시험은 2002년부터, 연료다발 조사시험은 2003년부터 계획하고 있다.[5] 소결체 조사시험은 무계장캡슐 및 계장캡슐을 이용한 조사시험으로 구분되며 본 보고서에는 주로 무계장캡슐을 이용한 모의 DUPIC 핵연료의 조사시험에 관한 설계 및 안전성 분석을 기술하였다. 2.1 조사시험 목적

DUPIC 핵연료 조사시험의 주목적은 DUPIC 핵연료의 노내성능 및 건전성을 확인하는데 있다. 부차적인 목적으로는 핵연료의 노내거동 및 DUPIC 핵연료의 성능분석과 설계해석에 필요한 데이터의 확보와 모델링의 정립에 목적을 두고있으며 우선적으로 캡슐을 이용한 조사시험을 통하여 하나로의 특성과 캡슐의 성능 등을 확인하고, DUPIC 핵연료의 노내조사 거동에 관한 많은 데이터를 확보하는 것이 단기적인 목표이다. 표 2.1-1과 같이 예정된 캡슐을 이용한 네 번의 조사시험의 목적은 다음과 같다.

1차 소결체 조사시험을 통하여 SEU 및 SEU+F.P.(모의 DUPIC 핵연료)의 노내거동 자료를 확보하며 개발된 DUPIC 캡슐의 설계실증과 조사시험을 위한 하나로 및 주변환경을 확정하고, 2차 조사시험은 DUPIC 소결체의 노내조사 시험으로서 DUPIC 핵연료의 노내조사 거동에 관한 데이터의 확보와 원격 핵연료 조립 및 원격 취급기술을 확립하는데 목적이 있다. 이 후의 제 3차 및 제 4차 조사시험은 계장캡슐을 이용할 예정이며 핵연료의 온도 및 핵분열 기체방출 등에 관한 자료수집과 모델링을 수행할 예정이다.

2.2 조사시험 일정

하나로에서 무계장캡슐을 이용한 본 소결체 조사시험의 일정은 다음과 같다.

- ~ 1998. 11. 9 : 조사시험 준비

- ~ 1998. 11. 20 : 핵연료 element assembly 조립

- ~ 1998. 12. 20 : 하나로 장전 및 조사 개시

- 1998. 12. 20 ~ 1999. 3. 30 : 조사시험

- 1999. 3. 31 ~ 1999. 6. 31 : 핵연료 냉각

- 1999. 7. 1 ~ : PIE 및 분석

2.3 조사조건

2.3.1 조사 핵연료

조사시험의 대상 핵연료는 SEU와 SEU+F.P.(모의 DUPIC 핵연료)의 두 종류를 예정하며 다음과 같다.

- SEU : 1 rod (5 pellets), 1.47%

- 2 -

- SEU+F.P. : 2 rods (5×2 pellets), 초기 농축도 3.21%, 연소도 35,500 MWD/MTU

핵분열 생성물(F.P.)의 성분은 ORIGEN2를 이용하여 계산한 후 함량과 핵적 중요도를 고려하여 선택하였으며 핵분열성 물질의 농도는 WIMS-AECL을 이용하여 보다 정확하게 계산하였다. U-235의 농도는 DUPIC 핵연료의 출력과 유사하게 조정하였다. 사용된 핵연료의 성분을 표 2.3-1에 나타내었다.

(2.35%)

2.3.2 조사 방법

5개의 소결체를 넣은 3개의 짧은 연료봉(mini-element)을 제조하고 이를 무계장 캡슐에 동시에 넣어서 하나로의 정상적인 가동조건에서 조사하며 상세 조건은 다음과 같다.

1) 조사공 : 하나로 OR hole

• Thermal neutron flux(< 0.625 MeV) ; 3.36 x $10^{14} \text{ n/cm}^2 \cdot \text{sec}$

• Fast neutron flux(>0.82MeV) ; $2.54 \times 10^{13} \text{ n/cm}^2 \cdot \text{sec}$

2) 초기 조사 핵연료 선출력

MCNP를 사용하여 출력을 계산한 결과를 표 2.3-2에 표시하였으며 하나로 출력에 대한 핵연료의 평균과 최대선출력은 각각 다음과 같다.[6]

	24MW	22MW	20MW
평균 선출력	444	407	370
최대 선출력	488	447	407

MCNP 계산시 가정은 다음과 같다.

· 32개의 새 핵연료 장전

·OR4에 모의 DUPIC 핵연료 장전

·CT, IR1, IR2에 하나로 모의 핵연료 장전

·SOR은 완전 인출 상태, CAR은 350mm에 위치

3) 냉각수 온도 : 313(K)

4) 냉각수 압력 : 0.4(MPa)

5) 연소도에 따라 출력감소

6) 축방향으로 출력이 변함.

7) 24MW의 경우 평균 출력 444, 최대출력 488W/cm를 나타내었으며 22MW,
20MW의 경우는 각각 평균 선출력 407, 370W/cm 와 최대출력 447,
407W/cm를 나타내었다. 1.47%의 SEU의 출력은 24MW시 평균
344W/cm로서 SEU+F.P.보다 낮기 때문에 본 보고서의 해석에서는 출력이 높은 SEU+F.P.의 경우만 분석하였다.

- 3 -

2.3.3 조사 기간

조사기간은 핵연료의 연소도 약 5400MWD/MTU까지 (약 3개월 소요 예상)로 예정하며, 조사 시작일은 1998년 12월 20일을 목표로 한다.

2.4 조사전시험

조사용 핵연료의 조사전 성능평가를 위한 노외시험은 다음과 같은 항목에 대하여 수행하며 제조 검사성적서를 최대한 활용한다.

- 외관검사 : 조사개시 전에 시험 핵연료 mini-element의 외관상태와 결함유무를 육안으로 검사한다.
- 칫수 : 조사후 연소도에 따른 평윤현상 등을 평가하기 위하여 조사전에 소결체 및 mini-element의 직경 및 길이, 틈새길이 등을 측정한다.
- 핵연료의 표면조도
- 핵연료 미세구조 : 조사로 인한 핵연료의 미세구조 변화 및 피복관과의
 반응 등을 조사후와 비교하기 위하여 조사용 핵연료 및 mini-element에
 대하여 다음과 같은 부위를 관찰한다.

·결정립크기 및 분포, 기공의 크기 및 분포 등의 핵연료 미세구조 ·봉단마개의 용접부위

- 소결체 밀도 및 개기공도
- O/U 또는 O/M비

2.5 조사후 평가 계획

하나로에서 조사한 DUPIC 핵연료의 조사후 시험은 소내 IMEF와 PIEF에서 주로 수행하며 성능평가를 위한 시험항목은 다음과 같다.

2.5.1 NDA 검사

하나로에서 조사시험한 mini-element의 연소도를 γ-scanning으로 측정하여 계산치와 비교한다.

2.5.2 외관검사

조사 완료한 시험 핵연료 mini-element의 외관상태와 결함유무를 육안으로 검사한다. 이 때 camera를 이용하여 실시할 수 있다. 외관검사 결과, 이상부위가 있으면 이 부위에 대한 정밀측정, 파괴검사의 수행여부 및 방법을 검사팀과 상호 협의하여 결정한다.

2.5.3 치수

소결체 및 mini-element의 직경 및 길이, 틈새길이 등에 대하여 조사전의 측정치수와 비교한다.

2.5.4 Fission gas분석

조사중에 mini-element 내에 생성된 fission gas를 피복관의 drilling 등의 방법으로 천공하여 포집한 후 gas의 성분을 분석한다.

2.5.5 핵연료 미세구조

조사로 인한 미세구조 변화 및 핵연료와 피복관과의 반응 등을 비교하기 위하여 다음과 같은 부위를 관찰한다.

결정립 크기 및 분포, 기공의 크기 및 분포, 크랙, 입자성장 및 재구조화
 등의 핵연료 미세구조 관찰

- 핵연료와 피복관의 결합상태

- 봉단마개의 용접부위

핵연료의 미세구조 및 bubble, mini-element 용접부위 및 부식층 두께 관찰을 위해 광학현미경, SEM을 이용하며, 핵연료와 피복관과의 반응 분석을 위해 EPMA를 이용한다.

2.5.6 연소도

Code 계산치 및 γ-scanning 측정치와 비교하기 위하여 연소도에 따라 시료를 취하여 핵물질 이동 절차에 따라 화학분석실로 이동한 후, 화학적 분석방법에 의하여 연소도를 측정한다.

2.5.7 핵종분포 및 형상

하나로에서 조사시험을 수행한 후에 핵연료 내에 생성된 핵분열 물질의 핵종분포 및 분포형상을 IMEF의 EPMA를 이용하여 측정한다. 이 경우의 주된 분석은 산화물 및 금속 형태의 핵분열 생성물의 화학적 조성과 분포도 등이며 이산화 우라늄 내에 고용되어 있는 원소도 분석한다. 이 결과는 열역학적 및 물리학적 성질과 비교 검토될 예정이다.

- 6 -

.

3. 조사 핵연료 설계

3.1 핵연료봉 설계

길이 약 200mm, 직경 12.7mm의 3개의 mini-element는 하나로 core center에 위치하도록 설계되었다. 스테인레스 316L 재질의 연료봉(두께 0.889mm)과 봉단마개는 1.2기압의 He가스 분위기 하에서 TIG(Tungsten inert gas) 용접으로 밀봉한다. He가스로 채워진 연료봉 내부는 INCONEL 재질의 스프링(길이 79.8mm), alumina 재질의 space block(길이 5mm) 2개와 5개의 소결체로 채워진다. 또한 내경이 10.922mm인 연료봉에 삽입된 소결체와 봉사이의 간격은 0.0445mm이다. 그림 3.1-1에 mini-element의 제원을 나타내었다.

1) 소결체

소결체의 직경은 10.833mm이며 길이는 12mm로서 표면은 연삭하고 피복관과 소결체 사이의 CANLUB은 사용하지 않는다.

2) 봉단마개

316L 스테인레스 재질의 봉단마개의 설계는 그림 3.1-2에 첨부된 도면과 같다. 봉단마개의 상하구분을 위해 상단마개의 한쪽 끝에 폭 0.5mm의 원형테를 가공하며, 방사선 투과검사를 위해 깊이 6mm, 직경6mm 깊이로 홈을 판다.

3) 피폭관

1/2" 316L E.P 스테인레스 재질의 피폭관은 길이가 159.82mm로 가공 후 내경, 외경, deflection 측정과 진원도 및 표면조도 등의 검사성적서가 요구된다. 그리고 가공된 피폭관은 표면손상이 없어야한다.

3개의 핵연료 mini-element는 그림 3.1-3에 첨부된 도면과 같이 element assembly로 조립되며, mini-element 주위로 냉각수가 흐르도록 하여 열수력 특성을 향상시키도록 설계하였다.

3.2 무계장캡슐 설계

무계장캡슐은 DUPIC 핵연료의 조사시험을 위하여 원격조립 및 취급의 가능성 확인과 열유동 시험을 위하여 97년에 설계를 완료하였고 열유동 시험을 거친후 부분적인 설계 변경을 통하여 시제품의 제조가 완료되었다. 제작된 무계장캡슐은 첨부된 도면그림 3.2-1과 같이 중심축을 중심으로 캡슐하단의 guide부분, 중간부에 3개의 mini-element로 구성된 element assembly, 상단부의 top guide 부분 및 캡슐 내외통으로 분해조립이 가능하도록 만들어졌다. Element assembly가 장착된 총 길이 960mm의 무계장캡슐은 외경이 56mm, 두께 3mm인 aluminum 재질의 tube를 사용하였으며 캡슐 상부와 하단 locking part는 하나로 재료시험용 계장캡슐로 개발된 부품을 인용하였다. 이 무계장캡슐은 차후 계장 캡슐개발의 기본으로도 활용될 예정이다. 본 과제에서 개발된 무계장캡슐의 설계와 제작사항을 기술하면 다음과 같다.

1) 구성

- 하단부

Rod tip : 1개, 도면 3.2-2 (DWG.NO D8055-CAP-ROD-TIP) Guide : 1개, 도면 3.2-3 (DWG.NO D8056-CAP-GUIDE) Spring : 1개, 도면 3.2-4 (DWG.NO D8057-CAP-SPRING) Collar : 1개, 도면 3.2-5 (DWG.NO D8058-CAP-COLLAR) Pin : 1개, 도면 3.2-5 (DWG.NO D8058-CAP-PIN) Bushing : 1개, 도면 3.2-5 (DWG.NO D8058-CAP-BUSHING) Lower endplate : 1개, 도면 3.2-6 (DWG.NO D8059-CAP-LOWER-ENDPLATE

- 캡슐내외통부

외통 : 1개, 도면 3.2-7 (DWG.NO D8061-CAP-OUT-TUBE) 중심축 : 1개, 도면 3.2-8 (DWG.NO D8062-CAP-CENTRAL-ROD) Support tube : 1개, 도면 3.2-9 (DWG.NO D8063-CAP-SUPPORT-TUBE-A)

- 상단부

Upper end plate : 1개, 상단면에 캡슐 Title 표기("DUPIC 01"), 도면 3.2-10 (DWG.NO D8060-CAP-UPPER-ENDPLATE) Top guide : 1개, 도면 3.2-11 (DWG.NO D8078-CAP-TOP-GUIDE) Grapple head lock : 1개, 도면3.2-12 (DWG.NO D8079-CAP-CLAMPING-NUT) Grapple head : 1개, 도면 3.2-13 (DWG.NO. D8079-CAP-GRAPPLE-HEAD) Clamping nut : 1개, 도면 3.2-12 (DWG.NO. D8079-CAP-CLAMPING-NUT)

- Element assembly

Lower housing : 1개, 도면 3.2-14 (DWG.NO. D8068-CAP-ELE-HOUSING-A) Upper housing : 1개, 도면 3.2-15 (DWG.NO. D8069-CAP-ELE-HOUSING-B) Housing support : 3개, support에 연료봉 구분을 위해 "I","II","III"를 마킹, 도면 3.2-16 (DWG.NO D8070-CAP-ELE-HOUSING-SUPPORT) Housing nut : 3개 Cooling block : 1개, 도면 3.2-18 (DWG.NO D8075-CAP-ELE-COOLINGBLOCK), 열팽창을 고려하여 upper house와 조립시 0.2mm 여유를 갖는다. Fuel rod assembly(핵연료봉) : 3개, 열팽창을 고려하여 upper house와 조립시 0.2mm 여유를 갖는다.

2) 재 질

본 무계장캡슐의 외통부는 약 40℃의 냉각수에 잠겨진 상태로 운전되며, 그 사용재질은 원자로 상부 구조물과 같은 재료인 Al 6061 T6를 사용하였다. 이 재료는 열전도성이 좋으며 가공성 및 기계적 성질이 우수하다. 알루미늄은 일반적으로 사용온도가 높아짐에 따라 강도저하가 커지고, 부식정도가 커지기 때문에 고온(약 300℃ 이상)에서는 사용되지 않는다. 또한 시험공의 receptacle에 고정되는 캡슐하부 고정단은 내열성 및 강도가 좋은 Zircaloy-4를 사용하였다. 무계장캡슐의 세부적인 사용재질은 다음과 같다.

- Grapple Head : A6061

- 고정스프링 : INCONEL X-750
- 캡슐외통 : Al 6061
- 하부 고정단 : Zirclaoy 4
- 상부 및 하부 End plate : Al 6061
- Cooling block : Al 6061
- Element assembly : Type 316L
- 3) 치 수

무계장캡슐의 크기는 직경 56mm, 총길이 960mm로써 하나로에 장전되는 핵연료의 크기와 동일하다. 상부 Grapple Head의 길이는 69mm이며, 하부 고정단의 길이는 174mm로써 핵연료의 장탈착 방법과 동일하게 설계되었으며 그 세부적인 치수는 다음과 같다.

- 외통지름 : 56mm

- 외통두께 : 3.0mm
- 총 길 이 : 960.27mm

. grapple head : 69mm

- . 캡슐몸체 : 762mm
- . 하부고정장치 : 82.77mm

. 고정스프링 : 62.5mm

3.3 기계 구조 검토[7, 8]

3.3.1 HANARO 핵연료 집합체의 기계적강도

기본적인 DUPIC 무계장 캡슐의 상하단은 HANARO 핵연료 집합체에 그 근거를 두고 제조하였으며 아래에 HANARO 핵연료의 내용과 검토결과를 기술하였다.

- 구동핵연료 집합체는 핵연료봉이 절대로 압축이나 인장 하중하에 놓이지 않도록 설계되었다. (동일함).
- 핵연료봉 자체는 하단 등 plate에 용접되고 상단 등 plate에는 미끄러짐이 허용되는 Free floating 상태로 끼워져 있다. (mini-element는 양단이 free floating).
- 핵연료 장입시의 압축하중전달은 grapple head, locking spacer, top guide, spacer plate 및 spaces tube를 따라서 전달되는데 마지막으로 bottom spring과 cup spider와 같은 유동관 하단 부품에 전달된다 (동일함).
- 핵연료 취급시에는 인장하중이 grapple head로부터 중심봉을 거쳐 마지막으로는 cup spider에 전달된다 (동일함).
- 이러한 부품 중에서 가장 취약한 부위는 직경이 6.5mm로 감소된 central rod이다 (동일함).
- 이러한 취약부위가 항복응력에 이르기 전의 최대 계산하중은 약
 330Kg이다. 만약 항복점을 보수적으로 60%로 제한한다면, 최대하중은 약
 200Kg이다. 이 값은 핵연료 취급시의 제한하중치로 사용된다 (동일함).
- 이러한 하중은 많은 수작업에 의해 가 해질수 있는 어떠한 기계적
 하중에도 견딜 수 있도록 설계되었다.

3.3.2 DUPIC 핵연료용 무계장캡슐의 기계적강도 검토

- DUPIC 핵연료용 캡슐은 하나로 구동핵연료와는 달리 mini-element의 핵연료봉이 핵연료봉 지지격자(Element Assembly)와 Support tube 및 상,하단 End Plate에 걸쳐있는 구조로 구성되어 있으나 캡슐 취급시에는 main 하중이 구동핵연료와 같이 grapple head로부터 central rod를 거쳐 cup spider에 전달되도록 설계되었다.
- DUPIC 핵연료용 캡슐 장입시의 압축하중전달은 grapple head, locking spacer, top guide, top end plate, out tube, bottom end plate를 거쳐서 bottom

spring과 cup spider로 전달된다.

 - 구동핵연료에서 설계된 Al 6061-T6 재질의 end plate는 접촉하중의 2 배까지 견디도록 설계제한치가 있는데 DUPIC 핵연료용 캡슐에 사용된 end plate 또한 같은 재질로 설계되어 최대 허용하중 200kg에서도 충분한 강도유지가 가능하게 설계되었다.

3.3.3 DUPIC 핵연료용 캡슐의 치수 안정성

- 구동핵연료 집합체에서는 핵연료봉을 제외한 모든 부품의 조사에 기인한 치수변화는 없는 것으로 밝혀져 있다.
- 구동핵료봉의 핵연료평윤에 기인한 핵연료봉 직경변화와 같은 약간의 치수변화가 예상되지만 길이변화는 매우작을 것이라 예측하였다.
- 이에 따라 DUPIC 핵연료용 캡슐 자체의 조사에 기인한 길이변화는 없을 것이라 예상된다.
- DUPIC 핵연료봉의 조사중 길이변화가 있더라도 캡슐내 mini-element가 support tube 사이에 끼워지는 element assembly내에서 길이방향으로 치수변화를 수용할 수 있도록 설계되어있기 때문에 조사중 치수변화에 기인된 Stress 발생은 없을 것이라 예상된다.

3.3.4 Capsule 취급계통에 대한 설계요건 검토

- 구동핵연료 집합체는 취급시 핵연료의 비틀림을 야기하는 그 어떠한 힘도
 가해져서는 안 되는 것으로 규정되어 있다.
- 그러나 DUPIC 핵연료용 캡슐은 캡슐본체가 외경 56 mm, 두꼐 2 mm의 Al 6061-T6 tube에 의해 상,하단 end plate와 연결된 구조이기 때문에 구동핵연료에 비해 비틀림에 대한 저항성이 매우 커서 핵연료 장전용 tool을 이용한 장,탈착시 발생할 수 있는 비수직적인 힘이 가해져도 안전하게 설계되었다.

3.4 압력강하 시험 및 열수력 평가

3.4.1 서론

현재 가동되고 있는 하나로에 DUPIC Capsule을 장전하기 위해서는 정상 운전중 Capsule의 구조적 강도가 충분하여야 하고, 또한 발전소 일차냉각계통의 설계기준이 되는 열수력학적 요구조건이 만족되어야 한다. 이러한 측면에서 원자로 운전조건에서의 노외 실험을 통하여 Capsule의 구조적 건전성 및 열수력학적 특성 등을 평가함으로써 원자로의 안전성을 확보하여야 한다.

노외 실험의 항목으로는 압력강하 실험, 유체유인진동실험 및 내구성실험 등이 있다. 대부분의 노외 실증실험은 원자로 실제 운전조건과 동일한 온도, 압력 및 유량조건에서 실시된다. 압력강하 실험을 통하여 Capsule 설계요건을 검증하고 원자로 노심과의 수력학적 양립성을 입증한다. 그리고 유체유인진동실험 및 내구성실험을 통하여 장시간동안 장전되어 운전되었을 때, 유체유인 진동에 의해 마모(Wear)가 발생하는지 여부를 실험적으로 규명하여 Capsule 및 유동관(Flow Tube)의 건전성을 확인한다.

본 절은 하나로 OR Site에 장전될 DUPIC Capsule에 대한 압력강하실험 및 진동실험 결과에 대하여 기술한다.

3.4.2 실험

1) 실험장치

가. 실험장치 개요

본 실험은 상온·상압 시험장치인 Cold Test Loop I을 이용하여 수행되었다. Cold Test Loop I은 상온·상압 조건에서 다양한 유체유동 실험을 수행할 수 있으며 저장수조, 가변속도모터 펌프, Test Section, 모터제어장치, 온도제어장치 및 관련 배관 등으로 구성된다.

상수도로부터 보충된 순환수는 저장수조에 적정량이 채워지고, 이 순환수는 주 순환계통의 주 흡입관에 유입되어 펌프에 의해 시험대에 공급된다. Test Section에 공급되는 유량은 모터제어장치에 의한 펌프회전 속도에 의해 제어되며, 이 때 공급되는 유량은 Turbine 유량계에 의해 측정된다. 실험중 폐쇄회로를 흐르는 순환수 온도를 일정하게 유지하기 위하여 PID Controller, Control Valve, SCR Unit, Heater 및 RTD(Resistance Temperature Detector) 등으로 구성되는 온도제어장치를 이용한다. 즉 PID Controller에 원하는 온도를 입력시키면 SCR Unit에 의해 Heater가 작동하여 원하는 온도까지 순환수를 가열시키게 되며, 온도 Setting치가 RTD로부터 측정되어지는 PV(Position Value)치를 초과할 경우 Control Value가 열리면서 상수도에 연결된 보충수 배관을 통하여 상은의 물이 저장수조내로 유입되어 온도는 일정하게 유지된다. 저장수조내의 수위는 Over-flow Drain을 설치하여 일정하게 유지된다.

나. Test Section

DUPIC Capsule은 Zircaloy 재질의 실제유동관에 장전되며, 유동관의 외부에는 Flow Housing이 추가로 장전되는데, 진동실험시 Laser Beam이 투과될 수 있도록 투명한 아크릴로 제작하였다.

Spider Cup에 하나로용 18봉 핵연료집합체에 해당하는 Orifice가 삽입되고, Zircaloy 유동관은 90 N·m의 일정한 힘으로 Spider Cup에 체결된다.

다. Instrumentation

실험중 Test Section으로 공급되는 유량은 OMEGA Turbine유량계로 측정한다. Turbine의 회전수와 유량간에는 다음의 일정한 관계가 성립된다.

 $\dot{Q} = A + B H \tag{1}$

여기서, Q : Flow Rate (GPM),

A, B : Constant (Given By OMEGA),

H : Frequency (Hz).

식 (1)에서 유량을 구하는데 이용되는 H는 Turbine의 회전수에 비례하여 Turbine 유량계 전장부(Electronic Part)를 통하여 출력되는 전기적 신호를 측정함으로써 구해지며 다음의 관계가 성립한다.

 $H = A_2 + B_2 V$

(2)

여기서, A_2 , B_2 : Calibration Constant

V : Voltage (Volt)

시험대로 유입되는 순환수의 온도는 RTD로 측정하며 이는 또한 온도제어용 PID Controller에 입력변수로서 이용된다. Test Section 입구압력 및 각 측정부위에서 발생하는 압력강하는 Rosemount사의 Smart Type 압력발신기와 차압발신기로 측정한다. 압력발신기와 차압발신기는 예비실험을 통하여 최적의 측정범위로 교정된다. 표 3.4-1에 각 계측기의 교정식(Calibration Equation)을 제시하였다.

2) 실험자료의 측정 및 처리

각 계측기에서 발생하는 전기적 신호는 Data Acquisition System(DAS)과 본 실험을 위해 작성된 구동 Program에 의해 수집되고 처리된다. DAS는 Personal Computer, DT-2821 A/D Converter 등으로 구성된다. 구동 Program은 Main Program 과 Sub-Program등으로 구성되며, Main Program은 실험자료의 처리에 필요한 핵연료집합체의 재원과 계측기의 교정식 등을 저장한다. Sub-Program은 처리된 실험자료의 출력과 주어진 온도, 압력 조건에서 순환수의 물성치를 계산할 수 있는 Steam Table 등으로 구성된다.

3) 실험방법

3개의 mini-element의 조립에서 single 연료봉의 제원은 동일하나 double 연료봉은 CANDU 연료봉에 외경 1.5cm인 피복관을 이중으로 밀봉한 연료봉이다. 본보고서에서는 두 종류의 연료봉에 대하여 실험을 수행하였다.

가. 압력강하실험

DUPIC Capsule이 장전되면 유량을 변화시키면서 Capsule 전체 압력강하를 측정한다. 실험유량 범위는 5 - 10 kg/s 이며 2회에 걸쳐 압력강하실험을 실시하였다. 각 유량에 대한 실험온도 조건은 하나로 노심 입/출구 온도인 35/45℃의 평균인 40 ℃ 이며, OR 조사공에 장전되는 DUPIC Capsule은 다음과 같은 하나로 제한조건을 만족하여야 한다.

유량 < 12.7kg/s 압력강하 > 200kPa

나. 진동실험

Capsule의 진동은 Laser Vibrometer(Polytec Model: FV3001)를 이용하여 측정한다. Laser Interferometer로부터의 입사광은 진동물체로부터 반사되어 여러 Lens조합을 거쳐 Signal Processor에 전달되어 진동물체의 진동속도와 진동변위에 해당되는 전기신호로 변환된다. 이 전기적 신호는 Computer Memory에 일단 저장되고 FFT(fast Fourier transform)을 과정을 통하여 주파수 대 진폭의 함수를 얻고 이 결과로부터 Peak Amplitude, RMS Amplitude 및 진동 주파수특성 등을 판별한다.

진동실험의 경우 각 핵연료집합체의 Grapple Head부분에 대하여 90° 간격을 두고 2 지점에서 측정되었다.

3.4.3 실험결과 및 고찰

1) 압력강하 실험

Single 및 Double 연료봉 각각에 대한 압력강하실험 결과는 그림 3.4-1, 3.4-2에 보여준다. 압력강하실험은 2회 실시하였고, 각 실험으로부터 약 200kPa의 압력강하를 유발하는 유량은 Single 연료봉의 경우 약 8.8 kg/s, Double 연료봉의 경우 약 8.7kg/s로 측정되었다. 이는 전술한바와 같이 하나로 제한조건을 만족한다.

2) 진동실험

Single 연료봉에 대한 진동실험 결과는 표 3.4-2 및 그림 3.4-3, 3.4-4, 3.4-5에 보여준다. 진동주파수는 그림 3.4-3에 나타난 바와 같이 14 - 18 Hz 범위이다. 그림 3.4-4은 유량에 따른 진동변위 특성을 RMS(Root Mean Square) 값으로 보여준다. RMS 변위는 유량의 증가에 따라 증가하며 40 μm 이하의 범위이다. Single 연료봉의 최대진동변위는 유량의 함수로써 그림 3.4-5에 나타내었다. 최대진동변위는 유량에 따라 거의 선형적으로 증가하며 이 결과로부터 Single 연료봉의 최대진동변위는 약 100 μm 이하의 변위임을 알 수 있다.

Double 연료봉에 대한 진동실험 결과는 표 3.4-3 및 그림 3.4-6, 3.4-7, 3.4-8에 보여준다. 진동주파수는 그림 3.4-6에 나타난 바와 같이 14 - 18 Hz 범위이며 이는 Single 연료봉과 동일한 범위이다. 그림 3.4-7은 Double 연료봉의 유량에 따른 RMS 진동변위 특성이다. 전유량범위에 대하여 10 μm 이하의 범위로써 거의 일정함을 알 수 있다. 압력강하 200kPa 일 때의 RMS 변위를 비교해 보면 Single연료봉의 경우가 약간 높은 경향이나 그 차이는 약 15 μm 로써 매우 적은 범위이다. 최대진동변위는 유량의 함수로써 그림 3.4-8에 나타내었다. RMS 진동변위와 마찬가지로 최대진동변위는 유량에 따라 거의 일정한 범위이다. 이 결과로부터 Double 연료봉의 최대진동변위는 약 30 μm 이하이며, Single 연료봉에 비하여 낮은 범위임을 알 수 있다.

국산 하나로용 18봉 핵연료집합체의 진동수는 11 - 14 Hz 이고, RMS 변위는 약 15 µm 이나, 최대진동변위는 약 80 µm 이하의 범위이다[8]. DUPIC Capsule의 경우가 18봉 핵연료집합체의 경우에 비하여 진동수는 약 4 Hz 정도 낮다. 압력강하 200kPa 일 때의 18 봉 핵연료집합체의 RMS 진동변위는 약10 µm로써 Double 연료봉과 거의 비슷한 범위이나, Single 연료봉의 경우는 약 25 µm 로써 약간 높다. 압력강하 200kPa 일 때의 최대진동변위를 비교해 보면 18봉 핵연료집합체와 Double 연료봉은 30 µm의 거의 비슷한 범위이나 Single 연료봉의 경우는 약 70 µm이다.

- 15 -

3.4.4 결 론

압력강하 실험결과 약 200kPa의 압력강하를 유발하는 유량은 Single 연료봉의 경우 8.8 kg/s, Double 연료봉의 경우 약 8.7kg/s로 측정되었고, 하나로 제한 조건을 만족한다. 진동실험 결과 진동주파수 영역은 약 14 - 18 Hz로 나타났다. 실험범위에서의 RMS 진동변위는 Single 연료봉의 경우 약 40 μm이하, Double 연료봉의 경우 10 μm 이하로 나타났고, 최대진동변위는 Single 연료봉의 경우 약 100 μm이하, Double 연료봉의 경우 30 μm이하의 범위로 측정되었다. 4. 노내성능 및 안전성 평가

4.1 핵연료 노내 성능평가

4.1.1 핵연료 온도 해석

4.1.1.1 열전도도

온도 분포에서 열전도도는 매우 중요하다. DUPIC핵연료는 핵분열 생성물을 다량 함유하고 있기 때문에 열전도도가 감소하게 된다. 이러한 DUPIC핵연료의 특성을 반영하여 다음과 같이 열전도도를 재 정립하였다. 일반적으로 열전도도 K는 다음과 같이 표시될 수 있다.[9]

K= K_o · f_b · f_m · f_b · f,
K_o : 순수 UO₂의 열전도도
f_b : porosity factor
f_m : 금속 석출물에 의한 영향
f_b : 연소도의 영향
f, : 방사선 조사의 영향
K_o는 기 발표된 많은 자료가 있으나 그 중 많이 인용되는 Harding & Martin의
식을 이용하였다.[9]

 $K_{o} = \frac{1}{0.0375 + 2.165 \times 10^{-4} T} + \frac{4.715 \times 10^{9}}{T^{2}} \cdot \exp(-\frac{16361}{T})$

f,는 porosity factor로서 잘 알려진 Loeb[10]의 식으로 다음과 같다.

 $f_p = (1 - 2.5p)$

fm 은 금속 석출물의 영향으로서 Schulz[11,12]의 식을 이용하는데, 이것은

$$1 - q = \left(\frac{K_0}{K}\right)^{\frac{1}{3}} \left(\frac{K_i - K}{K_i - K_0}\right)$$

이다. 여기서 K₀: 소결체 matrix의 열전도도.

K; : 금속 석출물의 열전도도 K : 금속 석출물을 함유하는 소결체의 열전도도 q : 금속 석출물의 함량(부피분율) 금속의 열전도도는 산화물에 비해 매우 크므로 간략히 정리하면

$$K = \frac{K_0}{(1-q)^3}, \neq f_m = \frac{1}{(1-q)^3}$$
이다.

보통 q는 0.45 ~ 0.82%로서 여기서는 중간값인 0.6%로 하였다.

fb는 연소도의 영향으로 핵연료내에 존재하는 핵분열 생성물을 고려하였다. Lucuta[13]는 이를 정리하여 다음과 같이 나타내었다.

$$f_{b} = (n(\beta) + m(\beta)\sqrt{T}) \arctan\left(\frac{1}{n(\beta) + m(\beta)\sqrt{T}}\right)$$
$$(\alpha \neq 1) \forall \beta, \quad n(\beta) = \frac{1.09}{\beta^{3.265}}, \quad m(\beta) = \frac{0.0643}{\sqrt{\beta}}$$

 β : % atomic burnup

f,은 방사선 조사시 주로 점결함에 의한 열전도도의 감소로써

$$f_r = \left(1 - rac{0.2}{1 + \exp\left(rac{T - 900}{80}
ight)}
ight)$$
를 인용하였다.[13]

이상과 같은 factor를 고려하여 열전도도를 재 정립한후 T의 4차식으로 표시하 면 아래식과 같으며 그림 4.1-1에 각각의 열전도도를 표시하였다.

 $K(W/cm^{\circ}C)=0.04154-3.32 \times 10^{-5}T+2.21 \times 10^{-8}T^{2}-8.90 \times 10^{-12}T^{3}+1.75 \times 10^{-15}T^{4}$

4.1.1.2 핵연료의 온도 분석

조사시험용 핵연료의 전용 분석 코드가 없기 때문에 온도 계산을 위하여 GENGTC와 HEATING 및 FEMAXI-IV를 이용하여 온도분석을 수행하였다. 이때 소결체의 열전도도는 전에 기술한 식을 이용하였으며 피복관인 Type 316L에 맞는 데이터를 수정하여 사용하였다. 그림 4.1-2는 각각의 코드에 의해 계산된 소결체의 중심온도를 나타낸 것이며, 하나로 출력 24MW와 22MW의 경우에서 예측된 핵연료의 최대 선출력 488 및 447w/cm의 온도를 선으로 표시하였다. 중심온도 분석 결과를 보면 선출력에 따라 중심온도가 증가하는데 488W/cm(24MW)의 최대선출력의 경우에 HEATING 코드를 사용한 경우 2139℃, FEMAXI-IV는 2021℃, GENGTC는 2040℃를 보여주며 447W/cm(22MW)의 경우에 HEATING은 1939℃, FEMAXI-IV는 1892℃, GENGTC는 1848℃를 나타내었다. HEATING 코드로 계산한 결과는 타 코드에 비해 높은 온도를 나타내는데 이는 HEATING 코드에서 온도상승에 따른 열팽창을 고려하지 않아 틈새가 열팽창에 의해 좁아지는 영향을 고려하지 않았기 때문이다. 그러나 전체적인 온도변화는 HEATING의 결과도 잘 부합되고있다. GENGTC와 FEMAXI-IV는 모두 열팽창을 고려하고 있으며 FEMAXI-IV는 틈새 열전달을 고려하고 있어 제일 정확할것으로 예상되나 모두 어느 정도의 불확실성은 있다.

한편 소결체의 용융점은 2800℃ - 0.0032Bu으로 계산되는데[14] 연소도를 PWR의 연소도와 하나로에서의 연소도 모두를 고려하여 41,000MWD/MTU로 가정할 때 소결체의 용융온도가 2668℃로서 24MW나 22MW 두 경우 모두 최대온도가 용융점 보다는 훨씬 낮아 소결체의 건정성이 확보된다.

4.1.2 성능평가

DUPIC 핵연료 성능해석에 사용된 코드는 전용코드가 없기 때문에 경수로 및 실험로 핵연료봉 성능평가 코드인 FEMAXI-IV[15]를 선정하여 일부 내용을 수정하여 사용하였으며 DUPIC 핵연료에 대한 올바른 평가와 신뢰성을 도출해내기 위해 먼저 피복관과 소결체에 대한 열전도도와 열팽창 등의 물성을 재평가하였고 피복관에서의 표면 열전달 계수를 재정립하였다. 본 보고서에서는 피복관의 조사에 따른 물리적 및 기계적 물성에 대한 자료가 많지 않아 기계적인 해석보다는 온도의 분석과 연소에 따른 핵분열기체의 방출에 대하여 분석하였다.

이 코드의 구성은 열적 거동과 기계적 거동을 예측할 수 있도록 되어 있으며 정상상태와 천이상태에서 이용가능하고 일부에서는 파손 분석 등도 수행할 수 있도록 되어있다. 핵연료로는 UO₂, MOX, poisoned(Gd) 핵연료에 대하여 적용이 가능하며 열적 거동에 대해서는 온도분포, 틈새, FP 가스 생성과 방출 및 피복관과 핵연료 사이 틈새에서의 가스의 이동 등의 포함되어 있으며 기계적 거동은 주로 유한요소법을 이용하여 응력과 변형을 계산하며 소결체의 변형, 열팽창, 고밀화 및 팽윤, 재배치, 균열, 탄소성, 피복관과 소결체 상호작용 및 크립 등을 분석할 수 있다.

계산방법은 먼저 냉각수의 입력과 출력의 온도, 유량, 압력 및 길이로부터 냉각수의 상태를 계산하며 이로부터 피복관의 외부표면의 온도를 구한다. 이때 표면의 heat transfer coefficient를 고려한다. 여기에서 피복관의 내면온도를 계산한 후 피복관과 소결체 사이의 gap conductance를 고려하여 소결체 표면온도를 계산한다. 다음에 소결체 내부의 온도를 계산하는 순서로 수행된다. 계산된 온도를 이용하여 열팽창 등의 기계적 거동을 계산하는데 이에 따라 틈새 간격이 변하며 균열, 크립 및 탄소성 등에 의해서 물리적인 상태의 변화가 생기므로 다시 온도계산을 수행한다. 마찬가지로 온도에 따라서 물리적인 상태가 변하므로 기계적 거동을 재계산된 온도를 이용하여 계산하는 반복적인 계산을 한다. 4.1.2.1 자료 분석

FEMAXI-IV 코드중에서 모의 DUPIC 핵연료 안전성 평가에 고려된 소결체와 Type 316L의 피복관에 대한 입력자료들의 정보는 다음과 같다.

가. 소결체

DUPIC 핵연료 성능 평가에 필요한 소결체 물성 참고 자료의 인용사항을 표 4.1-1 에 나타내었으며 열적 거동 해석을 주로 수행한 안전성평가에서 열전도도는 DUPIC에 맞는 수식을 적용시켰고 열팽창은 MATPRO-09[16] 데이터를 사용하여 계산했다. 소결체 물성치에 대한 정보는 표 4.1-2에 나타내었다.

나. 피복관

피복재의 재료로는 Type 316L로 이와 관련된 물성자료의 인용은 ASME의 자료를 인용하였다. 분석에 사용된 피복관의 물성치를 표 4.1-3에 나타내었다.

다. 피복관 열표면 전달계수[17]

피복관 표면 온도는 핵연료에 대한 열전도 방정식을 이용하여 얻어진다. 이를 구하기 위해서는 냉각수의 압력과 피복관 표면의 열이동을 이용한 Jens-Lottes empirical equation(BWR)과 냉각수의 특성과 Prandtl number를 이용한 Dittus-Boelter equation(PWR)을 이용하는데 하나로의 경우는 냉각수의 비등이 일어나지 않으므로 Dittus-Boelter equation을 사용하였다.

여기서 κ : coolant water thermal conductivity (W/m.K)

D_e : equivalent diameter (m)

- V : coolant water velocity (m/s)
- ρ : coolant water density (kg/m³)
- μ : coolant water viscosity (kg/m.s)

Pr : Prandtl number

하나로에서 조사 예정인 캡슐을 대상으로 압력강하시험 결과를 이용하여 계산된 피복관 열표면 전달계수 값을 다음과 같이 구하였다.

- 20 -

⊿P = 200 KPa의 압력강하시의 register를 통과하는 유량은 8.8 Kg/s로서 이때의 유로면적은 다음과 같다.

$$\frac{(14)^2}{4} \cdot \pi \times 4 + \frac{(5)^2}{4} \cdot \pi \times 4 = 694.3 \ mm^2$$

이를 바탕으로 연료봉 주위를 흐르는 유로 면적이 register 유로면적과 동일하게 조절하여 연료봉 주위의 유로직경을 구하면

$$\frac{\pi}{4}(D^2 - 12.7^2) \times 3 = 694.3$$

 $D^2 = 455.96$

D = 21.35 mm 로 주어진다. equvalent diameter를 이 유로면적과 직경을 이용하여 구하면 다음과 같다.

$$\widetilde{D} = \frac{4 \cdot S}{2\pi r} = \frac{4 \cdot \frac{694.3}{3}}{2\pi (\frac{21.35 + 12.7}{2})} = 8.65 \, mm$$

유량이 8.8 Kg/s인 경우의 유속은 총 유로면적과의 관계에서 다음과 같다.

총유로면적 = 694.3 +
$$\pi(60^2 - 59.3^2)$$
 = 759.9

$$V = \frac{8.8}{992 \times 759.9} = 11.67 \, m/\sec$$

따라서 Reynolds number를 계산하면

4.1.2.2 입력부

가. 기본 입력자료

- 핵연료봉 자료 축방향 구획수 : 1 축방향 구획길이 : 6 (cm) Plant type : PWR
- 2) 피복관 자료 피복관 내부 직경 : 1.022 (cm)

피복관 외부 직경 : 1.270 (cm) 피복관 표면조도 : 0.0001(cm)

3) 소결체 자료

소결체 직경 : 1.0131 (cm) 소결체 길이(1개) : 1.20 (cm) 소결체 총중량 : 50.359 (g) 소결체 표면조도 : 0.0005(cm) UO² 이론적 밀도비 : 0.95 Grain size : 10.000 (µ)

4) Plenum 자료 상단 Plenum 부피 : 4.900 (Cm³) 하단 Plenum 부피 : 0.000 (Cm³) 초기 He 가스 압력 : 0.100 (MPa) 초기 He 가스 구성비 : 100 %

5) 냉각수 온도 및 압력 : 313K, 0.4 MPa

나. History Data(예:24MW의 경우)

ST	AGE TIME	BURNUP	L.H.R.	COOLANT	COOLANT	COOLANT	HISTRY
NC).			TEMP.	PRESS.	VELOSITY	OPTION
(NHIST)	(H: M: S) (I	MWD/TU) (W/CM)	(DEG.K)	(MPA)	(M/S)	(0=0FF)
1	0: 0: 0	0.0	0.0	313.00	0.10	0.0	0
2	896:54:54	1234.0	488.0	313.00	0.40	11.7	-100
3	1256:54:54	2209.0	473.0	313.00	0.40	11.7	-100
4	1976:54:54	4036.3	427.0	313.00	0.40	11.7	-100
5	3056:54:54	6545.2	397.0	313.00	0.40	11.7	-100

4.1.2.3 연료봉 해석

하나로에서 조사될 핵연료의 선출력에 대한 값을 표 2.3-2에 나타내었다. 이중 SEU+F.P에 대하여 하나로가 24MW, 22MW 의 경우 평균 선출력과 최대 선출력을 구한 뒤 각각의 경우에 대하여 조사하고자 하는 핵연료봉의 중심온도와 기체 핵분열 생성물의 방출량을 표 4.1-4에 표시하였다. 중심온도의 변화는 앞 절에서 분석한 결과를 다른 코드와 비교하여 나타내었으며 Xe+Kr의 생성량은 488W/cm 출력시 최대 0.39E-3molol 생성되었다. 이 중 약 10%가 방출되어 연료봉 내압이 1.4 기압으로 증가하는데 핵분열 방출율의 불확실성을 감안하여 모두 방출될 경우를 고려하면 (0.39+0.2)10³mol의 가스가 연료봉내에 채워지게 되며 총 가스의 부피는 약 13.22cc이며 plenum의 부피가 약 4.9cc이므로 연료봉 내압은 약 2.7 기압이다. 연료봉 외부가 약 4기압이므로 연료봉의 내압증가에 따른 기계적인 영향은 없다.

4.1.3 결론

핵연료의 중심 최대온도가 24MW시 2022℃(Heating) 이며 다른 경우는 2000℃ 이하였다. 이 온도는 핵연료의 용융온도 (약 2668℃) 보다 작으므로 핵연료가 용융되지 않은 조건을 만족한다. 또한 기체 핵분열 생성물이 모두 방출한다고 가정하여도 연료봉의 내압은 약 2.7 기압으로서 mini-element의 건전성에 영향을 주지 않는다.

4.2 하나로 사고시 핵연료봉의 건전성 분석

노내 조사시험 중에 하나로 원자로의 사고시의 영향을 평가하기 위하여 반응도 사고, 냉각수의 locked rotor 사고 및 환경 영향 평가를 수행하였다.

4.2.1 반응도 사고

반응도 사고는 하나로의 평형노심 주기초에서 초기출력 100%FP로 TPTH 운전중 제어봉 인출사고 시 출력 변화(반응도 삽입률 : 0.33mk/s)에 대하여 연료봉의 중심온도 변화를 분석하였다.

이 경우의 최대출력은 3.77초에서 128.7%로 증가하다가 그 이후에 급격히 출력이 감소한다.[18] 이 자료를 바탕으로 그림 4.2-1와 같이 예상 출력 변화를 산정하여 HEATING으로 시간에 따른 온도의 변화를 분석하였으며 가장 높은 온도를 보이는 연료봉 출력 488W/cm(하나로 출력이 24MW)의 경우의 결과를 그림 4.2-2에 나타내었다. 그림에서와 같이 중심온도가 초기 2139℃에서부터 증가하여 4초 후에 2227℃에 도달하나 5초 후 부터 급격히 감소한다. 핵연료의 표면온도나 피복관의 온도는 큰 변화를 보이지 않고 5 초후에 감소한다. 이 결과로서 반응도 사고에 의한 온도 증가의 영향은 무시할 수 있다.

피복관의 온도 변화에 따른 열응력의 변화를 그림 4.2-3에 나타내었는데 사고시 약간 증가하다가 계속 감소하며 응력허용치 보다 매우 낮아 열응력의 영향도 무시할 수 있다. 이 결과에 따라서 하나로의 반응도 사고시에 조사 핵연료의 영향은 무시할 수 있다.

4.2.2 Locked rotor 사고

Locked rotor 사고시의 유량의 변화는 핵연료 표면의 열전달 계수에 영향을 미친다. 그림 4.2-4에 사고시의 유량의 변화와 출력의 변화를 나타내었다.[19] 이 냉각수 유량의 변화를 표면 열전달계수의 변화로 환산하여 HEATING으로 시간에 따른 온도 분석을 수행하였으며 온도 변화의 계산 결과를 그림 4.2-5에 피복관의 열응력 변화의 결과를 그림 4.2-6에 나타내었다. 그림에서와 같이 시간이 경과함에 따른 중심온도의 변화는 없었으며 약 2초 후에 급격히 온도가 감소하였다. 이에따라서 열응력의 증가도 나타나지 않았다. 이 원인은 냉각수의 감소에 따른 열전도계수의 변화가 크지 않으며 또한 열전달 계수가 온도에 미치는 영향이 크지 않기 때문이다.[20] 따라서 locked rotor 사고시의 냉각수 유량의 변화에 대한 핵연료봉의 영향은 없다.

4.2.3 환경영향 평가

조사시험 중에 핵연료의 파손시 방사능을 띈 핵분열 가스의 누출 영향을 평가하였다. 고려한 핵종은 하나로의 안전성 분석에 사용된 유동 차단 사고시 방사선원[21]을 고려하였고 조사시의 연소도는 최대 연소도 보다 높은 7000MWD/MTU로 가정하였다. 핵연료의 조성은 MCNP의 계산에 사용된 조성을 인용하였으며 총량은 170g 이다. 연소에 따른 핵종의 생성은 ORIGEN2를 이용하여 계산하였는데 하나로에 맞는 라이브러리가 없기 때문에 CANDU, BWR 및 PWR의 여러 종류의 라이브러리를 고려하여 하나로에서 고려한 핵종의 량과 비교하였다. 계산에 이용된 라이브러리의 종류를 표 4.2-1에 정리하였다.

여러종류의 원자로에 대한 1 tonU 기준으로 계산한 결과를 표 4.2-2에 나타내었다. 하나로에서의 환경평가에서는 중요한 가스인 Kr과 Xe계통은 모두 대기중으로 방출된다고 가정하였으며 Br과 I는 일정량씩 누출된다고 가정하였다. 따라서 mini-element에서도 동일한 가정을 적용시켜 하나로에서 고려한 한 다발의 하나로 핵연료에서 발생하는 핵종의 방사능과 3개의 mini-element에서 발생하는 총 방사능의 비율을 %로 4.2-3에 나타내었다. 표의 결과와 같이 원자로의종류에 무관하게 대부분의 핵종은 1% 미만이었으며 I-136은 7.2% 이하, Xe-135는 2.9% 이하이었다. 따라서 하나로 핵연료의 환경평가에서 고려한 방사능 보다 실험에 사용될 핵연료에서 발생하는 방사능이 매우 작아 환경평가 면에서 하나로의 기준을 만족한다.

4.3 반응도 해석[22]

1 개의 SEU 봉과 2 개의 SEU+F.P. 봉이 장전된 무계장 캡슐을 OR4에서 조사시킬 때 캡슐의 반응도 효과와 캡슐의 인출 또는 파손 등으로 인해 노심에 삽입되는 정반응도량을 몬테칼로 전산 코드인 MCNP[23]를 이용하여 계산하였다.

4.3.1 계산 가정 사항

하나로 노심에 36 봉 핵연료 다발 20 개, 18 봉 핵연료 다발 12 개 등 모두 32 개의 새 핵연료를 장전하였고 CT, IR1, IR2에는 Al 봉으로 구성된 하나로 모의 핵연료 다발을 장전하는 것을 가정하였다. 무계장 캡슐은 OR4에 장전하고 정지봉은 모두 인출 상태로, 제어봉은 모두 350 mm 위치로 가정하였다.

4.3.2 계산 모델

무계장 캡슐이 OR4에 장전되었을 때 MCNP의 모델은 그림 4-1과 같다. 계산은 다음 4 가지 경우의 유효증배계수를 평가하여 노심 변화에 의한 반응도를 구하였다.

- 1) OR4에 하나로 모의 핵연료 다발을 장전한 경우
- 2) OR4에 무계장 캡슐을 장전한 경우
- 3) OR4가 무계장 캡슐 내 물질로 고르게 섞여 있는 경우
- 4) OR4가 경수로 차 있는 경우

경우 1과 2로부터 무계장 캡슐 장전에 의한 정반응도 삽입량을 알 수 있다. 경우 3은 물리적으로는 불가능하다고 판단하지만 만일의 경우 무계장 캡슐이 파손되어 캡슐 구성 성분이 유동관 내에 고르게 섞여 있는 상태를 가정한 것으로서, 경우 2와 3으로부터 무계장 캡슐의 파손에 의한 반응도를 구할 수가 있다. 경우 4는 무계장 캡슐이 이탈된 경우를 가정한 경우로서, 경우 2와 4로부터 무계장 캡슐의 인출에 의한 반응도를 계산할 수 있다.

경우 1과 2에서는 유효증배계수의 f.s.d가 10000 particles와 200 cycles에서 0.06% 미만이나 경우 3과 4에서는 핵연료 선출력의 f.s.d를 0.06% 이하로 낮추기 위해 10000 particles와 200 cycles를 입력하였다. 3의 경우 섞인 범위는 축방향으로는 housing support 길이만큼 반경 방향으로는 유동관 안쪽을 그 경계로 삼았다. 다음은 위의 각 경우에 대한 유효증배계수 계산 결과이다. 1) k_{eff} = 1.16413, f.s.d = 0.00056 2) k_{eff} = 1.17516, f.s.d = 0.00034 3) k_{eff} = 1.17421, f.s.d = 0.00034 4) k_{eff} = 1.17551, f.s.d = 0.00059

위의 결과로부터 다음과 같이 반응도를 구하였다. 가) 무계장 캡슐 장전에 의한 정반응도 삽입량: 8.1 mk 나) 무계장 캡슐의 파손에 의한 반응도: 7.4 mk 다) 무계장 캡슐이 경수로 대체된 경우: 8.3 mk

위의 값들은 실험물의 반응도 제한값인 12.5 mk [24]의 70% 미만임을 알 수 있다. 물론 새 핵연료 장전, 제어봉 위치 등 가정 사항이 실제와 다를 것이나 반응도에는 큰 영향이 없을 것으로 판단된다.

4.4 응력 해석

4.4.1 개 요

DUPIC 캡슐의 내,외부에는 냉각수가 흐르므로 온도 변화가 거의 없어 캡슐 본체의 내부 열응력이 무시될 수 있으나 mini-element를 구성하는 부분은 내부에 핵분열물질이 있어 중성자 조사시 많은 양의 붕괴열이 발생하므로 이에 대한 응력해석을 수행하였다. mini-element의 피복관은 외경이 12.7mm이며 두께가 0.889mm로 내 외압에 의한 기계적 응력(1차 응력), 피복관의 내벽과 외벽의 온도차에 의한 열 응력(2차 응력) 그리고 end cap의 반경 방향 온도 변화에 의한 열 응력을 계산함으로서 구조적 건전성을 평가 하였다.

4.4.2 내압에 의한 응력 계산[22]

피복관 본체 내부와 외부의 압력차이는 약 0.3 MPa이며, 이들 압력의 차이에 의해서 피복관에 작용하는 응력은 ASME Code. III Appendix A의 Article A-2000 "Analysis of cylindrical shell"에서 규정하고 있는 식을 적용하여 계산하였다. 또한 내압에 의한 응력은 1차 응력이며 열응력은 2차 응력이므로 두 응력의 합에 의해서 전체 응력으로 표현될 수 있다. ASME Code에서 규정하는 응력식은 다음과 같다.

$$\sigma_{1} = \sigma_{\theta} = P \frac{1 + Z^{2}}{Y^{2} - 1}$$

$$\sigma_{2} = \sigma_{z} = P \frac{1}{Y^{2} - 1}$$

$$\sigma_{3} = \sigma_{r} = P \frac{1 - Z^{2}}{Y^{2} - 1}$$

여기서 위 식들은 각각 원주 방향, 축방향, 그리고 반경 방향의 주응력을 나타내고, Y, Z는 피복관 내·외경의 관계식으로서 다음과 같다.

$$Y = \frac{D_o}{D_i} = \frac{12.7}{10.922} = 1.163$$
$$Z = \frac{D_o}{(D_i + D_o)/2} = \frac{12.7}{(10.922 + 12.7)/2} = 1.075$$

이들 값을 이용하여 주응력을 구하면,

$$\sigma_{1} = 0.3 \frac{1 + 1.075^{2}}{1.163^{2} - 1} = 1.834$$

$$\sigma_{2} = 0.3 \frac{1}{1.163^{2} - 1} = 0.85$$

$$\sigma_{3} = 0.3 \frac{1 - 1.075^{2}}{1.163^{2} - 1} = -0.132$$

이다. 일반적으로 원자력 관련 구조물의 기계적 안전성은 ASME Code에 규정된 허용 응력 기준치에 따르는데, 구조물에 발생하는 설계 응력 강도(Design Stress Intensity : S_m)가 재료의 허용 응력을 넘지 않을 때 구조물의 안정성은 확보된다. 압력에 의해서 작용하는 피복관의 최대 응력 강도(S)는 주응력의 최대 차로 나타낼 수 있으며, 다음과 같다.

 $S = |\sigma_1 - \sigma_3| = |1.834 + 0.132| = 1.966$ MPa

즉, 피복관 내·외부의 압력에 의해서 작용하는 기계적 응력은 1.966 MPa으로서 매우 낮게 작용한다.

4.4.3 좌굴응력

피복관의 표면에 흐르는 냉각 유체로 인한 수압(P)은 약 0.4 MPa이다. 이 냉각 조사공 내부 수압에 의해 발생하는 mini-element 피복관의 좌굴 응력은 다음 식으로 구할 수 있다. [22]

$$P_{cr} = \frac{Et^3}{4(1-\nu^2)R_o^3}$$

여기서 Par은 임계좌굴응력이며, Ro는 피복판의 외반경이다. 위의 식에 안전

여유도가 충분한 200℃의 피복관의 물성, 두께 그리고 외반경을 대입하면,

 $P_{cr} = \frac{26.5 \times 10^{6} \times 0.889^{3}}{4(1-0.3^{2}) \times 6.35^{-3}} = 0.01998 \times 10^{6} \text{ psi} = 138 \text{ MPa}$

따라서, 임계좌굴응력은 138 MPa 이다. 냉각 수압에 의한 좌굴응력을 3P로 계산할 때 1.2 MPa이고, 이 값은 임계좌굴응력보다 매우 낮은 값으로서 피복관의 좌굴안정성이 확보됨을 보인다.

4.4.4 온도 계산

mini-element의 열응력 해석을 수행하기에 앞서 2차원적인 온도 계산이 이루어졌다. 온도 계산 시 캡슐 내부 시편에 대한 온도 계산을 위해 유한차분법(Finite Differential Method : FDM)을 이용한 열전달 전산 프로그램인 HEATING 7.2f [23]을 사용하였다. 이 프로그램은 1, 2, 3 차원에 대한 정상상태 및 과도상태에 대한 열해석이 가능하고 전도 및 대류, 복사열전달 해석이 가능하다. 그러나 이 코드에서는 온도증가에 의한 열팽창을 고려하지 않아 핵연료봉의 틈새가 실제보다 크게 계산되어 조사시험 분석 때 온도가 높게 계산되는 문제점이 있다. 그러나 피복관의 온도는 표면 열전달계수에 주로 관계하므로 큰 차이는 없다. 본 보고서에서는 오차를 줄이기 위하여 열팽창을 고려한 치수를 사용하여 피복관의 온도를 계산하였다.

(1) 해석 모델

그림 4.4-1과 4.4-2에는 온도 계산을 위한 mini-element의 해석 모델 grid 형상과 번호를 나타내었다. 해석구간은 mini-element가 원통형 축대칭이므로 축에서 반경방향으로 반쪽만 대상으로 하였으며 길이방향으로는 He 가스가 채워진 space block상부 약 30 mm까지를 대상으로 하였다. 캡슐의 grid는 end cap의 형상과 구성재료에 따라 반경방향으로는 0.02-0.83mm로 나누었으며, 길이방향으로는 1-2mm 간격으로 나누었다. 핵연료와 피복관 사이의 He이 채워진 부분은 기체의 열전도도가 고체의 열전도도보다 월등히 낮아 핵연료의 온도상승에 큰 영향을 미치므로 이 부분은 좀더 정확한 온도 분포를 구하기 위하여 다른 부분에 비해 작은 grid인 0.02mm로 나누었다. 또한 He과 접하는 핵연료 부분은 외부로의 열전달에 의해 온도구배가 클 것으로 예상되어 He부분과 같은 크기의 grid 로 나누었다. 표 4.4-1에는 각 영역별 재료 및 사양을 나타내었으며 온도 계산에 사용된 경계조건은 다음과 같은 가정을 근거로 하였다.

- He Gap에서 대류(Convection), 복사(Radiation)는 무시할 정도로 작으므로 전도 (Conduction)만을 고려하였다.

- 핵연료 부분에 비하여 알루미나의 감마 발열량은 매우 작으므로 발열은
 모두 핵연료에서 나오는 것으로 간주하였다.
- 피복관의 감마열은 계산에 고려하였다.
- 길이팽창을 고려하기 위하여 GENTC로 먼저 1 차원에 대한 계산을 하여 이때 계산된 길이를 실 길이로 대치하여 틈새를 보정하였다.
- 출력은 z축 방향으로의 변화가 없다고 가정하고 하나로 24MW출력시 최대출력인 488 W/cm를 전체핵연료의 출력으로 가정하였다.
- 피복관의 외부(일차 냉각수와 접하는 피복관 외부)는 강제 냉각으로
 다음과 같이 고려하였다.
 - ·냉각수 온도 : T = 40℃
 - ·표면에서의 열전달 계수 :h = 42,404 W/cm²℃
- 소결체의 열전도도는 이론밀도 95%와 연소도, 조사, 석출물의 영향을 고려하여 다음 식을 이용하였다.
 - K = 0.04154 3.32×10⁻⁵×T + 2.21×10⁻⁸×T² 8.90×10⁻¹²×T³ + 1.75×10⁻¹⁵×T⁴ 여기서 K : 소결체 열전도도 (W/cm ℃)

T : 온도(℃)

(2) 온도계산 결과

그림 4.4-3에는 주어진 입력자료를 근거로 하여 계산한 mini-element에서의 온도 분포를 나타내었다. 이 결과를 보면 피복관의 응력 계산에 필요한 내면과 외면의 온도를 길이방향으로 다르게 나타내었는데, 내면의 최대온도는 150.36℃와 이 때의 외면온도는 69.85℃를 얻었다. 또한 봉단마개 부분의 내부 최대 온도와 외부 최소 온도가 각각 119.6℃와 48.95℃이었다. 이 온도를 근거로 열응력을 계산하였다.

4.4.5 열응력

mini-element에서 발생하는 열응력은 피복관 내,외면의 온도차이에 의하여 발생하는 열응력과 end cap의 반경방향 온도차에 의한 열응력 등으로 생각할 수 있다. end cap의 경우 중앙에 빈 공간이 있어 이도 역시 두께가 두꺼운 관으로 설명할 수 있다. 피복관의 열응력의 해석에 관한 이론을 부록에 나타내었다.

(1) 피복관의 내,외면의 온도차에 의한 열응력

피복관의 반경 방향 온도차로 인한 열응력은 다음과 같이 구할 수 있다.

$$\sigma_{c_{i,\max}} = \frac{1}{2} \Delta T \alpha \frac{E}{(1-\nu)}$$

여기서, σ_{c, max}는 캡슐 원주 방향의 최대 응력이며, ⊿T는 |T_i - T_o]로 피복관 내벽 온도와 외벽 온도의 차이를 나타내고, 캡슐 길이 방향 각 위치에 따라 온도가 다르게 분포된다. 피복관에 발생하는 최대 응력의 계산은 피복관 내·외벽면에서 온도차가 가장 큰 부분에서의 온도차로 이루어졌다. 피복관의 각 영역의 내·외벽면 온도차는 중간에서 ⊿T = 150.36 - 69.85 = 80.51로 온도차이가 가장 크다. 그러므로 이때의 ⊿T와 각 물성을 위식에 대입하여 열응력을 계산하였다. 각 물성은 피복관의 온도가 200℃를 넘지 않으므로 200℃를 기준으로 하였다.

 $\sigma_{c, max} = \frac{1}{2} \times 80.51 \times 16.48 \times 10^{-6} \times 26.5 \times 10^{6} \times 6.895 \times 10^{3} / (1-0.3) Pa$ = 173.2 MPa

(2) End cap 반경 방향 온도차에 의한 열응력

피복관과 같이 두께가 두꺼운 관의 형태로 가정하면 응력-변형율-온도의 관 계식은

 $\sigma_{\max} = \frac{E \alpha \Delta T}{(1-\nu)} (\frac{r_o + 2r_i}{3(r_o + r_i)}) 로 주어진다.$

여기서 end cap에서의 최대온도차이를 나타내는 119.6의 내부온도와 48.95℃의 외 부온도를 적용하고 r_o = 3.0 (내경), r_i = 6.35 (외경)를 대입하여 응력을 구하면 (200℃ 기준)

 $\sigma_{\text{max}} = \frac{70.65 \times 16.48 \times 10^{-6} \times 26.5 \times 10^{6} \times 6.895 \times 10^{3}}{1 - 0.3} \frac{6.35 + 2 \times 3}{3(3 + 6.35)}$ = 134 MPa

4.4.6 강도 평가

설계 기본방침 및 기준에 따라서 설계 응력 강도와 평가 기준치를 정하였다. 스테인레스강에 대한 물성치들은 사용온도에 따라서 그 값들이 달라지는데, 본 mini-element의 경우 피복관에서의 최대 온도가 150°C이므로 열응력 계산 시 200°C를 기준치로 하여 계산하였다. mini-element에 발생하는 응력의 종류는 압력에 의해 발생하는 일차 막응력(P_m)과 이차 응력으로 분류되는 열응력(P_e)이 있다. ASME Code의 Sec. III 응력의 평가 기준치는 다음과 같다.

 $P_m < S_m$

$P_m + P_e < 3S_m$

여기서 Sm은 재료의 설계 응력강도이며, 200℃에서의 316L의 Sm은 108.9MPa 이다.[24]

4.4.7 응력 해석 결과

mini-element에서의 응력 계산은 압력 차이에 의한 막응력, 냉각수압에 의한 좌굴응력, 피복관 내·외벽 온도차에 의한 열응력과 end cap에서의 반경 방향 온도차에 의한 열응력 등이 계산되었다. 표 4.4-2에는 이들 계산된 응력 결과와 코드 요구조건을 나타내었다.

피복관의 막응력과 좌굴응력은 매우 작아 설계치를 만족하며 열응력과 막응력 합의 최대값은 175.2 MPa로 설계치인 326.8 MPa 보다는 낮아 허용 응력치를 만족하였다. End cap의 경우도 열응력이 134MPa로서 설계치보다 낮아 허용응력치를 만족하였다. 5. 결 론

모의 DUPIC 핵연료의 조사시험을 위한 조사 element assembly와 DUPIC capsule에 대하여 안전성분석을 수행하여 다음과 같은 결론을 얻었다.

- 조사 해연료의 설계 및 실험을 통하여 압력강하 200KPa에서 8.8kg/m의 유속을 얻어 하나로의 열수력 특성을 만족하였다.
- 하나로의 24MW 까지의 출력에서 소결체 중심온도와 연료봉 내압을 분석하여 건전성을 입증하였다.
- 피복관 및 end cap의 열응력을 분석하여 ASME code에 부합됨을 확인하였다.
- 반응도 해석 등의 하나로 사고시의 해석을 통하여 하나로 및 환경에
 영향을 미치지 않음을 확인하였다.

- Yang M.S., B.G.Kim, K.W.Song, K.K.Bae, S.S.Kim, W.K.Kim, I.H.Jung and H.S.Park, "Characteristics of DUPIC Fuel Fabrication Technology, International symposium on nuclear fuel cycle and reactor strategies: Adjusting to new realities, June 2 - 6, 1997, Vienna, Austria
- 2. Park H.S., "The DUPIC Fuel Cycle Alternative: Status & Perspective" Proceedings of the 10th PBNC, 1996, Kobe, Japan.
- 3. Lee J.S., H.S.Park, R.D.Gadsby, J.Sulliban, "Burn spent PWR fuel again in CANDU reactors by DUPIC", Global '95 Conference, Sept 11-14, 1995, Versailles.
- 4. Lee J.S, M.S.Yang, H.S.Park, P.Boczar, J.Sullivan, R.D.Gadsby, "The DUPIC alternative for backend fuel cycle", International symposium on nuclear fuel cycle and reactor strategies: Adjusting to new realities, June 2 6, 1997, Vienna, Austria
- 5. 양명승 외, DUPIC 핵연료 조사시험 계획 기술 분석, KAERI/TR-919/97, 1997
- 6. 이기홍, 선출력 계산 결과, HAN-RO-CR-98-025, 1998
- 7. 이종탁 외, 하나로 조사시험연료제조, KAERI/CM-044/95, 1996
- 8. Fuel Design Manual for HANARO, KAERI/TR-583/95
- 9. 박광헌 외, DUPIC 핵연료 노내 성능 분석 연구, KAERI/CM-201/97, 1998
- 10. A.L.Loeb, J. Amer. Ceram. Soc. vol.37, 96 (1954)
- 11. B.Shulz, Report kfk, 1988(1974)
- 12. P.G.Lucuta, Hj.Matzke, R.A.Verrall, J. Nucl. Mater. vol.217, 279, (1994)
- 13. P.G.Lucuta, Hj.Matzke and I.J.Hasting, J. Nucl. Mater., vol.232, 166 (1996)
- 14. MATPRO-Version 11, NUREG/CR-5273, 1990
- Motoe Suzuki., Hiroaki Saitou., FEMAXI-IV(Ver 2) : Light Water Reactor Fuel Analysis Code, JAERI-Data/Code 97-043
- MATPRO-09, A Handbook of Materials Properties for use in the Analysis of Light Water Reactor Fuel Rod Behavior, USNRC TREE NUREG-1005(1976)
- 17. Nakajima T., Ichikawa M., et al., FEMAXI-III : A Computer Code for the Analysis of Thermal and Mechanical Behavior of Fuel Rods, JAERI 1298 (1985)
- 18. 하나로 안전성 분석 보고서 제 5장
- 19. 김헌일, locked rotor 사고시의 시간, 유량, 출력의 변화, 내부 문서
- 20. 배기광 외, 조사시험용 DUPIC 핵연료 온도분석, KAERI/TR-1035/98, 1998
- 21. 하나로 안전성 분석 보고서, 표 16.4-7
- 22. 이기홍, "DUPIC 모의 핵연료 조사 시험을 위한 반응도 계산 결과," 내부 통신문, 한국원자력연구소, 1998. 10
- 23. J. Briesmeister, "MCNP-A General Monte Carlo Code N-Particle Transport Code

Version 4A," LA-12625-M, 1993

- 24. 하나로 안전성 분석 보고서, KAERI/TR-710/96, 1996
- 25. 강영환 외, 재료 조사시험용 캡슐 및 관련 설비의 안전성 분석보고서, KAERI/TR-985/98, 1998
- 26. HEATING 7.2 User's Manual, ORNL/TM-12262, 1993
- 27. ASME section II, Part D, 1992. Edition

Table 2.1-	1 DUPIC	Pellet	Irradiation	Plan

Objective	Data	Remarks
 Proof of Concept of Design capsule design verification establishment of irradiation conditions at HANARO 	1998. 12 ~1999. 3	-
 2. DUPIC Lead-Pellet Irradiation irradiation behavior of DUPIC pellet development of remote assembling and handling technology 	1999. 9 ~2000. 9	- average burnup (15,000 MWD/MTU) - 평균출력 : 420 W/cm - non-instrumented
 3. Thermal Behavior of DUPIC Pellet analyzing irradiation behavior produce thermal behavior information 	2000. 9 ~2001. 9	 temperature, flux monitoring instrumented average burnup
 4. Fission Gas Release of DUPIC Pellet analyzing irradiation behavior produce F.G.R information 	2001. 9 ~2002. 9	 temperature, pressure, flux monitoring instrumented average burnup

Isotope	DUPIC	SIMFUEL	Isotope	DUPIC	SIMFUEL
O16	133900.00	133900.00			
KR84	109.80		RB96		148
KR86	178.20		RB98		1060
RB85	130.50	300	RB99		342
RB87	285.50	166	RU100	156.50	340
SR84		4.87	RU101	939.90	462
SR86		85.7	RU102	969.60	857
SR87		61	RU104	700.50	512
SR88	409.30	718	RH103	505.30	505
Y89	532.80	533	PD102	1	18.4
SR90	459.40		PD104	362.70	211
ZR90	189.00	2240	PD105.	498.00	426
ZR91	692.80	488	PD106	486.40	524
ZR92	756.40	744	PD108	206.90	513
ZR93	852.70		PD110		227
ZR94	891.40	756	AG109	97.55	
ZR96	964.30	122	TE120		0.482
MO92		641	TE122		13.3
MO94	Į	368	TE123	l	4.71
MO95	892.40	634	TE124		25
MO96		667	TE125	1	37.9
MO97	959.20	382	TE126		101
MO98	990.20	960	TE128	123.60	172
MO100	1138.00	389	TE130	395.60	187
TC99	691.10	ļ			ļ

Table 2.3-1 조사 핵연료 성분표(g/TU)

Isotope	DUPIC	SIMFUEL	Isotope	DUPIC	SIMFUEL
			ND142		1330
			ND143	858.60	597
			ND144	1679.00	1170
			ND145	786.50	406
I129	175.70		ND146	860.70	841
XE131	403.30		ND148	450.30	280
XE131 XE134	1525.00		ND150	220.40	274
CS133			PM147	5.42	
CS133 CS134	1172.00 2.62		SM144		32.7
CS134 CS135	401.90		SM147	211.10	156
CS135 CS137	970.10		SM148	240.90	117
BA130	970.10	2.27	SM149	3.28	143
BA130 BA132		2.27 2.18	SM150	367.40	77.3
BA132 BA134	245.30	2.18 54.4	SM151	14.03	
BA134 BA135	245.50	54.4 148	SM152	150.30	276
BA135 BA136		148	SM154		233
BA130 BA137	420.70	254	EU153	157.10	
BA137 BA138	1550.00	1610	EU154	18.85	
LA138	1550.00	1.31	EU155	3.37	
LA138	1474.00	1.31	GD156	103.70	
CE136	1474.00	5.53	U234	17.33	
CE138		7.16	U235	7614.00	22569.3893
CE138 CE140	1502.00	2530	U236	4059.00	
CE140 CE142	1363.00	317	U238	939300.00	938034.541
PR141	1303.00	1350	NP237	492.10]
1 1/141	1340.00	1350	PU238	184.50	1
			PU239	5656.00	
			PU240	2429.00	
			PU241	816.90	
			PU242	533.20	

Table 2.3-1 조사 핵연료 성분표(g/TU)(계속)

	12 227		-1			
Height(cm)	SEU+F.P	f.s.d	SEU	f.s.d	SEU+F.P	f.s.d
-2.4	60.033	0.052	44.959	0.0551	61.004	0.0538
-1.2	45.041	0.0615	42.784	0.0568	55.403	0.0584
0	50.803	0.0587	40.863	0.0563	52.991	0.0624
1.2	45.755	0.0577	40.229	0.0553	49.199	0.0576
2.4	48.477	0.0592	46.25	0.0573	58.772	0.0541
30MW(평균)	50.0218		43.017		55.4738	
24MW(평균)	40.01744		34.4136		44.37904	
22MW(평균)	36.68265		31.5458		40.68079	
20MW(평균)	33.34794		28.6782		36.98253	

Table 2.3-2 30MW 출력에서의 SEU와 2개의 SIMFUEL(2.35w/o) Z방향의 위치별 선출력(KW/m)[6]

Table 3.4-1 Calibration Equation of Each Instrument

Instrument	Calibration Range	Calibration Equation					
Turbine Meter	40 - 650 GPM 0 - 510 Hz	Y(GPM) = -0.15428 + 1.2541*Hertz Y(Hertz) = 0.008899 + 101.29*volt					
Р/Т	0 - 100 psi	Y(psi) = -24.865 + 24.892*volt					
D/P-8	0 - 70 psi	Y(psi) = -17.627 + 17.457*volt					

		측정방향 1		측정방향 2			
유량(kg/s)	진동수 [Hz]	진폭 (rms) [μm]	진폭 (최대) [µm]	진동수 [Hz]	진폭 (rms) [μm]	진폭 (최대) [μm]	
5.0	14.0	7.77	18.74	14.0	3.59	10.27	
5.5	13.5	7.73	14.30	14.0	4.26	11.00	
6.0	14.0	7.34	14.89	14.0	3.23	9.55	
6.5	14.0	7.94	17.07	14.0	4.89	12.47	
7.0	14.0	8.79	19.14	16.5	5.82	16.30	
7.5	14.0	8.81	20.69	18.5	6.22	20.92	
8.0	14.0	8.51	18.50	14.0	6.53	20.24	
8.5	14.0	7.77	12.87	14.0	6.78	25.57	
8.8	14.0	7.45	19.14	17.5	8.33	30.81	
9.0	14.0	9.84	23.87	16.5	10.35	28.94	
9.5	13.4	10.00	20.47	18.0	7.78	23.44	
10.0	14.0	9.91	25.77	13.5	8.48	21.02	

Table 3.4-2 DUPIC Capsule Vibration Test Results (Single Tube)

		측정방향 1	측정방향 2			
유량(kg/s)	진동수 [Hz]	진폭 (rms) [μm]	진폭 (최대) [μm]	진동수 [Hz]	진폭 (rms) [μm]	진폭 (최대) [μm]
5.0	18.0	12.12	30.31	18.0	10.69	39.79
5.5	19.5	13.45	35.34	17.5	10.00	25.23
6.0	19.0	12.82	39.25	19.0	8.29	24.26
6.5	17.5	12.96	40.75	18.0	13.31	32.58
7.0	18.5	19.16	53.86	17.5	13.52	33.47
7.5	19.0	14.14	48.01	17.5	17.47	64.37
8.0	18.5	21.26	57.42	18.5	19.13	77.59
8.5	19.0	20.67	66.73	18.0	17.26	57.75
8.8	17.0	20.46	65.30	18.0	24.65	85.85
9.0	16.5	20.33	52.27	18.5	24.26	83.65
9.5	19.0	31.49	76.01	18.5	21.02	68.18
10.0	19.0	39.49	89.49	19.5	32.76	104.81

Table 3.4-3 DUPIC Capsule Vibration Test Results(Double Tube)

Table 4.1-1 핵연료의 참고자료

항 목	참 고 자 료
1. 열전도도	MATPRO, Washington, Hirai, Lucuta 등
2. 열팽창	MATPRO, Burdick, Halden, Conway 등
3. 탄성계수	MATPRO
4. poisson ratio	MATPRO
5. creep	MATPRO
6. 소성	Tachibana, Rodford
7. 입자성장	Itoh, Ainscough, MacEwan, Lyons, MATPRO
8. specific heat	MATPRO
9. 밀도	MATPRO
10. 융점	MATPRO

Table 4.1-2 핵연료 물성 자료

항 목	Material Properties				
열전도도 (W/cm℃)	$ \begin{array}{l} \kappa = \left\{ \frac{1 - \beta(1 - D)}{1 - 0.05\beta} \right\} \left\{ 0.04154 - 3.32e^{-5}T + 2.21e^{-8}T^2 - 8.90e^{-12}T^3 + 1.75e^{-15}T^4 \right\} \\ \beta : 7] 공 계수 : \beta = 2.58 - 0.58 \times 10^{-3}T \end{array} $				
열팽창 $\frac{\Delta L}{L} = -4.972 \times 10^{-4} + 7.107 \times 10^{-6} T + 2.581 \times 10^{-9} T^{2} + 1.140 \times 10$ T : 온도(℃)					
밀도	$\rho = 10.79$				
탄성계수 (Pa)	$E = 2.26 \times 10^{11} (1 - 1.131 \times 10^{-4} T) [1 - 2.62(1 - D)]$				
포아송비	$\nu = 0.316$				
밀도	이론 밀도의 95%				
AL ₂ O ₃ 열전도도	$0.4097 - 0.0012T + 1.785E^{-6}T^2 - 1.15E^{-9}T^3 + 2.738E^{-13}T^4 $ (W/cm [°] C)				
He 열전도도	$0.00143 + 0.00000325T - 0.000000000768T^2 (W/cm^{\circ}C)$				

Table 4.1-3 피복관 특성 (Type316L)[9]

0 열전도도 : (0.13 + 0.000164T) (W/cm℃)
0 열팽창계수 : (15.2 + 0.0064*T)*10E ⁻⁶ (/℃)
0 탄성계수 : (28.5 - 0.01*T)*10E ⁶ (psi)	
0 밀도 : 8.0 (g/cm ³)	
0 포아송비 : 0.3	

Table 4.1-4 선출력별 온도 및 핵분열성 기체 방출 분포

• **

	선출력 (W/cm)	연소도	Fuel C.(°C)	Fuel S.(°C)	Clad I.(°C)	Clad O.(°C)	Produce	mount of Release (Xe+Kr)			Fission Gas Release (%)	Inner Gas Pressure (MPA)
	0.0	0.0	40.8	40.8	40.8	40.8	0.00	0.00	0.20	0.21	0.50	0.11
	610.0	1087.7	2542.4	464.6	213.1	76.7	0.07	0.02	0.23	0.23	29.65	0.13
(10)	591.0	2162.1	2527.9	475.6	208.2	75.5	0.15	0.03	0.24	0.24	22.81	0.14
610	534.0	4175.1	2431.9	573.5	193.2	72.1	0.28	0.05	0.25	0.26	16.99	0.15
	496.0	6939.4	2330.4	589.2	183.0	69.8	0.47	0.08	0.29	0.29	17.16	0.17
	0.0	0.0	40.8	40.8	40.8	40.8	0.00	0.00	0.20	0.21	0.50	0.11
	600.0	1087.7	2503.4	456.5	210.5	76.1	0.07	0.02	0.23	0.23	28.00	0.13
600	581.0	2144.3	2545.3	548.1	205.6	74.9	0.14	0.03	0.24	0.24	22.44	0.14
	525.0	4123.2	2386.6	559.5	190.8	71.6	0.28	0.05	0.25	0.25	16.57	0.15
	488.0	6841.9	2200.5	482.2	180.9	69.4	0.46	0.08	0.28	0.28	16.67	0.17
	0.0	0.0	40.8	40.8	40.8	40.8	0.00	0.00	0.20	0.21	0.50	0.11
	550.0	1087.7	2275.4	376.4	197.4	73.1	0.07	0.02	0.22	0.22	20,56	0.13
550	533.0	2056.6	2282.6	429.2	192.9	72.1	0.14	0.03	0.23	0.23	19.39	0.14
	481.0	3870.9	2092.3	428.7	179.0	68.9	0.26	0.04	0.24	0.24	14.15	0.14
	447.0	6361.5	2067.6	522.2	169.8	66.9	0.43	0.06	0.27	0.27	14.16	0.16
	0.0	0.0	40.8	40.8	40.8		0.00	0.00	0.20	0.21	0.50	0.11
	500.0	1087.7	2073.4	364.1	184.1	70.1	0.07	0.01	0.22	0.22	14.10	0.13
500	484.0	1968.6	2030.7	380.1	179.8		0.13	0.02	0.22	0.22	12.28	0.13
	438.0	3617.7	1927.2	453.9	167.4		0.24	0.03	0.23	0.23		0.13
	406.0	5882.9	·	380.7	158.6		0.40	0.04	0.25	0.25		0.15
	0.0	0.0		40.8	40.8		0.00	0.00	0.20	0.21		0.11
	488.0	1087.7	2021.8	360.5	180.9	69.4	0.07	0.01	0.22	0.22		0.13
488	473.0	1947.4	2027.8	431.5	176.8		0.13	0.01	0.22	0.22		0.13
	427.0	3557.8		365.1	164.4		0.24	0.02	0.23	0.23		0.13
	397.0	5769.3		366.8		63.9	0.39	0.04	0.25	0.25		0.14
	0.0			40.8			0.00	0.00	0.20	0.21		0.11
	450.0	1087.7	1898.1	376.3	170.6	67.1	0.07	0.01	0.21	0.22	11.50	0.12
450	436.0	1880.3	1884.6	430.6	166.8	66.2	0.13	0.01	0.22	0.22	8.79	0.13
	394.0	3365.4	1646.3	361.8	155.3	63.7	0.23	0.02	0.23	0.23	8.19	0.13
	366.0	5405.2	1620.8	434.7	147.6	62.0	0.37	0.03	0.24	0.24	8.67	0.14
	0.0	0.0	40.8	40.8	40.8	40.8	0.00	0.00	0.20	0.21	0.50	0.11
	447.0	1087.7	1892.7	380.4	169.8	66.9	0.07	0.01	0.21	0.22	11.16	0.12
447	433.0	1875.0		364.4	166.0	66.1	0.13	0.01	0.22	0.22	8.67	0.13
	391.0	3349.3	1640.2	365.3	154.5	63.5	0.23	0.02	0.22	0.23	8.14	0.13
	363.0	5373.0	1613.7	437.7	146.7	61.8	0.36	0.03	0.24	0.24	8.61	0.14
	0.0	0.0	40.8	40.8	40.8	40.8	0.00	0.00	0.20	0.21	0.50	0.11
	407.0	1087.7	1774.7	406.3	158.9	64.5	0.07	0.00	0.21	0.21	6.75	0.12
407	394.0	1804.3	1773.1	464.1	155.3	63.7	0.12	0.01	0.21	0.22	6.73	0.12
	356.0	3146.2	1621.4	462.5	144.8	61.4	0.21	0.01	0.22	0.22	2 6.65	0.13
	331.0	4990.1	1464.2	401.2	137.8	59.9	0.34	0.02	0.23	0.23	7.32	0.13
	0.0	0.0	40.8	40.8	40.8	40.8	0.00	0.00	0.20	0.21	0.50	0.11
	400.0	1807.7	1752.6	410.0	157.0	64.1	0.07	0.00	0.21	0.21	5.94	0.12
400	388.0	1792.7	1693.5	405.6	153.1	63.4	0.12	0.01	0.21	0.21	6.26	0.12
	350.0	3113.1	1538.1	402.8	143.1	61.1	0.21	0.01	0.22	0.22		0.13
{	325.0	+		·				0.02				0.13

,

Photon		Decay	Xsec. and Var. xsection pair	No.
PWR	101 102 103	123	204 205 206 1 219 220 221 9 601 602 603 38 604 605 606 39	1 2 3 4
CANDU	101 102 103	123	401 402 403 21 404 405 406 22	5 6
BWR	101 102 103	123	251 252 253 4 651 652 653 40 654 655 656 41 657 658 659 42	7 8 9 10

Table 4.2-1 Libraries for Calculating Radioactivity

	HANARO	No.1	No.2	No.3	No.4	No.5
Br 83	4.591 E3	1.798E5	1.794E5	1.793E5	1.790E5	1.795E5
Br 84	8.486 E3	3.208E5	3.183E5	3.205E5	3.178E5	3.309E5
Br 85	1.049 E4	3.902E5	3.864E5	3.905E5	3.855E5	4.110E5
I 131	2.732 E4	1.245E6	1.270E6	1.239E6	1.270E6	1.081E6
I 132	4.131 E4	1.810E6	1.840E6	1.802E6	1.841E6	1.604E6
I 133	6.142 E4	2.622E6	2.647E6	2.616E6	2.652E6	2.438E6
I 133m	1.351 E3	7.129E4	7.406E4	7.103E4	7.371E4	5.726E4
I 134	6.891 E4	2.888E6	2.912E6	2.884E6	2.917E6	2.716E6
I 134m	4.747 E3	2.460E5	2.543E5	2.452E5	2.546E5	1.929E5
I 135	5.734 E4	2.435E6	2.459E6	2.431E6	2.464E6	2.272E6
I 136	2.774 E3	1.160E6	1.169E6	1.155E6	1.173E6	1.066E6
Kr 83m	4.595 E3	1.797E5	1.794E5	1.793E5	1.790E5	1.794E5
Kr 85	8.873 E1	2.426E3	2.393E3	2.434E3	2.388E3	2.639E3
Kr 85m	1.062 E4	3.947E5	3.909E5	3.951E5	3.900E5	4.160E5
Kr 87	2.124 E4	7.724E5	7.614E5	7.738E5	7.605E5	8.319E5
Kr 88	3.000 E4	1.091E6	1.077E6	1.093E6	1.074E6	1.172E6
Kr 89	3.778 E4	1.353E6	1.331E6	1.355E6	1.328E6	1.482E6
Kr 90	3.756 E4	1.339E6	1.317E6	1.342E6	1.315E6	1.465E6
Kr 91	2.775 E4	9.964E5	9.764E5	9.961E5	9.792E5	1.094E6
Xe 131m Xe 133 Xe 133m Xe 135m Xe 135m Xe 137 Xe 138 Xe 139 Xe 140	2.809 E2 5.927 E4 1.832 E3 3.336 E3 1.081 E4 5.437 E4 5.526 E4 4.452 E4 3.064 E4	1.222E4 2.609E6 8.047E4 4.068E5 4.932E5 2.285E6 2.231E6 1.766E6 1.189E6	1.241E4 2.635E6 8.160E4 4.461E5 5.025E5 2.305E6 2.238E6 1.768E6 1.182E6	1.218E4 2.605E6 8.023E4 4.518E5 2.282E6 2.230E6 1.765E6 1.187E6	1.241E4 2.641E6 8.169E4 5.172E5 5.029E5 2.309E6 2.241E6 1.770E6 1.187E6	1.091E4 2.412E6 7.287E4 1.636E5 4.359E5 2.147E6 2.171E6 1.745E6 1.203E6

Table 4.2-2 Activity Stored in 3 Mini-elements(Ci, 1tonU base)

	HANARO	No.6	No.7	No.8	No.9	No.10
Br 83	4.591 E3	1.794E5	1.791E5	1.786E5	1.788E5	1.780E5
Br 84	8.486 E3	3.299E5	3.204E5	3.185E5	3.197E5	3.153E5
Br 85	1.049 E4	4.096E5	3.914E5	3.878E5	3.896E5	3.822E5
I 131	2.732 E4	1.093E6	1.235E6	1.246E6	1.237E6	1.279E6
I 132	4.131 E4	1.619E6	1.798E6	1.813E6	1.801E6	1.854E6
I 133	6.142 E4	2.452E6	2.615E6	2.626E6	2.614E6	2.663E6
I 133m	1.351 E3	5.845E4	7.134E4	7.197E4	7.102E4	7.486E4
I 134	6.891 E4	2.731E6	2.885E6	2.895E6	2.885E6	2.929E6
I 134m	4.747 E3	1.973E5	2.456E5	2.483E5	2.450E5	2.585E5
I 135	5.734 E4	2.282E6	2.432E6	2.443E6	2.433E6	2.478E6
I 136	2.774 E3	1.074E6	1.149E6	1.158E6	1.154E6	1.176E6
Kr 83m	4.595 E3	1.794E5	1.791E5	1.785E5	1.788E5	1.780E5
Kr 85	8.873 E1	2.624E3	2.444E3	2.418E3	2.432E3	2.368E3
Kr 85m	1.062 E4	4.146E5	3.960E5	3.924E5	3.942E5	3.867E5
Kr 87	2.124 E4	8.273E5	7.755E5	7.672E5	7.717E5	7.525E5
Kr 88	3.000 E4	1.166E6	1.096E6	1.084E6	1.090E6	1.063E6
Kr 89	3.778 E4	1.472E6	1.361E6	1.345E6	1.354E6	1.314E6
Kr 90	3.756 E4	1.452E6	1.345E6	1.329E6	1.339E6	1.299E6
Kr 91	2.775 E4	1.084E6	9.955E5	9.868E5	9.935E5	9.675E5
Xe 131m Xe 133 Xe 133m Xe 135m Xe 135m Xe 137 Xe 138 Xe 139 Xe 140	2.809 E2 5.927 E4 1.832 E3 3.336 E3 1.081 E4 5.437 E4 5.526 E4 4.452 E4 3.064 E4	1.102E4 2.423E6 7.347E4 1.523E5 4.399E5 2.157E6 2.176E6 1.744E6 1.198E6	1.214E4 2.603E6 8.018E4 4.209E5 2.283E6 2.231E6 1.764E6 1.187E6	1.225E4 2.614E6 8.062E4 4.893E5 4.955E5 2.291E6 2.233E6 1.765E6 1.188E6	1.218E4 2.603E6 8.016E4 4.649E5 2.282E6 2.229E6 1.765E6 1.189E6	1.250E4 2.652E6 8.215E4 5.669E5 5.073E5 2.318E6 2.243E6 1.770E6 1.187E6

Table 4.2-2 Activity Stored in 3 Mini-elements(Ci, 1tonU base)(continued)

	HANARO	1	2	3	4	5	6	7	8	9	10
Br 83 Br 84 Br 85	4.591 E3 8.486 E3 1.049 E4	0.7 0.6 0.6	0.7 0.6 0.6	0.7 0.6 0.6	0.7 0.6 0.6	0.7 0.7 0.7	0.7 0.7 0.7	0.7 0.6 0.6	0.7 0.6 0.6	0.7 0.6 0.6	0.7 0.6 0.6
I 131 I 132 I 133 I 133m I 134 I 134m I 135	2.732 E4 4.131 E4 6.142 E4 1.351 E3 6.891 E4 4.747 E3 5.734 E4	0.8 0.7 0.7 0.9 0.7 0.9 0.7	0.8 0.8 0.7 0.9 0.7 0.9 0.7	0.8 0.7 0.7 0.9 0.7 0.9 0.7	0.8 0.8 0.7 0.9 0.7 0.9 0.7	0.7 0.7 0.7 0.7 0.7 0.7 0.7	0.7 0.7 0.7 0.7 0.7 0.7 0.7	0.8 0.7 0.7 0.9 0.7 0.9 0.7	0.8 0.7 0.7 0.9 0.7 0.9 0.7	0.8 0.7 0.7 0.9 0.7 0.9 0.7	0.8 0.8 0.7 0.9 0.7 0.9 0.7
I 136 Kr 83m Kr 85 Kr 85m Kr 87 Kr 88 Kr 89 Kr 90	2.774 E3 4.595 E3 8.873 E1 1.062 E4 2.124 E4 3.000 E4 3.778 E4 3.756 E4 2.775 E4	7.1 0.7 0.5 0.6 0.6 0.6 0.6 0.6	7.2 0.7 0.5 0.6 0.6 0.6 0.6 0.6	7.1 0.7 0.5 0.6 0.6 0.6 0.6 0.6	7.2 0.7 0.5 0.6 0.6 0.6 0.6 0.6	6.5 0.7 0.5 0.7 0.7 0.7 0.7 0.7	6.6 0.7 0.5 0.7 0.7 0.7 0.7 0.7	7.0 0.7 0.5 0.6 0.6 0.6 0.6 0.6	7.1 0.7 0.5 0.6 0.6 0.6 0.6 0.6	7.1 0.7 0.5 0.6 0.6 0.6 0.6 0.6	7.2 0.7 0.5 0.6 0.6 0.6 0.6 0.6
Kr 91 Xe 131m Xe 133 Xe 133m Xe 135 Xe 135 Xe 135 Xe 137 Xe 138 Xe 139 Xe 140	2.809 E2 5.927 E4 1.832 E3 3.336 E3	0.6 0.7 0.7 2.1 0.8 0.7 0.7 0.7 0.7	0.6 0.8 0.8 2.3 0.8 0.7 0.7 0.7 0.7	0.6 0.7 0.7 2.3 0.8 0.7 0.7 0.7 0.7	0.6 0.8 0.8 2.6 0.8 0.7 0.7 0.7 0.7	0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	0.6 0.7 0.7 2.1 0.8 0.7 0.7 0.7 0.7	0.6 0.7 0.7 2.5 0.8 0.7 0.7 0.7 0.7	0.6 0.7 0.7 2.4 0.8 0.7 0.7 0.7 0.7	0.6 0.8 0.8 2.9 0.8 0.7 0.7 0.7 0.7

Table 4.2-3 Activity % Stored in 3 Mini-elements Compared to HANARO Fuel

Zone Number	Description	Material
(1)	End Cap	STS 316L
(2), (11)	Gap	He
(3), (5), (7), (9)	Interface	Interface
(6)	Fuel	UO2
(4), (8)	Space Block	Al2O3
(10)	Space	Не
(12)	Clad	STS 316L

Table 4.4-1 Material of the capsule

Table 4.4-2 Stresses of the capsule under the thermal load condition

Position	Stress Item	Calculated Stress	Design Stress Intensity	Allowable Stress Intensity	Safety Factor	Code Requirement
External Tube	Pm	1.966	108.9	108.9	31.47	$P_m < S_m$
	P _{cr}	138.0	-	1.2	12.93	$P_{cr} > 3P$
	$P_m + P_e$	175.2	108.9	326.7	3.49	$P_m+P_e<3S_m$
End Plug	$P_m + P_e$	136.0	108.9	326.7	2.48	$P_m+P_e<3S_m$

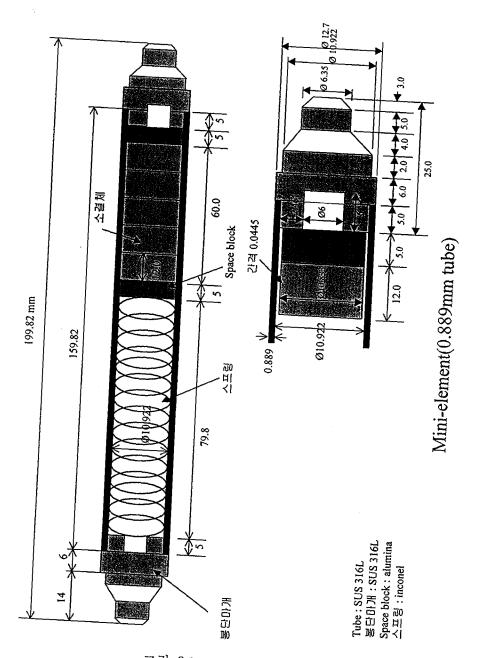


그림 3.1-1 Mini-element

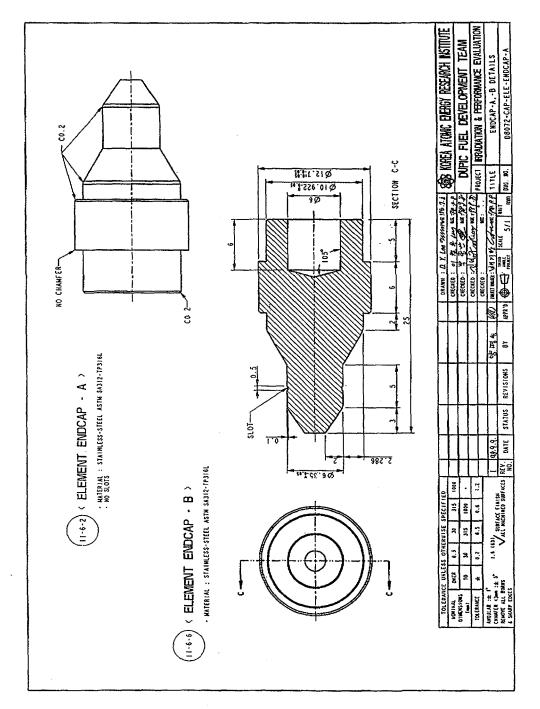


그림 3.1-2 봉단마개

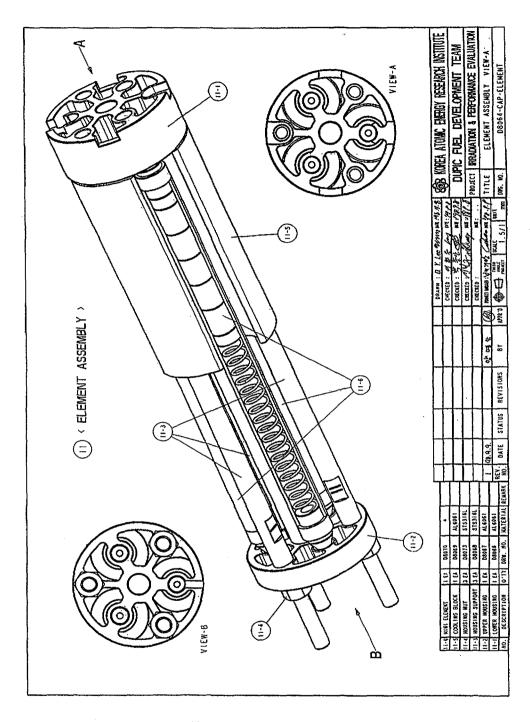


그림 3.1-3 Element assembly

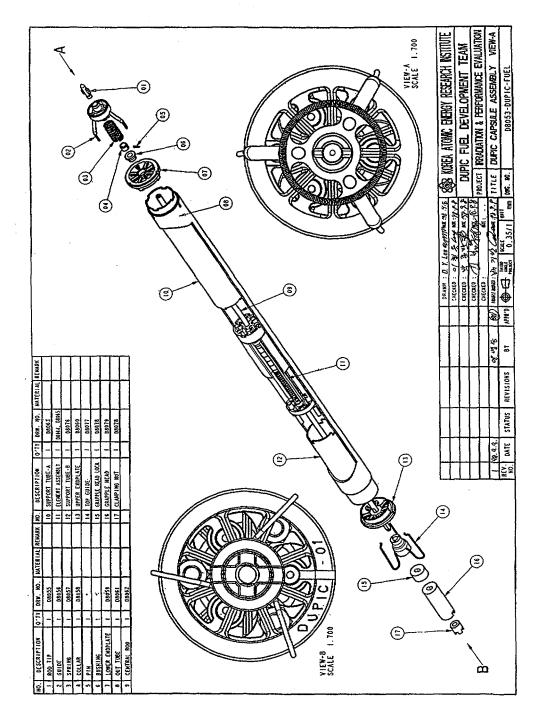


그림 3.2-1 무계장캡슐

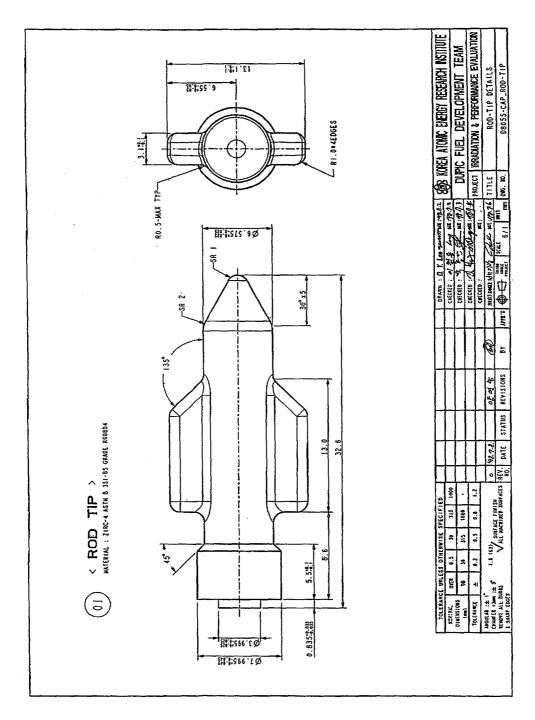


그림 3.2-2 Rid tip

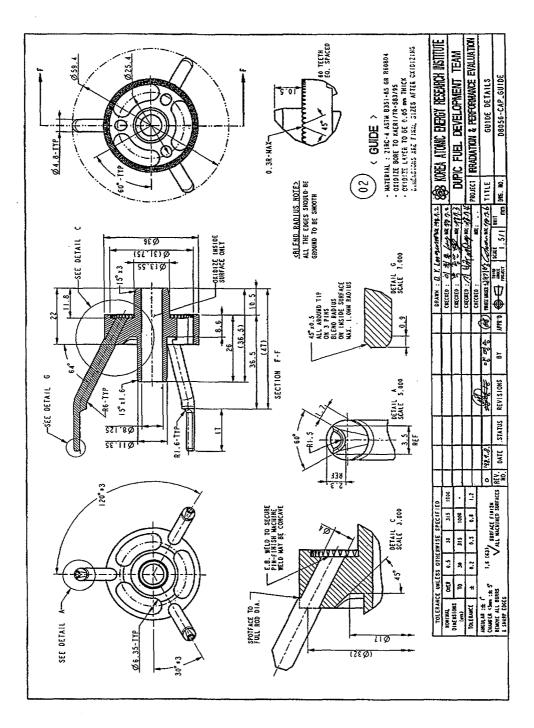


그림 3.2-3 Guide

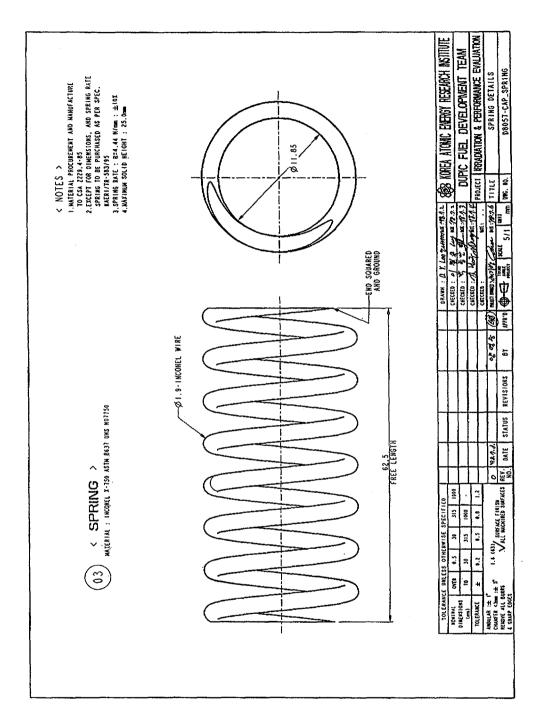


그림 3.2-4 Spring

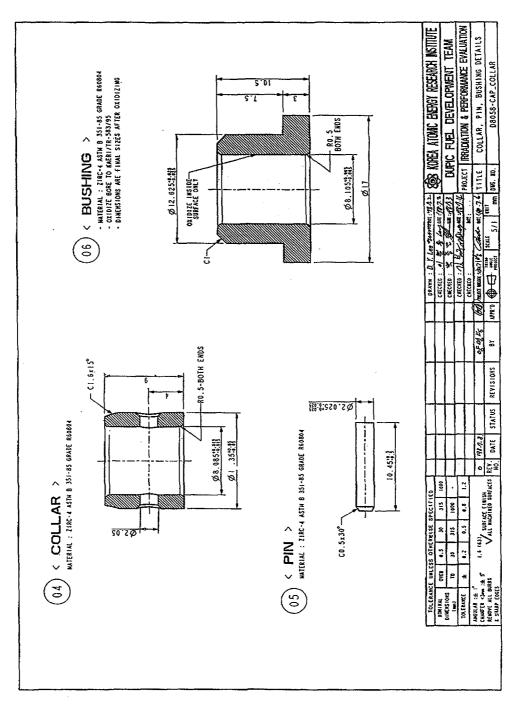


그림 3.2-5 Collar, Pin, Bushing

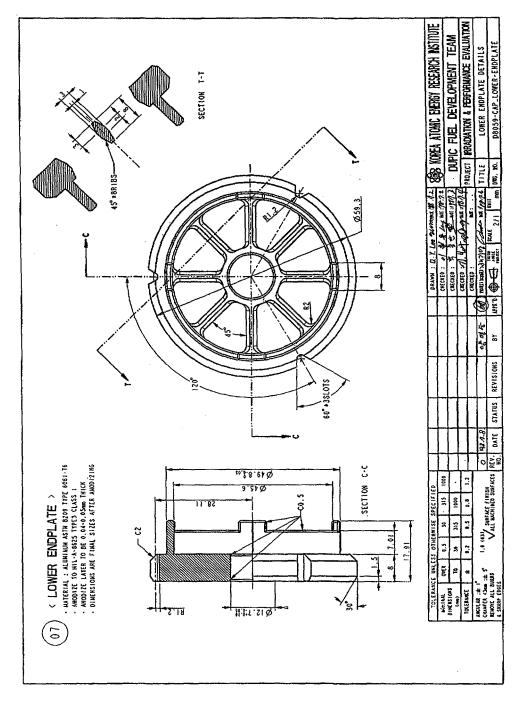


그림 3.2-6 Lower endplate

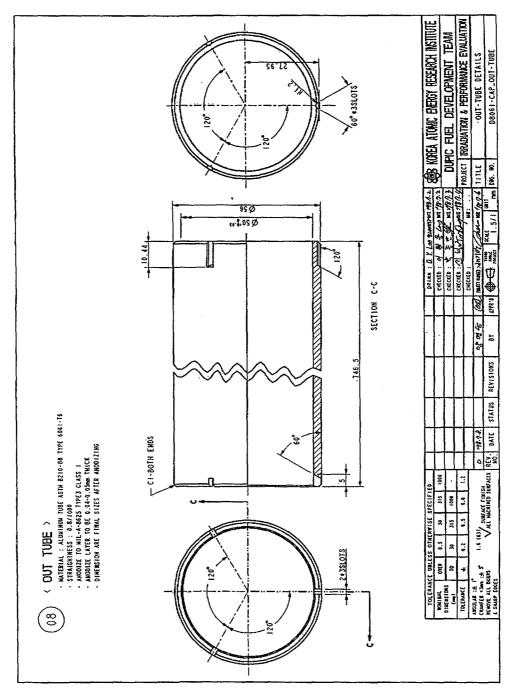


그림 3.2-7 캡슐외통

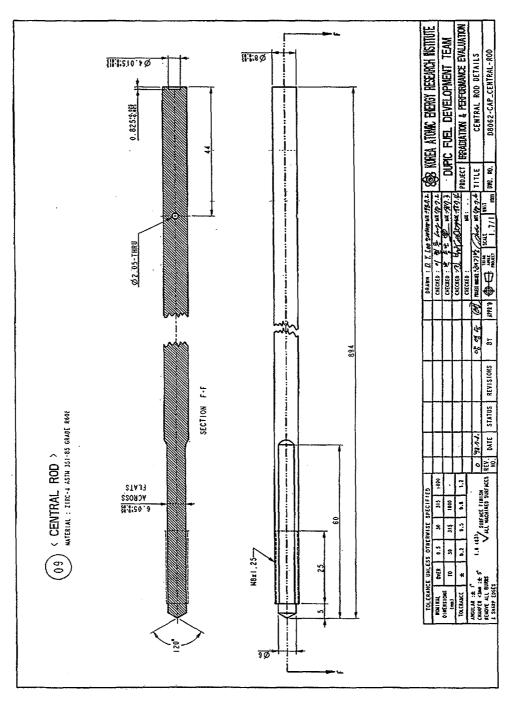


그림 3.2-8 중심축

- 58 -

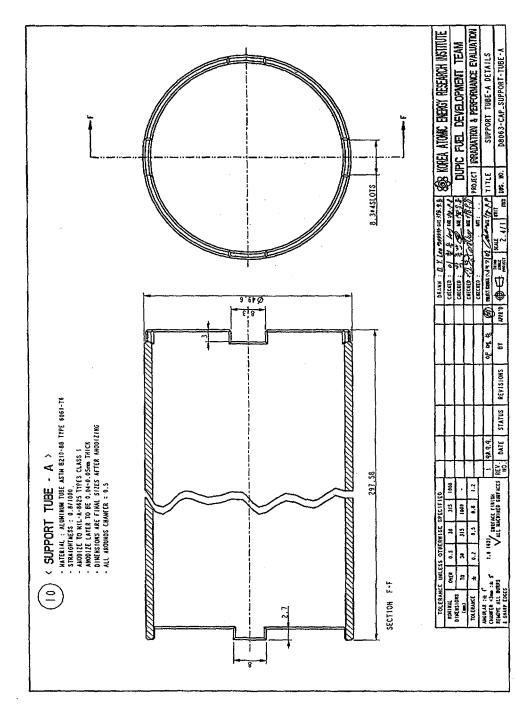


그림 3.2-9 Support tube

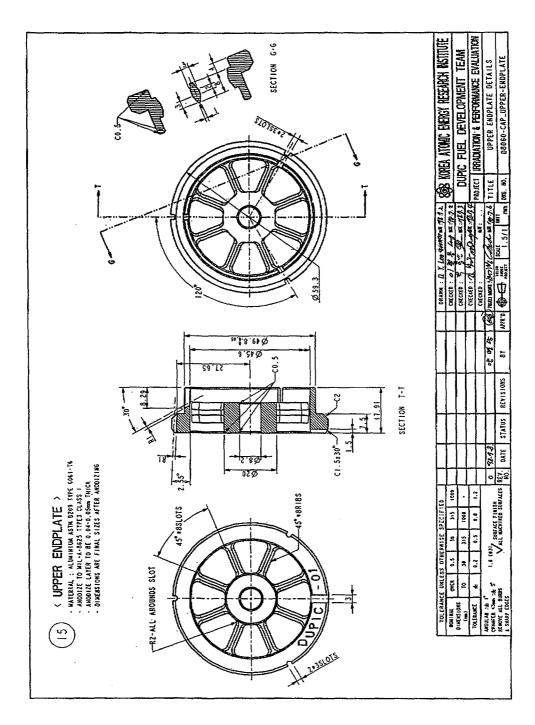


그림 3.2-10 Upper endplate

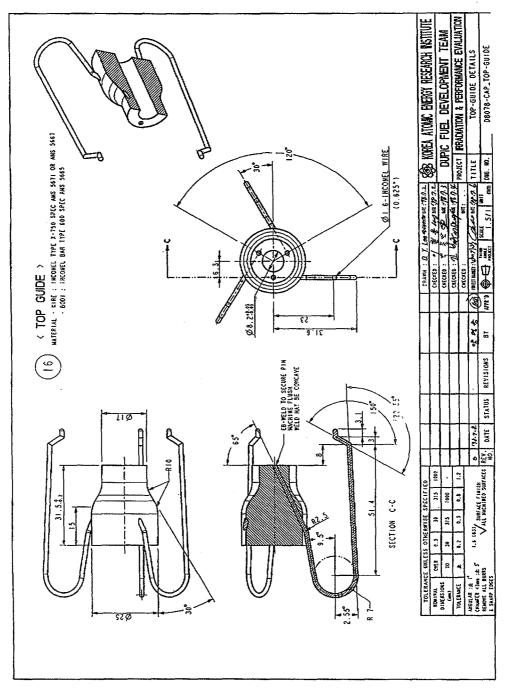


그림 3.2-11 Top guide

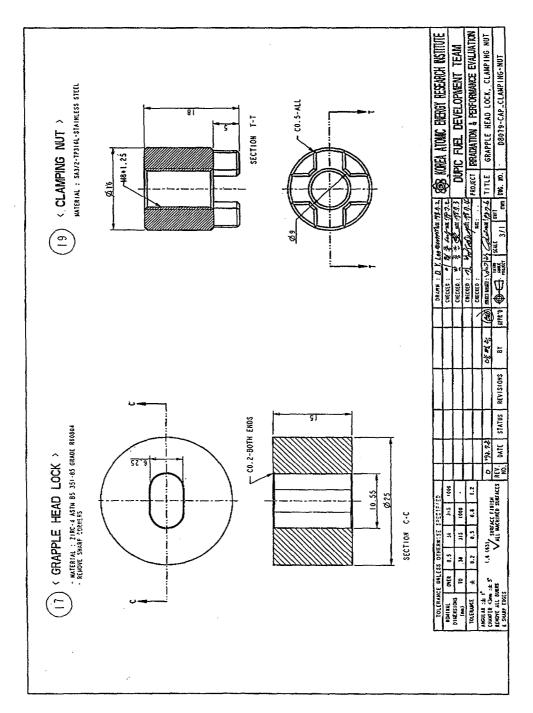


그림 3.2-12 Grapple head lock, clamping nut

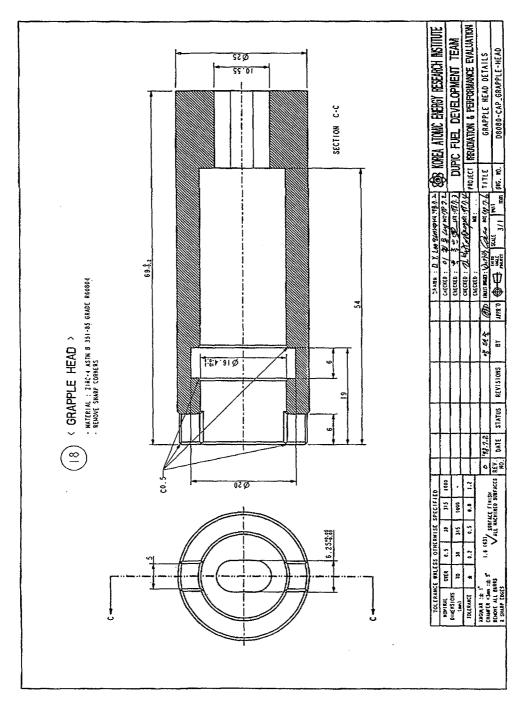


그림 3.2-13 Grapple head

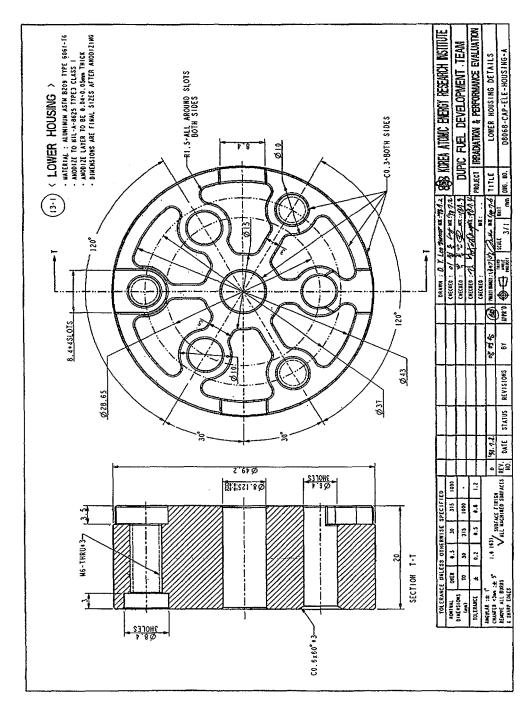


그림 3.2-14 Lower housing

•

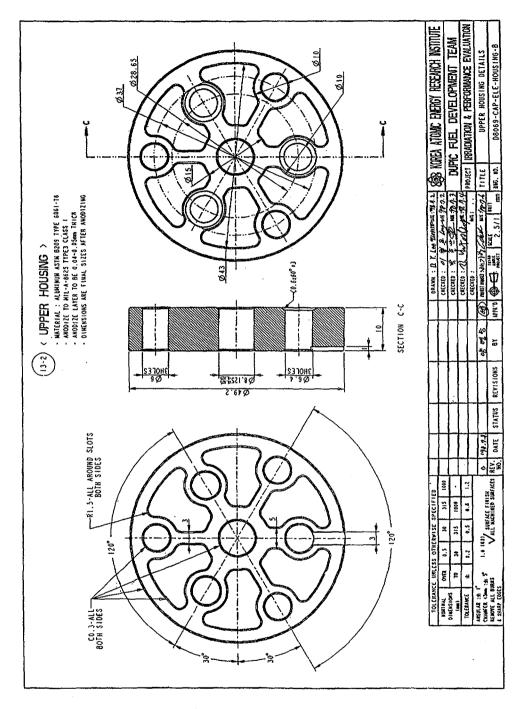


그림 3.2-15 Upper housing

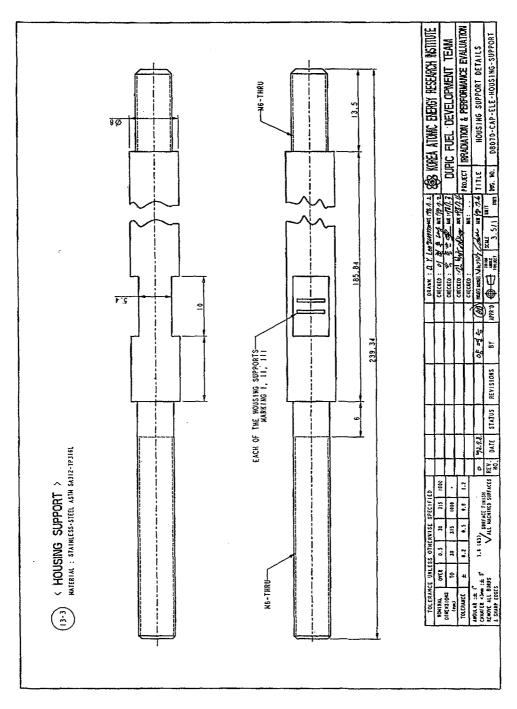


그림 3.2-16 Housing support

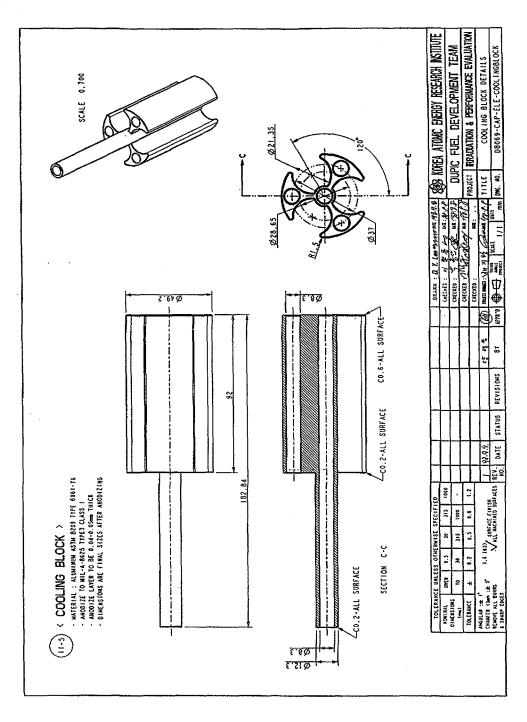


그림 3.2-17 Cooling block

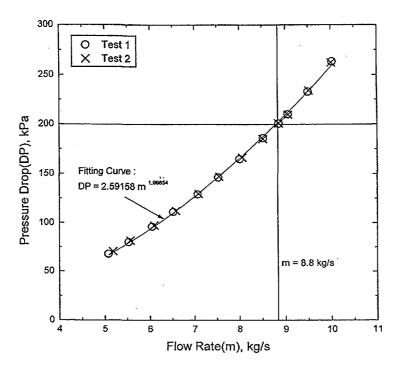


그림 3.4-1 Pressure Drop vs. Flow Rate(single)

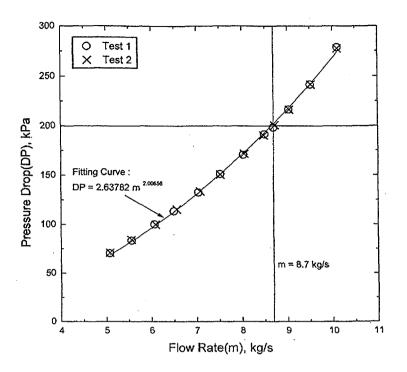


그림 3.4-2 Pressure Drop vs. Flow Rate(double)

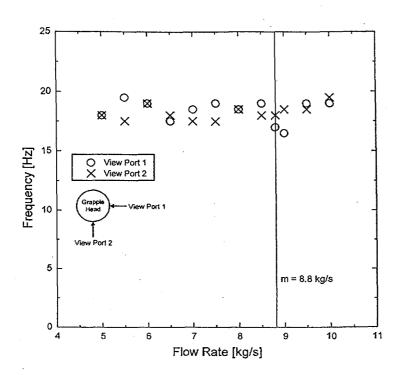
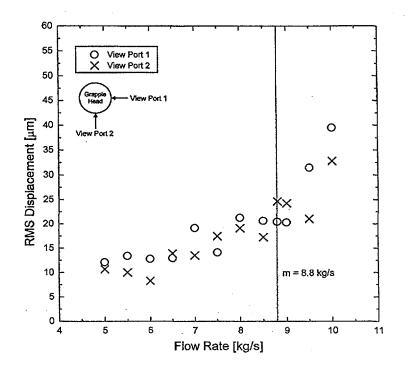
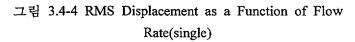




그림 3.4-3 Frequency as a Function of Flow Rate(single)

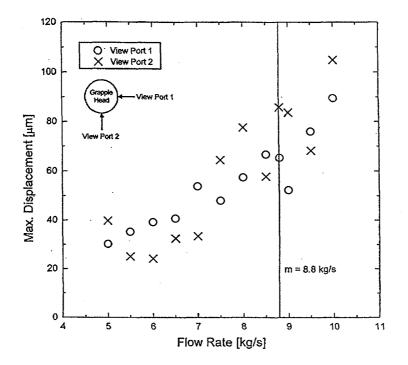


그림 3.4-5 Maximum Displacement as a Function of Flow Rate(single)

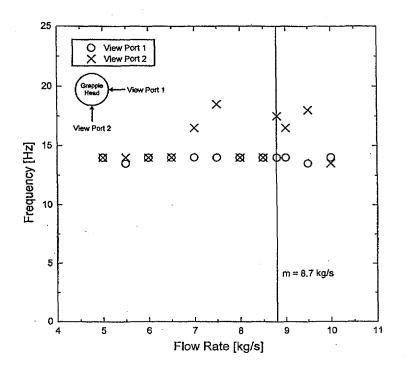
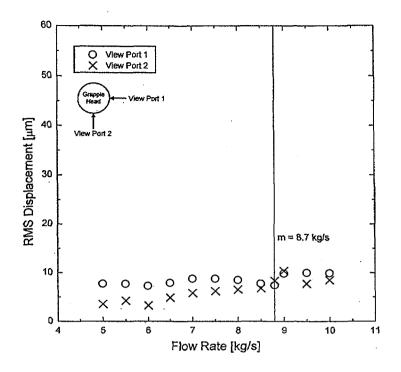
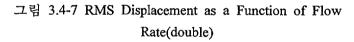




그림 3.4-6 Frequency as a Function of Flow Rate(double)

- 74 -

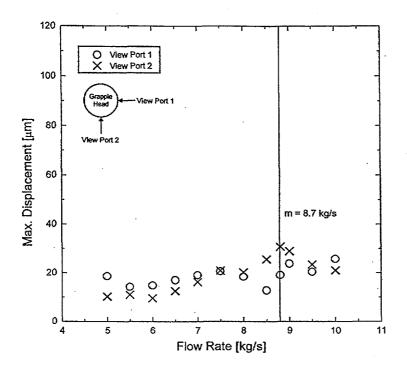


그림 3.4-8 Maximum Displacement as a Function of Flow Rate(double)

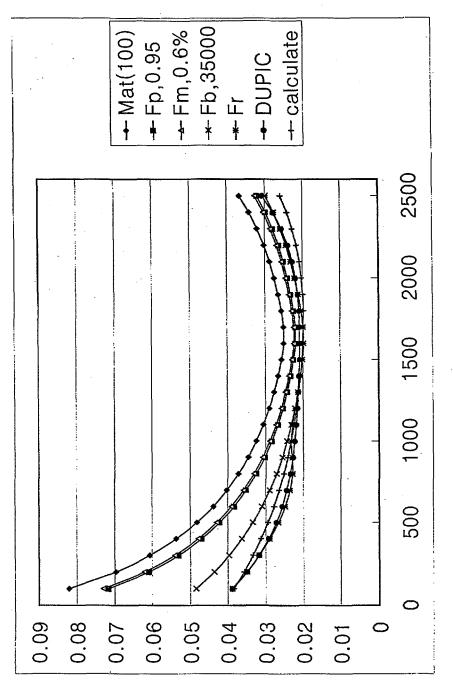


그림 4.1-1 DUPIC핵연료 인자별 열전도도



그림 4.1-2 코드별 핵연료 중심온도 비교

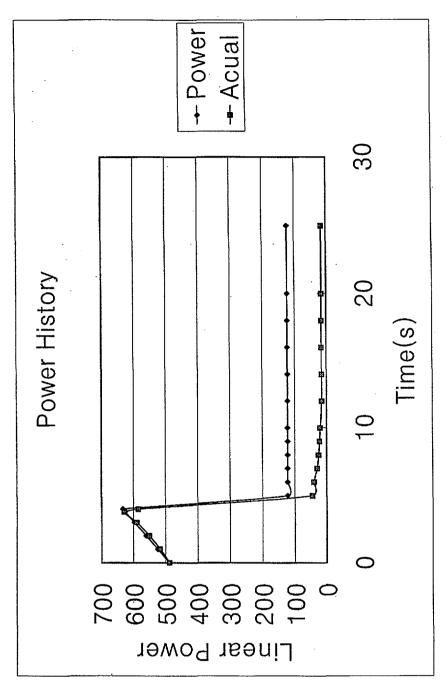


그림 4.2-1 Actual and Design Power History of Accident

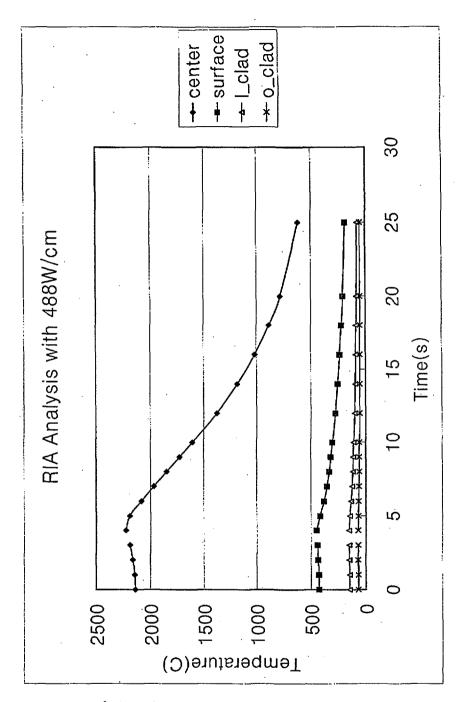


그림 4.2-2 Temperature Change Due to Accident

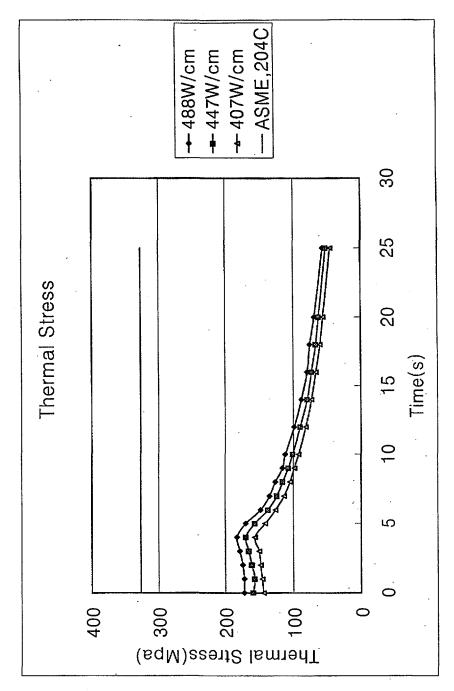


그림 4.2-3 Stress of Cladding

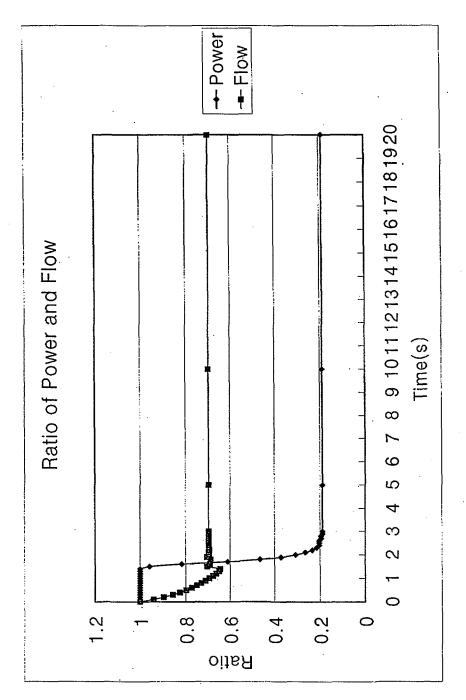


그림 4.2-4 Locked Rotor History

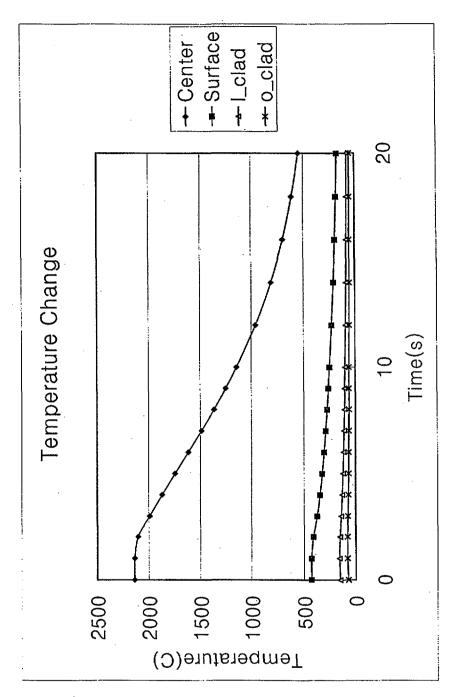


그림 4.2-5 Temperature Change of Locked Rotor Accident

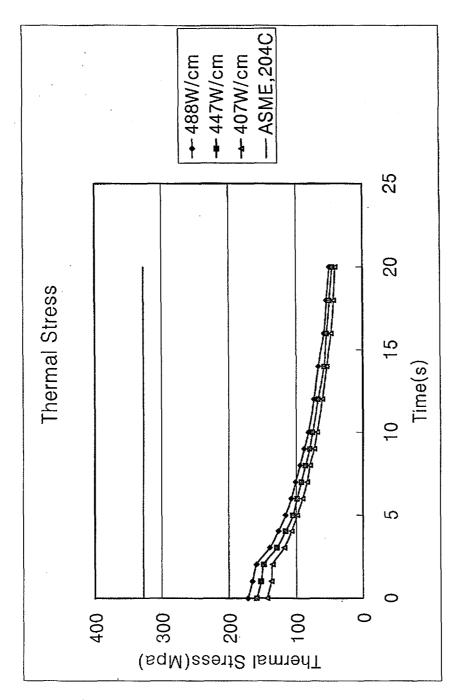


그림 4.2-6 Stress of Cladding of Locked Rotor Accident

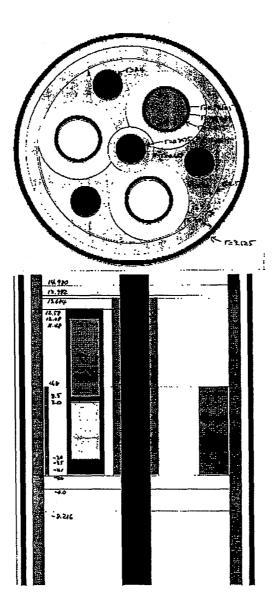
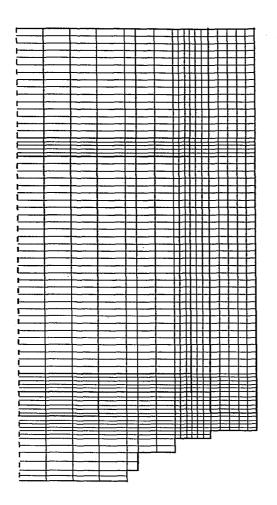
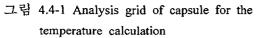




그림 4.3-1. 무계장 Capsule을 OR4에 장전하였을 경우의 MCNP 모델 (위: 평면도, 아래: 입면도)

1 12.00 12.81 12.84 12.85 12.90 12.94 12.95 <th12.95< th=""> 12.95 12.9</th12.95<>			ı	2	3	4	5	6	7	8	9	10	n	12	13	14	15	16	17	18	19	
12 12 <th< td=""><td>74</td><td>125.00</td><td>1302</td><td>1303</td><td>1304</td><td>1305</td><td>1306</td><td>1307</td><td>1308</td><td>1309</td><td>1310</td><td>1311</td><td>1312</td><td>1313</td><td>1314</td><td>1315</td><td>1316</td><td>1317</td><td>1318</td><td>1319</td><td>1320</td><td></td></th<>	74	125.00	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1312	1313	1314	1315	1316	1317	1318	1319	1320	
12 11.04 12.04 12.04 12.04 12.01 12.07 12	73																					
D 11.50 11.5	72	121.00	1264			1267		1269				1273	1274	1275				1279	1280	1281	1282	
9 115.00 118 1109 1201 1211 1212 1212 1223 1224 1	71	119.00	ે1245	1246	1247	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257			1260	1261	1262	1263	
8 1 12.00 1.00 1.00 1.00 1.00 1.00 1.00 1	70															1000						
21 11.66 1170 1171 1171 1175 <td< td=""><td>69</td><td></td><td>in in the</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>- 2659</td><td></td><td></td><td></td><td></td><td></td><td>í</td></td<>	69		in in the													- 2659						í
5 10000 1130 1131 (113 113 113 113 113 113 113 113 1	68 67																					
5 107.00 [107] 1112 [113] 114 [115 [117] 115 [117] 115 [117] 115 [117] 115 [117] 116	66	3.5			11/1			11/4														L
	65				1133			1136														Ł
22 01.007 1077 1078 1077 1078 1081 1082 1081 1084 1087 1081 1087 1081 1087 1081 1087 1081 1087 1081 <td< td=""><td>64</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1118</td><td>1119</td><td>1120</td><td>1121</td><td>1122</td><td>1123</td><td>1124</td><td>1125</td><td>1126</td><td>1127</td><td>1128</td><td>1129</td><td>1130</td><td>1</td></td<>	64								1118	1119	1120	1121	1122	1123	1124	1125	1126	1127	1128	1129	1130	1
a) 90.00 107 107 107 107 107 107 107 107 107 1	63															N236434						
50 9 7.00 105, 107, 107, 107, 107, 107, 107, 107, 107	62																					
99 95	61																					
88 94.00 1001 1002 1004 1005 1006 1007 1002 1004 1015 1016 1015 1016 1015 1016 1015 1016 1015 1016 1015 1016 1015 1016 1015 1016 1015 1016 1015 1016 1015 1016 1015	59		VC+815*	A 44 4 4 3 1	20 C		1. Sec. 1.	24125516														L
	58								Au		~ * ** *******************************	Service 6	43.55			226.221					1016	L
$ \begin{array}{c} 5 & 91.0 \\ 90.0$	57	93.00	🖗 97)	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	56	1	6.81																			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	55	12	1. No. 8 19	15.2 3.4.4.	1963 B.		11-54.	1.5.00. 2.9		3.50												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	53 52																					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	51												1.533			1.506.21						
	50	82.00	84	5 847									3.41			859						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	49												11244			No. St. Carl						I
	48 47																					
	46															12000						1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	45												14,8256			618.64						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44				734	735	736	737	738	739	740	741	1.1.1.1	743	744	1.60 8	746	747	748	749	750	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	43											-	1 a a 1 a 1									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		\$5.	8 8 X										1. 10 1. 10			- Friday 12						1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			2.28										1.319.0			- 66528						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39																					E
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	38																					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	37	\$c.	1.00										Sec. 2.									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																						ł
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34															1.14						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33				525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32																					1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31												1. A.									1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																-16.862						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28												1.00.61			- 609504						1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27															- C16234						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26												1.1.055			1.121						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									Sec. 1. 1.			- S.				1.111.11						I.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																- 19. W.S.						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22		7.12										1. 11.91			- だんがい						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21															A 460					313	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20					1. S. S. S. S.	1. 19 1 1 1 1	1. 63.0			- 1 V N	250 Q	199		10000000	24 C. 20 &						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19							the second														I
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			51													1.1.1.1.1						1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							- C. (2123									- 19 M						Í
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																						1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																						
9 14.00 67 68 69 70 (1) STS 316L 75 76 77 78 79 80 81 82 83 84 85 8 13.00 53 54 55 56 57 58 59 60 61 62 63 64 65 66 7 12.00 39 40 41 42 43 44 45 46 47 48 49 50 51 52 6 10.00 31 32 33 34 35 36 37 38 5 8.00 23 24 25 26 27 28 29 30 4 5.50 17 18 19 20 21 22 1.50 6 7 8 9 10 1 .00 75 1.50 2.25 3.00 3.17 3.66 4.14 4.57 5.00 5.43 5.45 5.46 5.47 5.65 5.82 6.00 6.18 6.36																						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																						1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	_					-
5 8.00 23 24 25 26 27 28 29 30 4 5.50 17 18 19 20 21 22 3 3.00 111 12 13 14 15 16 1 .00 6 7 8 9 10 1 2 3 4 5 .00 .75 1.50 2.25 3.00 3.17 3.66 4.14 4.57 5.00 5.43 5.45 5.46 5.47 5.65 5.82 6.00 6.18 6.36			•									48	49	50	51	52						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			•													_						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-							50	<u> </u>											
2 1.50 6 7 8 9 10 1 .00 <u>1 2 3 4 5</u> .00 .75 1.50 2.25 3.00 3.17 3.66 4.14 4.57 5.00 5.43 5.45 5.46 5.47 5.65 5.82 6.00 6.18 6.36	3																					
.00 .75 1.50 2.25 3.00 3.17 3.66 4.14 4.57 5.00 5.43 5.45 5.46 5.47 5.65 5.82 6.00 6.18 6.36		1.50	i			89	10															
	,	.00	/ 	·	• <u> </u>	2. 4																
				<u>-</u>			····-															
i 2 3 4 3 0 7 8 9 10 11 12 13 14 13 16 17 18 19			.0																			
					· ·	5 4	5	. 0	'	8	, 9	· 10	11	12	13	14	15	16	17	18	19	

그림 4.4-2 Grid number of analysis model.

$ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
$ \begin{array}{ c c c c c c c c c c c c c $
$ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
$ \begin{bmatrix} 0 \\ 1, 13 \\ 1, 14$
$ \begin{bmatrix} 1 \\ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, $
$ \begin{array}{ c c c c c c c c c c$
$ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
$ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
$ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =
$ \begin{array}{ $
0[1] (12) (12) (12) (12) (12) (12) (12) (12)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
0) 352(1) 1532(1) 1532(1) 1534(1) 1334(1)
$0_{1} [134,25 [136,2] [136,3$
$0 = [n c_2 c$
$ \begin{aligned} 9_1 \ 152.1 \ 159.0 \ 179.8 \ 154.1 \ 152.4 \ 152.5 \ 11.7 \ 12.8 \ 12.6 \ 147.9 $
$ 0_1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $
0 1 2056,0 207,1 2007, 2 1097, 2 1097, 2 1097, 2 1097, 2 10, 2 1
0 = 2 + 662 + 201.4 + 1003.10 + 17(-74 + 147.38 + 138.64 + 1184.08 + 962.4 + 763.4 + 561.5 + 264.1 + 298.8 + 228.14 + 1562.113.38 + 17.5 + 101.4 + 85.5 + 678.1 + 96.1 + 205.5 + 202.0 + 64 + 100.1 + 101.0 + 101.1 + 101.0 + 101.6 + 85.5 + 678.1 + 101.2 + 101.0 +
$01 \ 2054; 2016, 01 \ 2016, 01 $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c} 0_{1} \ 2058.72 \ 2022.45 \ 9191.87 \ 1724.41 \ 1464.02 \ 1954.40 \ 1188.67 \ 968.66 \ 755.96 \ 561.1 \ 561.2 \ 561.9 \ 929.48 \ 228.64 \ 150.6133.36 \ 117.71 \ 101.65 \ 85.70 \ 698.5 \ 90.1 \ 2058.86 \ 2022.55 \ 9191.20 \ 1724.51 \ 1464.13 \ 1954.70 \ 1188.77 \ 968.72 \ 766.00 \ 561.13 \ 564.91 \ 299.49 \ 228.64 \ 150.6133.36 \ 117.71 \ 101.65 \ 85.70 \ 698.5 \ 90.1 \ 2058.86 \ 2022.55 \ 9191.20 \ 1724.51 \ 1464.13 \ 1954.90 \ 1188.77 \ 968.72 \ 766.00 \ 561.13 \ 564.91 \ 299.49 \ 228.64 \ 150.6133.36 \ 117.71 \ 101.65 \ 85.70 \ 698.5 \ 90.1 \ 2058.82 \ 2022.55 \ 9191.27 \ 1774 \ 101.65 \ 85.70 \ 698.5 \ 90.1 \ 2058.82 \ 2022.55 \ 9191.27 \ 1774 \ 101.66 \ 85.70 \ 698.5 \ 90.1 \ 2058.82 \ 2022.55 \ 9191.27 \ 1774 \ 101.65 \ 85.70 \ 698.5 \ 90.1 \ 2058.82 \ 2022.55 \ 9191.27 \ 1774 \ 101.66 \ 85.70 \ 698.5 \ 90.1 \ 2058.82 \ 2022.55 \ 9191.27 \ 1774 \ 101.66 \ 85.70 \ 698.5 \ 90.1 \ 2058.82 \ 2022.51 \ 9191.27 \ 1774 \ 101.66 \ 85.70 \ 698.5 \ 90.1 \ 2054.91 \ 209.42 \ 228.64 \ 150.3613.35 \ 611.773 \ 101.66 \ 85.70 \ 698.5 \ 90.1 \ 2058.82 \ 2022.51 \ 910.1773 \ 101.66 \ 85.70 \ 698.5 \ 90.1 \ 2054.82 \ 102.99.42 \ 228.64 \ 150.3613.35 \ 611.773 \ 101.66 \ 85.70 \ 698.5 \ 90.1 \ 2054.82 \ 102.99.44 \ 228.64 \ 150.3613.35 \ 611.773 \ 101.66 \ 85.70 \ 698.5 \ 90.1 \ 90.44 \ 208.55 \ 90.1 \ 2054.42 \ 102.85 \ 102.333 \ 117.71 \ 101.66 \ 85.70 \ 698.5 \ 90.1 \ 750.44 \ 101.23 \ 101.23 \ 101.23 \ 101.23 \ 101.23 \ 101.44 \ 1$
$01 \ [2058.2 \ 2022.5 \ [911.97 \ [174.49 \ [464.09 \ [159.47 \ [118.75 \ 968.7 \ 765.08 \ 561.1 \ 264.9 \ [299.49 \ 228.44 \ [50.36] 133.96 \ [177.1 \ 101.65 \ 85.7 \ 069.85 \ 901 \ 2058.84 \ 502.25 \ 919.12 \ 1174.5 \ 1164.12 \ 1194.49 \ 118.77 \ 968.7 \ 766.00 \ 561.1 \ 364.91 \ 299.49 \ 228.41 \ [50.36] 133.96 \ 117.74 \ 101.65 \ 85.7 \ 069.85 \ 901 \ 2058.84 \ 2022.59 \ 1912.01 \ 1724.5 \ 1464.12 \ 1194.49 \ 118.87 \ 968.7 \ 766.00 \ 561.13 \ 364.91 \ 299.49 \ 228.41 \ 150.36] 133.96 \ 117.74 \ 101.65 \ 85.7 \ 069.85 \ 901 \ 2058.84 \ 2022.59 \ 1912.01 \ 1724.51 \ 1464.12 \ 1194.49 \ 118.87 \ 968.7 \ 765.95 \ 561.12 \ 364.91 \ 299.49 \ 228.41 \ 150.36] 133.96 \ 117.74 \ 101.65 \ 85.7 \ 069.85 \ 902.85 \ 90$
$0_{1} 2058.45 2022.59 1912.01 1724.51 1464.12 1394.49 1188.77 968.72 766.00 563.13 364.91 299.49 228.44 [50.36133.36 11.77 4 101.65 8.57 069.85 00 12058.82 2022.59 1912.01 1724.51 1464.13 1394.50 1188.77 968.72 766.00 563.13 364.91 299.49 228.44 [50.36133.36 11.77 1 101.66 85.70 69.85 00 12058.82 2022.59 1912.01 1724.49 1464.09 1394.40 1188.77 968.72 765.89 563.11 364.90 299.49 228.44 [50.36133.36 11.77 1 101.66 85.70 69.85 00 12058.82 2022.59 1912.01 1724.49 1464.09 1394.40 1188.57 968.57 755.89 563.11 364.90 299.49 228.44 [50.36133.56 11.77 1 101.65 85.70 69.85 00 12058.72 022.21 1911.51 1724.40 1464.00 1394.40 1188.57 968.57 755.89 563.01 364.91 299.49 228.44 [50.36133.56 11.77 1 101.65 85.70 69.85 00 12057.90 2022.14 1911.61 1724.01 164.05 1183.19 968.13 765.76 562.89 364.33 299.44 228.59 [50.3133.59 11.77 1 101.64 85.56 69.85 00 12056.5 2020.61 1910.12 1722.84 1462.75 1393.21 1187.75 967.96 768.45 622.79 364.74 299.35 228.53 150.29133.90 117.66 101.64 85.66 69.83 00 120442 201.82 1390.76 1570.81 1465.15 188.77 1183.99 965.17 705.44 555.55 255.22 361.10 297.92 275.04 150.2013.33 117.72 101.64 85.56 69.83 00 1204.92 201.30 1902.66 1170.81 1457.51 188.27 1183.89 965.17 705.44 555.55 255.22 361.10 297.92 275.10 195.11.72 101.64 85.56 69.83 00 1204.34 197.77 1160.34 165.73 1185.24 1136.26 951.72 55.97 750.45 555.22 361.10 297.92 275.10 195.02 113.37 11.70 101.24 85.55 67.85 13.20 101.24 117.77 1160.36 86.71 413.81 11.65.71 110.56 85.17 06.95 85.22 135.23 10.29 92.02 149.02 123.81 13.77 110.10 12.8 15.37 10.20 12.8 15.37 10.07 12.45 95.17 110.10 12.8 15.37 10.07 24.94 90.23 10.20 11.24 112.24 114.57 124.113.94 111.92 951.12 414.114.11.12 11.22 97.12 84.16.27 10.07 14.46 42.42 14.11 14.11.24 11.24 11.24 11.24 11.24 11.24 12.27 12.23 14.24 12.24 14.23 20.24 12.20 12.24 11.23 14.41 11.45 11.20 17.21 10.46 12.24 12.25 11.25 11.05 71.00 72.46 42.42 20.75 11.26 20.26 20.25 20.24 20.25 2$
$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c} 0.0 \\$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c} 2037.94 \ 2001.94 \ 1892.35 \ 1706.96 \ 1449.92 \ 1381.21 \ 1178.19 \ 960.87 \ 760.45 \ 559.62 \ 263.16 \ 297.99 \ 227.50 \ 149.62133.31 \ 117.20 \ 101.22 \ 85.38 \ 69.44 \ 001 \ 201.43 \ 1977.77 \ 1869.38 \ 1665.44 \ 1433.38 \ 1365.74 \ 1165.86 \ 951.72 \ 753.75 \ 55.25 \ 260.98 \ 265.42 \ 226.15 \ 148.76132.58 \ 116.57 \ 100.72 \ 44.99 \ 97.84 \ 99.67 \ 176.84 \ 99.77 \ 176.84 \ 197.77 \ 1869.18 \ 186.77 \ 182.27 \ 181.95 \ 110.67 \ 100.72 \ 45.96 \ 97.38 \ 296.42 \ 221.21 \ 216.88 \ 100.95 \ 115.05 \ 100.72 \ 99.61 \ 84.17 \ 63.84 \ 923.56 \ 256.35 \ 202.64 \ 221.25 \ 126.86 \ 142.7812.74 \ 112.22 \ 97.21 \ 82.36 \ 67.64 \ 1001 \ 110.93 \ 1110.67 \ 961.24 \ 798.20 \ 643.90 \ 484.68 \ 232.56 \ 256.35 \ 202.64 \ 132.81 \ 106.57 \ 92.00 \ 96.18 \ 41.76 \ 54.75 \ 57.67 \ 561.32 \ 100.71 \ 40.65 \ 100.73 \ 92.00 \ 76.46 \ 56.75 \ 50.62 \ 272.38 \ 223.94 \ 100.61 \ 41.22 \ 97.21 \ 82.36 \ 67.64 \ 90. \ 110.54 \ 100.65 \ 100.57 \ 92.00 \ 75.46 \ 50.75 \ 92.00 \ 71.51 \ 66.02 \ 60.38 \ 55.19 \ 92.84.01 \ 110.67 \ 90.12 \ 97.27 \ 110.41 \ 146.101.41 \ 92.24 \ 97.24 \ 82.25 \ 70.67 \ 71.61 \ 66.02 \ 60.38 \ 55.19 \ 92.84.01 \ 110.67 \ 90.72 \ 90.00 \ 71.64 \ 66.22 \ 60.95 \ 55.19 \ 92.84.01 \ 110.67 \ 90.77 \ 46.42 \ 58.07 \ 51.77 \ 56.22 \ 56.77 \ 71.60 \ 71.51 \ 66.02 \ 60.38 \ 55.19 \ 94.84 \ 90.77.54 \ 63.96 \ 68.11 \ 65.97 \ 60.96 \ 65.19 \ 90.77.54 \ 63.96 \ 68.11 \ 65.97 \ 65.96 \ 65.18 \ 65.97 \ 71.64 \ 71.45 \ 71$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
50 44.18 43.99 43.41 42.39 40.83 00 1. 41.12 41.08 40.96 40.74 40.31 .00 .75 1.50 2.25 3.05 3.17 3.66 4.12 4.57 5.08 5.13 5.15 5.46 5.17 5.65 5.82 6.09 6.18 6.34 .00 .75 1.50 2.25 3.09 3.17 3.66 4.12 4.57 5.08 5.13 5.15 5.45 5.45 5.45 5.82 6.09 6.18 6.34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$-\frac{100}{12}$ $-\frac{75}{2}$ $-\frac{1.50}{12}$ $-\frac{2.25}{13}$ $-\frac{3.00}{12}$ $-\frac{3.17}{3.66}$ $-\frac{3.66}{14}$ $-\frac{4.17}{4}$ $-\frac{4.57}{5.06}$ $-\frac{5.09}{14}$ $-\frac{5.45}{14}$ $-\frac{5.47}{14}$ $-\frac{5.65}{15}$ $-\frac{5.82}{18}$ $-\frac{6.18}{18}$ $-\frac{6.18}{14}$ $-\frac{6.18}{12}$

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

그림 4.4-3 Temperature profile of the capsule

ı

1. 축(길이) 방향으로 온도구배가 있는 경우

축방향으로 온도구배가 있고 임의의 위치에서의 온도가 T₂ 인 실린더에서의 응력은 실린더를 매우 좁은 환으로 나누어서 그 값을 구할 수 있다. 이때, 각각의 환에서 온도, T₂ 에의한 반경방향의 열팽창은 aT₂ r 이다. 여기서 a 는 열팽창계수이고 r 은 환의 반경이다.

이렇게 열팽창에 의하여 나타난 변위는 마치 가상의 내부 압력이 작용하여 변화한 것으로 생각할 수 있다. 즉, 다음의 공식이 성립한다. 내압에 의한 팽창변위 = 열팽창에 의한 변위, 혹은

$$\frac{p_z r}{Et} = \alpha T_z r \tag{1}$$

위 (1)식은 다음과 같이 된다.

$$p_z = \frac{EtaT_z}{r} \tag{2}$$

이러한 가상 압력에 의하여 환의 팽창에 의한 원주응력 06 는 다음과 같다.

$$\sigma_{\theta} = -\frac{p_z r}{t} = -EaT_z \tag{3}$$

그러나 실재의 경우는 내압이 작용하지 않으므로 같은 크기의 외압이 작용하는 것으로 해석하여 실린더의 변위를 해석해야 한다. 또 하나의 고려해야 할 방정식은 다음과 같다., 즉 내압 - b₂ 가 작용하는 실린더에서 발생하는 반경방향의 변위 u 는 다음을 만족해야 한다.

$$\frac{d^{4}u}{dz^{4}} + 4 \beta^{4}u = \frac{(-p_{z})}{D}$$
 (4)

여기서

$$D = \frac{Et^3}{12(1-\nu^2)} , \ \beta^4 = \frac{Et}{4r^2D} = \frac{3(1-\nu^2)}{r^2t^2}$$
(5)

위의 식들을 이용하여 전체적인 응력을 구할 수 있다.

연료봉에 적용 예)

중앙(top) 에서의 온도가 T, 이고 끝단(bottom) 에서의 온도가 T, 인 실린더에서 열팽창에 의한 최대응력의 값은 ?

해석) 먼저 온도구배가 선형변화라고 가정하면 임의의 위치에서의 온도는 다음과 같다.

 $T_{z} = T_{l} + \frac{T_{b} - T_{l}}{l} z \quad 0 \quad z$ 중앙의 온도를 기준으로 한 온도차이는 다음과 같이 나타낼 수 있다. $T = \frac{T_{b} - T_{l}}{l} z \qquad -------(6)$

이에 따른 원주방향의 가상응력은 다음과 같다.

$$\sigma_{\theta} = -Ea\left(\frac{T_b - T_t}{l}\right)z \tag{7}$$

가상 압력에 의한 실린더의 반경의 변위방정식은 다음과 같이 된다.

$$\frac{d^4u}{dz^4} + 4 \beta^4 u = \frac{Eta}{rD} \left(\frac{T_b - T_t}{l} \right) z \qquad (8)$$

위 식의 특이 해는 다음과 같다.

$$u = c_1 \frac{Eta}{\nu D} \left(\frac{T_b - T_t}{l} \right) z + c_2$$

$$= ra \left(\frac{T_b - T_t}{l} \right) z + c_2$$
(9)

$$c_1 = \frac{1}{4\beta^4}$$

bottom에서의 경계조건은 다음과 같다.

$$u_b = \alpha (T_b - T_l) r$$

그러므로 $c_2 = 0$ 이다.

최종적인 u 는 다음과 같다.

$$u = r\alpha \left(\frac{T_b - T_l}{l} \right) z \tag{10}$$

위 식에 의한 원주응력은 다음과 같다.

$$\sigma_{\theta} = E\varepsilon_{\theta} = E\frac{u}{r} = E\alpha\left(\frac{T_{b}-T_{t}}{l}\right) \qquad (11)$$

이 값에 위에서 구한 값을 더하면 그 결과는 0 이다. 즉, 선형 온도구배에서 원주응력은 0 이 된다.

또한 축 방향의 실린더의 팽창 및 수축에 따른 기울기는 다음과 같다.

$$\theta = \frac{du}{dz} = ra\left(\frac{T_b - T_t}{l}\right) \tag{12}$$

끝단에서는 마개에 의하여 고정되어 있으므로 기울기가 0 이된다. 즉, 모멘트가 작용하여 기울기의 발생을 막아주어야 한다. 참고문헌에 의하면 다음의 공식이 성립된다.

$$M = -\theta\beta D = -\beta D \left(\frac{r\alpha}{l}\right) (T_b - T_l)$$
(13)

이 모멘트에 의하여 실린더의 얇은 면에 발생하는 축방향의 응력은 다음과 같다.

$$\sigma_z = \frac{6M}{t^2} \tag{14}$$

2. 반경(두꼐) 방향으로 온도구배가 있는 경우

반경방향으로 온도구배가 있는 실린더에서 열응력을 구하기 위해서는 탄성학으로부터 구할 수 있는데 아래와 같은 응력-변형률-온도 관계식을 이용한다.

$$\varepsilon_r = \frac{1}{E} [\sigma_r - \nu (\sigma_\theta + \sigma_z)] + \alpha T \qquad (15-1)$$

$$\varepsilon_{\theta} = \frac{1}{E} [\sigma_{\theta} - \nu (\sigma_{r} + \sigma_{z})] + aT \qquad (15-2)$$

$$\varepsilon_{z} = \frac{1}{E} [\sigma_{z} - \nu(\sigma_{\theta} + \sigma_{\tau})] + \alpha T \qquad (15-3)$$

만약 온도의 분포가 원주방향에 대하여 대칭이라면(일반적인 경우에 해당됨), 모든 전단응력은 존재하지 않고, 다음의 관계식만 성립한다.

$$\varepsilon_r = \frac{du}{dr}, \quad \varepsilon_\theta = \frac{u}{r}, \quad \varepsilon_z = 0$$
 (16)

혹은

$$\varepsilon_r = \varepsilon_\theta + r \left(\frac{d\varepsilon_\theta}{dr} \right)$$
 (17)

위 의 공식을 결합하여 정리하면 다음의 공식이 성립한다.

$$\sigma_{r} = \sigma_{\theta} + r \left(\frac{d\sigma_{r}}{dr} \right) - \frac{\nu}{1-\nu} \left(\sigma_{r} - r \frac{d\sigma_{r}}{dr} - \sigma_{\theta} \right) + \left(\frac{E}{1-\nu^{2}} \right) a(1+\nu) r \left(\frac{dT}{dr} \right)$$
(18)

또한 평형방정식에 의하여 다음의 관계식이 성립한다.

$$\sigma_{\theta} - \sigma_{r} = r \left(\frac{d\sigma_{r}}{dr} \right) \tag{19}$$

최종적으로 다음과 같은 미분방정식이 성립한다.

$$r\frac{d}{dr}\left[\frac{1}{r}\frac{d}{dr}(r^{2}\sigma_{r})\right] = \frac{-E}{1-\nu^{2}}\alpha(1+\nu)r\left(\frac{dT}{dr}\right) \quad (20)$$

경계조건은 다음과 같다.

$$\sigma_{r|r=r_{i}} = 0$$

$$\sigma_{r|r=r_{o}} = 0$$

최종적인 각각의 응력은 다음과 같은 형태의 공식이 된다.

$$\sigma_{r} = \frac{E\alpha}{1-\nu^{2}} \frac{1+\nu}{r^{2}} \left(\frac{r^{2}-r_{i}^{2}}{r_{o}^{2}-r_{i}^{2}} \int_{r_{i}}^{r_{o}} Tr dr - \int_{r_{i}}^{r} Tr dr \right)$$
(21-1)
$$\sigma_{\theta} = \frac{E\alpha}{1-\nu^{2}} \frac{1+\nu}{r^{2}} \left(\frac{r^{2}-r_{i}^{2}}{r_{o}^{2}-r_{i}^{2}} \int_{r_{i}}^{r_{o}} Tr dr + \int_{r_{i}}^{r} Tr dr - Tr^{2} \right)$$
(21-2)

$$\sigma_{z} = \frac{E\alpha}{(1-\nu)} \left(\frac{2}{r_{o}^{2} - r_{i}^{2}} \int_{r_{i}}^{r_{o}} Tr dr - T \right)$$
(21-3)

적용예)

(1) 온도구배가 선형변화인 경우.

 $T = T_i \frac{r_o - r}{r_o - r_i}$

 T_i = 외벽온도에 대한 내부벽온도의 상대온도

응력은 다음과 같이 정리된다.

$$\sigma_{r} = \frac{EaT_{i}}{r^{2}(1-\nu)} \left[\frac{(r^{2}-r_{i}^{2})(2r_{i}+r_{o})}{6(r_{i}+r_{o})} - \frac{2(r^{3}-r_{i}^{3})-3r_{o}(r^{2}-r_{i}^{2})}{6(r_{i}-r_{o})} \right] \quad \dots \quad (22-1)$$

$$\sigma_{\theta} = \frac{EaT_{i}}{r^{2}(1-\nu)} \left[\frac{(r^{2}+r_{i}^{2})(2r_{i}+r_{o})}{6(r_{i}+r_{o})} - \frac{2(r^{3}+r_{i}^{3})-3r_{o}(r^{2}+r_{i}^{2})}{6(r_{i}-r_{o})} \right] \quad \dots \quad (22-2)$$

$$\sigma_{z} = \frac{EaT_{i}}{(1-\nu)} \left[\frac{(2r_{i}+r_{o})}{3(r_{i}+r_{o})} - \frac{r_{o}-r_{i}}{r_{o}-r_{i}} \right] \quad \dots \quad (22-3)$$

위의 공식을 자세히 관찰하면 σ, 은 σ₆ 와 σ₂ 에 비하여 매우 작은 같이며, 실제 문제에 있어서는 σ₆ 가 σ₂ 와 같은 값이 된다. 최대응력값은 내부나 외부표면에서 발생하며 다음과 같다.

$$\sigma_{\theta} = \sigma_{z} = \frac{-EaT_{i}}{(1-\nu)} \left[\frac{2r_{o}+r_{i}}{3(r_{o}+r_{i})} \right]; \ \mathrm{UPHEP}$$

$$= \frac{EaT_{i}}{(1-\nu)} \left[\frac{r_{o}+2r_{i}}{3(r_{o}+r_{i})} \right]; \ \mathrm{QPHEP}$$
(23)

두께가 얇은 실린더에서는 다음과 같다.

(2) 온도구배가 지수함수형태인 경우

즉 온도가 다음과 같은 함수로 표시되면 $T = T_i \left(\frac{\ln r_o - \ln r}{\ln r_o - \ln r_i} \right)$, 최종의 응력은 다음과 같다.

얇은 실린더인 경우는 선형분포인 경우와 같은 결과가 나온다. 즉,

$$\sigma_{\theta} = \sigma_{z} = \frac{-E\alpha T_{i}}{2(1-\nu)} ; \ \mathrm{UPHEP}$$

$$\stackrel{\mathrm{e}}{=} \frac{E\alpha T_{i}}{2(1-\nu)} ; \ \mathrm{UPEP}$$
 (26)

(3) 복잡한 형태의 온도구배인 경우06 를 정리하면 다음과 같이 쓸 수 있다.

$$\sigma_{\theta} = \frac{E_{\alpha}}{1-\nu} \left(\frac{1+(r_{i}/r)^{2}}{r_{o}^{2}-r_{i}^{2}} \int_{r_{i}}^{r_{o}} Tr dr + \frac{1}{r^{2}} \int_{r_{i}}^{r} Tr dr - T \right) \quad ---- \quad (27)$$

위식에서 다음과 같이 표시할 수 있다.

$$\frac{1}{r^2} \int_{r_i}^{r} Tr \, dr = \frac{2\pi \int_0^{r} Tr \, dr}{2\pi r^2}$$

$$= \overline{g} \, \overline{v} \, \overline{v$$

그러므로 다음과 같이 정리하여 응력을 표시할 수 있다.

$$\sigma_{\theta} = \frac{E\alpha}{(1-\nu)} (T_m - T)$$
(30)

해석(예)

피복관의 중앙부의 내부면에서의 온도 : 180.87 도C 피복관의 중앙부의 외부면에서의 온도 : 68.84 도C 피복관의 끝단의 내부면에서의 온도 : 92.16 도C 피복관의 끝단의 외부면에서의 온도 : 67.00 도C

(1) 축방향의 온도구배에 의한 피복관 끝단에서의 응력계산은

$$M = -\theta\beta D = -\beta D \left(\frac{r\alpha}{l}\right) (T_b - T_t)$$
$$= \left(\frac{3(1-\nu^2)}{r^2 t^2}\right)^{.25} \frac{Et^3}{12(1-\nu^2)} \left(\frac{r\alpha}{l}\right) (T_b - T_t)$$

피복관의 두께에 따라 온도차이가 있으므로 계산의 편이를 위하여 내부의 온도를 사용하고 이에 따른 탄성계수와 열전도율도 차이가 있으므로 가장 큰 값을 나타내는 것을 사용한다(물론 평균값을 사용해서 계산을 해봐도 좋다.)

- 92 -

$$M = \left(\frac{-3(1-\nu^2)}{r^2 t^2}\right)^{.25} \frac{Et^3}{12(1-\nu^2)} \left(\frac{r\alpha}{l}\right) (T_b - T_l)$$

= $\left(\frac{-3(1-0.3^2)}{0.2^2 0.049^2}\right)^{.25} \frac{28E6 \times 0.049^3}{12(1-0.3^2)} \left(\frac{0.2 \times 15.83E - 6}{1.38}\right) (92.16 - 180.87)$

M = -0.797 fb-in $\sigma_z = \frac{6M}{t^2}$

$$= \frac{6 X - 0.797}{0.049^2}$$
$$= -1.992 \ ksi$$

(2) 반경방향의 온도구배에 의한 피복관 중앙에서의 응력계산은

$$\sigma_{\theta} = \sigma_{z} = \frac{-EaT_{i}}{2(1-\nu)} ; \ \mathbf{U} \neq \mathbf{E} \mathbf{E}$$
$$= \frac{EaT_{i}}{2(1-\nu)} ; \ \mathbf{U} \neq \mathbf{E} \mathbf{E}$$
$$= \frac{FaT_{i}}{2(1-\nu)} ; \ \mathbf{U} \neq \mathbf{E} \mathbf{E}$$
$$= \mp \frac{27.3E6 \times 15.6E - 6|180.87 - 68.84|}{2(1-0.3)}$$
$$= \mp 34.08 \ ksi$$

(3) 반경방향의 온도구배에 의한 피복관 끝단에서의 응력계산은

$$\sigma_{\theta} = \sigma_{z} = rac{-EaT_{i}}{2(1-\nu)}; 내부표면
 홍은
 = rac{EaT_{i}}{2(1-\nu)}; 외부표면
 = ∓ rac{28E6 X 15.49E-6|92.16-67.0|}{2(1-0.3)}
 = ∓ 7.795 ksi$$

			네 지 정	보 양	식		·····		
수행기관보고서번호 위탁기관보고서번호 표준보고서번호 INIS 주제코드									
KAERI/	FR-1157/98		-	-			-		
제목/부	제 DUPIC	 C 핵연료 :	핵연료 조사시험 설계 및 안전성분석 보고서						
연구책임자, 부서명 배기광 (DUPIC 핵연료 조사시험 및 성능평가)									
연구자 5	및 부서명	이영순(E (하나로 김봉구,	양명승, 정인하, 이철용, 박희성, 강권호, 문제선, 이영순(DUPIC), 김학노, 이기홍, 김헌일, 서철교, (하나로운영팀), 정홍준, 민경호 (열수력안전연구팀 김봉구, 강영환, 박승재, 신윤택 (하나로이용기술개 박종만 (핵연료제조기술개발팀), 호광일 (수원대학						
출판지	대 전	발행기관	한국원자력	연구소	발행١	년도 1998.10			
페이지	101 p.	도 표	있음(V), 없음() 크		7] 26 Cr			
참고사항		****			·				
비밀여부	공개(V)	, 대외비(), _급비밀	보고서종·	류	기술	기술보고서		
연구위틱	·기관	-	<u> </u>	계약 번.	<u>ō</u> .		-		
초록 (15-20줄내외) 하나로에서 DUPIC 핵연료 조사시험을 수행하기 위한 핵연료 설계와 mini-element 및 무계장 캡슐에 대하여 설계 해석과 조사시의 안전성 분석을 수행하였다. 조사 핵연료는 소결체 5개를 한 개의 mini-element로 구성하며 3개의 mini-element를 동시에 장전하도록 하였으며, 냉각수는 mini-element 외부를 직접 통과하면서 냉각을 하도록 설계하였다. 소결체의 조성과 출력은 DUPIC 소결체의 조성과 출력이 동일하게 구성하였으며 핵연료가 조사될 하나로의 조사공은 OR공으로 하였다. Mock-up 캡슐을 제조하여 진동시험과 압력강하시험을 수행하여 하나로와의 양립성을 얻었으며, 핵연료의 최대온도의 내압을 해석하여 안전성을 확인하였다. 피복관의 건전성을 확인하기 위하여 열응력을 계산하여 ASME의 허용 응력을 만족함을 확인하였으며 또한 하나로의 반응도사고, Locked rotor 사고 등의 사고시 핵연료봉을 분석하여 핵연료의 안전성에 영향이 없음을 확인하였다. 주제명키워드 (10단어내외)									

	BI	BLIOGRAPHI	C IN	FORMATION	SHEET					
Perform Repor	ing Org. t No.	Sponsorin Report		Stamdard Ro No.	eport R	rt INIS Subject Code				
KAERI/TF	R-1157/98									
Title/Subtitl	e Design	and Safety Analysis Report for Irradiation of DUPIC Fuel								
Project N and Dep	Aanager partment	Kikwang Bae(DUPIC)								
Research Depart		M.S.Yang, I.H.Jung, C.Y.Lee, H.S.Park, K.H.Kang, J.S.Moon, D.Y.Lee, Y.S.Lee(DUPIC), H.R.Kim, K.H.Lee, H.I.Kim, C.K.Seo, K.Y.Han(HANARO Operation), H.J.Jung, K.H.Min(T.S.A), B.K.Kim, Y.H.Kang, S.J.Park, Y.T.Shin(HANARO), J.M.Park(N.F.F.T.D), K.I.Ho(Suwon Univ.)								
Publication Place	Taejon	Publisher	KAERI		Publication Date	1998. 10.				
Page 101 p.		Ill. & Tab.	Yes(V), No ()	Size	26 Cm.				
Note	Irradiatior	n test and safety analysis of DUPIC fuel								
Classified		7), Restricted ss Document	l(),	Report Type	Technical Report					
Sponsoring	Org.	-		Contract No.		-				

Abstract(15-20 Lines)

Design and safety analysis of fuel, mini-element and capsule for DUPIC fuel irradiation at HANARO were carried out. Three mini-elements shall be installed in the irradiation capsule, of which one mini-element shall include 5 pellets, and irradiated simultaneously. Cooling water flows around the mini-elements. Linear power and composition of fuel are the same as those for DUPIC fuel, and OR hole of HANARO is selected for irradiation. Mock-up capsule was fabricated and tested for vibration and pressure drop, and the result of the tests proved to be compatible to HANARO. Analyzing maximum temperature and inner pressure of mini-element showed to be safe during irradiation. Thermal stress of cladding was calculated to be lower than the limit of stress intensity defined in ASME code. Accident analysis of RIA and locked rotor of HANARO showed that fuel is safe.

Subject Keywords	nuclear fuel, DUPIC, Irradiation test, safty analysis,
(About 10 words)	performance test, HANARO