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Abstract

Kramers-Kronig analysis for parallel electron energy loss spectroscopy (PEELS) data is
developed as a software package. When used with a JEOL 4000EX high-resolution trans-
mission electron microscope (HRTEM) operating at 100keV this allows us to obtain the
dielectric function of relatively wide band gap materials with an energy resolution of approx
1.4 eV. The imaginary part of the dielectric function allows the magnitude of the band gap
to be determined as well as the joint-density-of-states function. Routines for obtaining three
variations of the joint-density of states function, which may be used to predict the optical
and dielectric response for angle-resolved or angle-integration scattering geometries are also
described. Applications are presented for diamond, aluminum nitride (AIN), quartz (5iO3)
and sapphire (Al;O3z. The results are compared with values of the band gap and density of
states results for these materials obtained with other techniques.
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1. Introduction

Kramers-Kronig analysis of PEELS data is desirable in order to obtain the real and
imaginary parts of the dielectric function, as well as the optical absorption coefficient and
“effective electron numbers”!™3. These should be comparable with theoretical predictions
and/or measurements made using various optical spectroscopies®*. Kramers-Kronig analy-
sis (KKA) enables the energy dependence of the real (¢;) and imaginary (e;) parts of the
permittivity to be calculated from the energy loss function, according to the method of
Johnson®~7. There exists the possibility of obtaining additional information which may be
helpful in measuring the band gap and detecting the presence of interband transitions using
appropriate expressions for the joint-density-of states (JDOS) function?. Our commercially
supplied Gatan PEELS analysis software did not perform this analysis. This paper describes
the development in our laboratory of software suitable for Macintosh personal computers.

Care was taken with deconvolution of the zero-loss peak and multiple scattering events, in
order to first obtain the single scattering loss function. The analysis for the dielectric function
was then performed according to standard methods! ™, using sinusoidal Fourier transforms
and an inverse cosinusoidal F.T. as suggested by Johnson®~7. The KKA analysis was written
in C using the Macintosh Programming Workshop (MPW). It is thus inserted as a Custom
Function in the GATAN EL/P program. In addition we have added routines for obtaining
three variations of the joint-density of states function, which may be used to predict optical
and dielectric response for angle-resolved or angle-integrated scattering geometries.

Examples of applications are presented for diamond, aluminium nitride (AIN), quartz
and sapphire. Although the resolution of our energy loss spectrometer is limited to 1.4 €V,
the results are nevertheless interesting for relatively wide-gap materials of current and future
interest. Furthermore, we may combine high spatial resolution HRTEM results, which allow
nanoscale structural textures to be characterized, with the PEELS/KKA analysis of the low-
loss and core-loss spectra, which provides useful information concerning the nature of the
chemical bonding and mass density, as well as the dielectric response.

2. Theory
(a) Single Scattering Distribution -

Although the principles for this technique were developed some 25 years ago!, they may
not be familiar to current users of PEELS techniques. Probably, this situation is due to the
relatively low energy resolution of the spectrometers in use with HRTEM instruments (say 0.5
- 1.5 V). This is certainly a major limitation for most materials; however, we propose that
there is a valid range of applications for materials scientists which concerns current interests
in relatively wide-gap materials (say 3 eV and above, which includes blue-light emmitters
and other laser materials operating in the ultra-violet). A brief statement of the principles of
the method follows, the interested reader may consult Refs.!~* for more complete treatments
of some aspects.

The relation between the scattering vector (q) and the frequency (w) dependent dielectric
function ¢(q,w) and the electron-scattering power in an infinite medium was given by Ritchie®.



A point charge moving with velocity v is represented as —ed(r — vt). In an electrostatic
potential ¢(r,t), the charge satisfies Poisson’s equation

oe(q, w)V3(r,1) = ed(r,t) (1)

For a charge moving in the z direction, it can be shown using Fourier methods that the
stopping power (dE/dz) is

dE 2h? gywlm[—1/e(q,w)]
- = > d
dz = mwagmov? ,/./ gz + (hw/v)? dgydw (2)

where ag is Bohr radius and myg is the electron mass. g, is the scattering vector perpendicular
to the electron velocity v and w = E/h. The stopping power can also be related to the second
differential cross section (per atom) for inelastic scattering by

dE d?c
- / / ne oo dRdE (3)
where 7, is the number of atoms per unit volume. Since ¢, = kpsin§ and d? = 27 sin 844,

combining (2) and (3) gives
d?c  Im[-1/€(q, E)] ( cos @ ) (4)

dQdE =~ w2agmevin, \sin?6+ 6%

where 8 = E/(ymgv?) is the characteristic scattering angle for energy loss E and « is the
relativistic factor. In the small angle approximation, cos# ~ 1 and sin € ~ & so that we obtain
a Lorentzian angular factor 1/(8% + 6%) in the differential cross-section Eq.(4). For small q,
€(q, F’) varies very slowly with q, so that it can be replaced by €(0, E) or simply ¢(E), which
can, in principle, be directly compared with the results of optical measurements.

Integrating over the scattering angle up to the experimental collection semi-angle 8 and
using df? = 27 sin #d4, the single-scattering distribution (SSD) is related to the complex
permittivity or the dielectric function € as

S(E) = Itn, 3—2—

(5)

Iot Im[—1/¢(E sin?
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where Iy is the zero loss intensity, ¢ the specimen thickness, v is the electron beam velocity,

g is the collection semi-angle and 8z = E/(ymgv?) is the characteristic scattering angle for

energy loss E. v is the relativistic factor, ag is Bohr radius and myg is the electron mass.



(b) Surface loss removal

Surface effects amount to some percent of the total loss probability when the specimen
thickness is in its optimal range of slightly less than one mean free path for ineleastic scat-
tering. This is of the order of 100 nm for 200 keV beam energy.

Assuming a flat and clean (unoxidized) surface and using a free electron plasmon model
of the surface loss, a scattering angle of 8 (with ¢, = 1 for vacuum and ¢, = ¢ = ¢; + ieg for
a specimen of thickness t) gives the single-scattering surface-loss intensity as

Ss(E) = Io/mackot[tan™1(8/9E)/05 — B/ (B* + 8%)][4e2/((e1 +1)* + €3) — Im(~1/¢)] (6)

Ss(E) is subtracted from the experimental single-scattering distribution SSD(E) and a new
normalization constant K found. Then €(E) is recalculated and the whole process repeated
if necessary until the result converges®. At each stage in the procedure, the value of ¢; at
small E (approx. equal to 2 eV) should approximate to the optical value. Egerton® has given
a FORTRAN source code including all the necessary steps for the removal of surface effects
from the single scattering distribution. This was converted to C source code and inset into
our KKA custom function.

(c) Principles of Kramers-Kronig Analysis

Based on the fact that the dielectric function is causal, it can be shown that there is a
relation between the real and imaginary parts, known as the Kramers-Kronig transformation:

Re L(]E)] —1- %Poflm L(“El/)] EEKEE? (7)

where P is the Cauchy principal part of the integral (see e.g. Johnson?).

The above transformation is known as the integration method, since the whole range
of Im[-1/¢(E’)] is integrated for each point of Re[1/e(F)]. It is, therefore, a time consuming
algorithm from the computational point of view. Johnson®~? introduced an equivalent Fourier
transform method. Considering the time-dependent dielectric function 1/¢(t)~48(t), the cosine
and sine transforms of its even and odd parts, p(t) and ¢(¢), give Re[1/e(£)]—1and Im[1/e(£)]
respectively. Because 1/€(t) — §(t) is a causal function, it is zero when ¢ < 0 and therefore
p(t) is simply related to ¢(t) as p(t) = sgn[g(t)]-

Thus, rather than using the integration method, we may first take the direct sine trans-
formation of Im[1/¢(F)] to get ¢(t) and then apply the inverse cosine transformation of p(t)
to obtain Re[e(£)]; thus we have the real and imaginary parts of the permittivity.

Unless the specimen thickness is known exactly, we need to determiné the proportionality
constant in Eq.(6). Applying the Kramers-Kronig sum rule at £ = 0 we obtain

[(0)] — / L(p)] ®)




where €(0) = n? and n is the refractive index. Alternatively, using the Bethe sum rule, we
have

7 -1 T
~——|EdE = ZE?
/Im [G(E)] d 55 (9)
0
where E, is the volume plasmon energy loss peak position, given by

E? = ne*/me, (10)

n is the density and m is the effective mass of the valence electron.
Therefore, knowing either the refractive index or the plasmon peak position, the propor-
tionality constant K can be determined in Eq.(6) as

K= Igt/?l'ag’rno’u2 (11)

Thus, as an extra result of KKA, the absolute specimen thickness may be determined, at
least in principle (c.f. Egerton and Cheng!® for alternative methods). Once the proportion-
ality constant is known, Im[1/€(F)] is readily available from Eq.(6), then we can calculate
Re[l/e(E)] by Eq.(7).

Consequently, we can derive the real and imaginary parts of the dielectric function (e, €3)
and €(F) is given by

Re[l/e(E)] + ¢Im[—1/e( E)] (12)
{Re[1/e(£)]}? + {Im[-1/e(E)]}*
However, the KKA procedure still depends on the assumption that the scattering vector g

is small. For large q, it leads to a complicated expression for €(q, £)'!. The plasmon energy
E,(q) is given by

GI(E) + ZGZ(E) =

E(q)=E,+ a(h?/mg)q* (13)

For example in the case of aluminium, & = 0.3840.02'? and for an icident energy of 100kev
and collection angle 8 = 100mrad, the maximum plasmon peak shift is about 0.8ev.

(d) Band-Gap Analysis

The imaginary part of €, measures photon absorption!?. It is a weighted integral over the
dipole oscillator strength f;; between initial and final states'®

&2(E) = 182 /2m Eeg(21)° / f:14S/|IVW(Ef — E:)f (14)

where E; and E; are the energies of the final and initial states in the interband transition
and the integral is over the surface in momentum space with constant energy difference E; -
E;. Assuming f;; independent of energy for the transitions involved,



&(E) i/ B [ 45/1Vu(B; = o) (15)

The integral is known as the joint-density-of states (JDOS). It can be calculated directly from
the band structure.

When both the initial and final bands are parabolic (which may be a good approximation
in the vicinity of high-symmetry points in the reciprocal lattice) the gradient term is

Vi(Es — E;) = kh*(my 4+ m.)/m,m (16)

and the surface area [dS = 4nk?. m, and m. are the effective masses in the valence and
conduction bands. Neglecting prefactors,

JDOS « \/E — E, (17)

where E, is the band gap energy!*. A steep rise (or decrease) is found for transitions next
to points of high symmetry in the reciprocal lattice!3>. This can be used for qualitative
interpretation of optical spectra.

If € is large for the energy range in question, these transitions will be screened in the
EEL spectrum and the loss function is then proportional to e2*. Consideration of Eq.(15)
shows that one actually measures JDOS/E in semiconductors such as silicon.

The equation

JDOS x E?¢ (18)

is used by some authors'®*~1?. As Liang!® pointed out, this is based on the ad hoc assumption
that the matrix element G;s of the momentum operator between initial and final states is
independent of energy. A more natural choice is to set the oscillator strength f;y = 2G;;/mE
independent of frequency, which leads to Eq.(15). The JDOS thus obtained can be compared
with band calculations. This was done for titanium and vanadium carbides and nitrides with
good agreement between theory and experiment!®.

When recording spectra in the microscope image mode the pre-spectrometer optics per-
forms an integration over scattering angle. This corresponds to int?agra,tion over k-space for
both occupied and empty bands. It can be shown that this leads to a convolution of the
density of states (DOS) of both bands?® when calculating €

(B [ pi(E - E)ps(E)AE’ (19)
For parabolic bands, this gives

er(E) o (E — Eg)*/E? (20)

An EELS analysis of boron nitride along these lines yielded an optical band-gap of 4
1+0.5eV20,



When comparing EELS results on JDOS with optical experiments, it must be recalled
that, according to the limited momentum resolution of the incident beam and the spectrom-
eter, neither of the two cases described above will be seen exactly. However the scattering
angles are typically less than 50 mRad for 100 keV electrons.

4. Software Development

To develop a program as a custom function for Macintosh computers, the basic require-
ments are the Gatan EL/P package with EL library and the Macintosh Programming Work-
shop (MPW) with C or Pascal language compiler. Qur source code was written in C.

Some development of the SSD software was made to improve the treatment of the zero-loss
peak. We have used both the integration and the equivalent Fourier transform methods for
KKA as described above. The integration method requires much longer computation time,
especially for a large number of data channels. However it allows us to verify the reliability of
the Fourier method. This is important because numerical methods for fast Fourier transforms
may be tricky, especially when they involve the sine and cosine transforms. Both the KK
and Bethe sum rules were used to determine the proportionality constant K. The Bethe
sum rule is usually preferred as the plasmon peak energy can be easily obtained from the low
energy loss data. Note that for the angular correction of Eq.(5) we have retained sin?f rather
than 2, which makes it valid to high angles (avoiding the Lorentzian approximation). We
note also that Eq.(5) is strictly valid only if the loss function is independent of #, which is
contradicted by plasmon dispersion. However, we used a finite (but large) collection aperture
when this error is effectively negligible?.

Prior to running our KKA custom function all spectra were deconvoluted to obtain the
single scattering distribution (SSD) using the Fourier-Log method [2]. The zero-loss peaks
were removed by fitting a symmetric zero-loss peak to the negative-energy tail in each of the
spectra. Both these processes were carried out using our SSD software, i.e. modified Gatan
EL/P software (version 2.1.1). The zero-loss peak was stored as an equivalent delta function
in the first channel of the SSD and the region 0 - 5 eV was replaced by a straight line. As
seen later, this placed some limitations on the band gap analysis. The surface-loss correction
was then applied. .

The KKA analysis was then performed as follows: the proportionality constant (K) and
consequently the thickness (t) were then calculated using a sum rule; thus the loss function
Im(-1/€) could be obtained. Then the KXKA transform (Eq.8) was applied to obtain Re(-
1/€). The real and imaginary parts of the dielectric function (e;,€;) were then calculated
using Eq.(11) above. For completeness, the optical absorption coefficient (p), the core-loss
spectrum and the density-of-states functions JDOS = E*e;(E) from Eq.(14), JDOS*IDOS
= E**¢(E)? from Eq.(17) and E?%e; = E*\/(€2(E)) from Eq.(20) were also included as part
of our standard output. )

The modified SSD and KKA programs were compiled and the modules installed as custom
functions in the EL/P folder.



5. Experimental

Our results were obtained using a Gatan Parallel Detection Electron spectrometer (Model
666) attached to the JEOL-4000EX electron microscope. The resolution of the spectra was
determined by measuring the full width at half-maximum (FWHM) of the zero-loss peak;
this was typically close to 1.4eV when the JEOL-4000EX was operated at 100kv. All PEELS
data referred to here were recorded at 100kV. The collection angles used were 5.25,11.5,17.1
and 33.1 mrad, corresponding to the four available objective apertures. Wherever possible
data sets were recorded for a set of spot sizes and objective apertures. The convergence
angle was typically 1 mrad. The spectra were typically measured from areas about 120nm
in diameter, recording times were 120s for core loss and 0.3s for low loss spectra. Spliced
segment processing was often used to piece together two segments of spectra acquired over
low and higher energy-loss ranges. The HRTEM images were recorded at 400keV. Note that
our JEOL 4000EX instrument has been successfully configured to allow rapid switching of
the instrument alignments between 400 keV and 100 keV operation.

HRTEM images and PEELS spectra from a variety of wide-gap materials were acquired
under identical condition; referred to in this paper are crystalline diamond obtained by
chemical-vapour-deposition, aluminum nitride, grown by reactive magnetron sputtering, high
purity synthetic quartz and pure sapphire substrate material obtained commercially.

Thin specimens suitable for electron microscopy were prepared by simply placing clean,
dry freshly crushed powders onto 1000 mesh copper grids. This technique significantly re-
duces electron beam irradiation damage and chemical contamination of the specimens during
observation.

HRTEM was used to select areas which appeared relatively homogeneous and of slowing
increasing thickness. Images were recorded using a JEOL-4000EX electron microscope oper-
ating at 400keV; the spherical aberration coefficient of the ultra-high resolution pole-pieces
was Cs=0.94mm and the effective Scherzer or interpretable image resolution is 0.17nm. The
specimen height was carefully adjusted to an optimum focusing current, when the objective
lens astigmatism as well as the optical alignment parameters could be set precisely against
calibrated values.

The PEELS data were recorded at 100 keV, the data were rejected if there was appar-
ent microstructual damage or specimen contamination over the area being illuminated by
the electron beam; this was monitored by comparing images before and after recording the
electron energy loss spectra. Note that lens current and alignment settings were stored in
memory so that it was a relatively straightforward matter to switch between 400 and 100
keV operation.

6. Results

Fig. 1 shows the loss functions Im(-1/¢) for quartz, sapphire, aluminum nitride and
diamond respectively. Note the relatively sharp onset at approx. 10 eV for quartz and 8 eV
for sapphire, which are consistent with the published band gap calculations of 8.9 eV and
7.14 eV for quartz and sapphire respectively. Such a correspondance is not so clear for AIN



and diamond, which we expect have band gaps of 6.2 eV and 5.5 eV respectively. This is
because of our use of a linear fit to the single-scattering distribution applied to the first 5 eV
of the data. Nevertheless, the loss function onset is clearly consistent with those values for
the band gap.

Fig. 2 gives the results for JDOS for quartz, sapphire, aluminium nitride and CVD
diamond respectively. The results for diamond and AIN are as expected for the available
energy resolution (1.4 eV at 100 keV), with informatjon about the band gaps (5.5 and 6.2 eV
respectively) being lost in the range 0 - 5 eV. However, for sapphire and quartz we can locate
the band gaps reliably at 8 eV and 9 eV respectively. Despite these experimental limitations
we have obtained useful representations of the JDOS function in all four cases.

Fig. 3 shows the results for JDOD*JDOS for quartz and sapphire respectively. According
to Eq.(16) above, which assumed parabolic bands, one should obtain the band gap I, from
the intercept of the leading edge on the energy axis of this plot. Doing this yielded values
for £, of 9 eV and 7.8 eV for quartz and sapphire respectively (c.f. predicted values of 8.9
eV and 7.14 eV respectively). Due to the limitations of the SSD in the range 0 - 5 eV we did
not attempt such an extrapolation for AIN and diamond.

Fig. 4 shows the corresponding results for E2e;(E) for quartz and sapphire respectively.
According to Eq.(19) above, which also assumed parabolic bands as well as angle-integrated
data, one should obtain the band gap I, from the intercept of the leading edge on the energy
axis of this plot. In this case there was no straight line portion to extrapolate.

7. Discussion

Despite the limited resolution (apprx. 1.4 eV) of our energy-loss spectrometer and our use
of a linear fit for 0 - 5 eV for the SSD we have been able to obtain good results for the band
gaps of quartz and sapphire. These are wide-gap materials in common use as substrates in
modern electronic and optical technologies. Figure 5 shows the density of states and energy
band structure calculated for sapphire?!. Ideally, one would aim to use such results to predict
the joint-density-of-states function JDOS for comparison with the above results. Note that
in our experiments we are limited effectively to the zero wavevector limit (i.e. the I' point).
Thus we expect to obtain only the direct energy gap.

Of course the electron energy loss techniques used above have lower resolution than optical
methods. However, they do have some advantages. Firstly, they covers a wider energy range
which may include the ranges covered by visible, ultraviolet and soft x-ray radiation. Second,
in combination with high resolution electron microscopy, it allows the structure of localized
regions to be characterized, along with their PEELS spectra??2. The low energy resolution
gives rise to difficulties near the zero-loss region, over 0 - 5 eV in fact for our instrument.
Therefore, at this stage, the KKA method can only reliably measure wide band-gaps for
insulating materials like sapphire and quartz. We expect that this limitation can be overcome
by increasing the instrumental resolution as well as being extremely careful with the zero-loss
peak simulation to obtain more accurate single scattering distributions in the range 0 - 5 eV.
We are currently attempting to implement the above KIKA procedures using data obtained
using VG-STEM nanoprobe instruments which have energy resolution of 0.5 eV, when we



expect to obtain useful results for diamond, aluminium nitride and other interesting wide-gap
semiconductors, insulators and glasses.
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FIGURE CAPTIONS

Figure 1
Typical loss function (Im(—1/¢)) results for crystalline quartz, sapphire, aluminum nitride

and diamond, following KKA.

Figure 2
Comparison of JDOS results for quartz, sapphire, AIN and diamond.

Figure 3
Comparison of JDOS*JDOS results for quartz and sapphire.

Figure 4
Comparison of E?*¢, results for quartz and sapphire.

Figure 5
Theoretical density of states results for sapphire?’. Note direct band gap of 7.14 ¢V and
density of states for the valence and conduction bands.
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