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Abstract

Presently, the Power Reactor and Nuclear Fuel Development Corporation(PNC)

is investigating the best way to treat high-level radioactive nuclear wastes from

reactors. As part of their basic research on the transmutation of fission products, PNC

developed a high-power CW electron linac for various applications, in particular for

studying the use of strong gamma-rays for transmuting the medium-lived fission

products (MLFP) of Sr-90 and Cs-137. As the results of studies of transmutation by

photoreaction have shown, high-flux and high-energy gamma-rays (~ 15MeV) are

needed. However, to make an approach feasible it is very important to generate the

gamma-rays at a reasonable cost. To increase the intensity of the gamma-rays, a

high-current electron beam and a high-power laser are needed. This paper reports our

findings which show that to generate gamma-rays by inverse Compton scattering

effectively, the photons accumulated in a optical resonator must intensify the

monochromatic gamma-ray flux by the collisions of inverse Compton scattering with

electrons. The method we discuss employs inverse Compton scattering with an

optical resonator composed of very high-reflectance, low-absorptance mirrors. With

advances in technology, the flux of gamma-rays that can be attained is of the order of

10A18, and its efficiency is 0.9% using this method. If future technological progress

results in a mirror with a reflectance of 8N and absorptance of 0.00 lppm, then it

might be possible to achieve a flux of the order of 10A20, and an efficiency of more

than 30%. In the case of a concentric resonator, the density of the photon beam at the

interaction point can be higher than that in a confocal type, so that a gamma-ray flux

of the same order as the 8N case may be achieved.
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