

2.9 INSTRUMENTS AND METHODS

Fission Rate Determination in Delayed Neutron Emission Measurements with T(p,n) and D(d,n) Neutrons

V.M. Piksaikin, V.S. Shorin, G.Ya. Tertychny

The purpose of the present work is to create a method of determination of fission event rate in a sample irradiated with quasimonoenergetic neutrons from the $T(p,n)^3$ He and $D(d,n)^3$ He reactions. The consideration is given for the case of the measurements of DN yields from neutron induced fission of 237 Np.

Fission rate in samples

In general the calculation of fission rate in the sample is a quite complicated problem [6] connected with solving the neutron transport kinetic equation taking into account neutron multiple scattering in a sample and construction materials of the experimental setup. It is necessary to account for a composite nonmonoenergetic spectrum of accelerator-based neutron source as well. In the general form the value of $R(E_n)$ can be presented as the functional of the following type:

$$R(E_n) = \langle \Sigma(E) \cdot \Lambda(r) \cdot \varphi(E, E_n, r) \rangle_{E,r} \tag{1}$$

where $\Sigma(E)$ is the effective macroscopic fission cross-section for neutrons with energy E, $\Lambda(r)$ is the neutron path length in the sample in the direction of radius-vector r of the interaction point, $\varphi(E,E_n,r)$ is the neutron flux on the sample with average neutron energy E_n , the sign $\langle E_n \rangle_{E,r}$ denotes the averaging over all coordinates r and neutron energies r. The value of $\varphi(E,E_n,r)$ is associated with a spectrum of accelerator-based neutron source φ_0 by the relation

$$\varphi(E, E_n, r) = \Phi_0(E_n) \cdot \langle \varphi_0(E', E_n \Omega) \cdot G(E' \to E, \Omega \to r) \rangle_{E', \Omega}, \tag{2}$$

where Ω is the unit vector of an outgoing neutron direction, $\Phi_0(E_n)$ is the total neutron yield from an accelerator target

$$\Phi O(En) = \langle \varphi O(E', En\Omega) \rangle E', \Omega, \tag{3}$$

 $G(E' \to E, \Omega \to r)$ is the Green function (scattering indicatrix) of the system which is taking into account the features of neutrons transport for the given geometry of experiment. The normalization constant $\Phi_0(E_n)$ can be determined by the comparison of the calculated value with the count rates $R_i(E_n)$ of two monitor fission chambers (with fissile layers made of the same material ²³⁷Np, i is the chamber's number) located directly in front of and behind the researched sample in the same neutron flux.

Results

The test of the method (to estimate the R_s (E_n) value properly) was carried out by measuring the count rate R_i (E_n) in the fission chambers placed at different distances from the neutron target and by comparing the results with calculated values W_i (Fig.1).

Fig. 1. Comparison of fission rates in the fission chambers at different distances from a neutron source T(p,n) obtained by measuring $R_i(E_n)$ and on the basis of W_i calculations. The energy of primary protons is 1.974 MeV.

In Fig.2 the results of calculations of the values $(W_i \cdot W_s^{-1})$ for the ²³⁷Np sample obtained for two cases of neutron flux monitoring (by one and two fission chambers) are presented.

Fig. 2. The ratio of fission rates in a layer of fission chamber and 237 Np sample $W_i \cdot W_s^{-1}$. Open circles are related to "one fission chamber" geometry. Black circles are related to "two fission chambers" geometry. The points are connected by straight lines for visualization.