

.

Substantiation of Breakdown Voltage Calculation for High-Voltage Accelerators, Insulated by Binary Mixtures N₂ - Co₂

K.A.Rezvykh

Abstract

The main grounds of a rather accurate calculation of accelerator gas gaps breakdown voltage for variable electrode geometry are given. On the 2nd stage of the calculation technique development a variable composition of binary mixture N_2 / CO_2 is considered.

Contents

1. Introduction

2. The insulation system element model

3. The method of the base

4. The breakdown voltage calculation at a variable composition of the electronegative gas. Nitrogen – normalizing gas

5. Carbon dioxide

Table. The calculation error estimation for the N_2/CO_2 mixture

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	η	- <u>r</u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Structure of h-v. accelerators	Terminal EG-3[3]	Column EG-3 [3]	Tandem MP [25]	Tandem MP [25]	Column EG-2,5[3]
x _{co2} ,%	20	20	20	50	20
S_{eff} , m ²	1.0	0.08	1.42	1.42	0.16
E_{max}/U_{calc} , 1/m	4.64	5.52	2.422	2.385	2.307
R _{av} ,ì	0.35	0.0476	0.0373	0.0373	0.0251
L, ì	0.45	0.45	1.8	1.8	0.45
k _{non}	2.088	2.484	3.83	3.83	2.75
$(\sigma / \overline{U})_{calc}, \%$	3.9	3.9	3.9	3.90	3.9
U _{calc} , MV	3.50	base	2,417	2.393	2.574
δU_{calc} , %	-0.3	_	-1.7	-10.4	-1.6

It can be seen that the error of the method of the base equals $0.3 \div 1.7$ % for the atmospheric air and about $0.3 \div 1.6$ % for N₂ / CO₂ mixtures. The high accuracy of the method of the base is explained by the fact that conception "inherent electrical strength – asymptotic breakdown field intensity E_{asm} for the gas-electrodes combination" was taken as the foundation of the calculation. The element model accepted for the insulation system is adequate for the nature of the gas discharge.