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Abstract

Generalized Magnetic Coordinates (GMC) are curvilinear coordinates (£, 77, £), in which the magnetic field is

expressed in the form

The GMC construction algorithm is applied to the simple periodic model magnetic field. The coordinates are expanded

in the Fourier series in three dimensions. It is obtained after about 10—35 times iterations. The coordinates are well

constructed by the comparatively small number of Fourier modes.
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§ 1. Introduction

Magnetic flux coordinatcs[l,2] are widely used in the study of the MHD equilibrium and stability in the toroidal

plasma when the nested magnetic surfaces exist. Unfortunately, the nested magnetic surfaces exist only in the limited

region of torus; and even inside the outermost magnetic surface there might exist complicated magnetic islands

structure. In such cases, the use of the conventional magnetic flux coordinates is not expected.

The Generalized Magnetic Coordinates (GMC)[3] are the new one to supplement the magnetic coordinates system

adequate to treat the general magnetic configurations. The GMC can be constructed in the region without nested

magnetic surface and the region of chaotic or ergodic magnetic lines of force. So the GMC can treat the magnetic field

involving magnetic islands and outside the outermost magnetic surface.

In the GMC (<!;, 77, f) the magnetic field is expressed in the form
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here H( s i/gBc does not depend on f, where -sfg is Jacobian. The function *P is the covariant f component of vector

potential. When the good magnetic surface exists, *P becomes independent of f and 4/(<^,77)=Const. is the magnetic

surface. The ^-dependent part of *P corresponds to the destruction of the magnetic surface. The GMC are to be

constructed so that the £ component of vector potential becomes dependent of £ as little as possible.

In order to check the GMC construction algorithm, the general numerical method to construct a GMC is applied to

the simple periodic model magnetic field[4,5]. In this paper the GMC are applied to the model magnetic field involving

clearly magnetic islands.

§ 2 . Construction of GMC

The algorithm to construct GMC is the new one to construct magnetic surfaces without tracing magnetic lines of

force. It is based on the transformation rule of the vector potential accompanied with the change of coordinates[3].

We shall consider a curvilinear coordinate system (|, rj, £), f being the angle variable corresponding to the toroidal

direction. We introduce a time-like parameter x and consider the continuous path from an initial state of coordinates to

the GMC. Then coordinates are expressed as follows,

r=r(£,77,f;T). (2)

The coordinates approach to GMC when T-»°°. The parameter x corresponds to the iteration time in numerical

calculation by computer.

The magnetic induction densities •N/̂ >B=(//1' ,Hn,H'*) can be expressed in terms of the vector potential

\={A^,\,A^) as

, dA, dA dA. dA. , dA dA,

dr] 3f 3 f 3<fj d% dr]

If we introduce the notations

A=jAd^/§d^, As A-A, (4)

the principles to construct The GMC can be expressed by the following conditions;

1) Wf does not depend on f,

2) Ac is minimized,

which are represented as

| | 2 d f = 0 . (5)

§ 3 . Modeling and Results

We employ the ABC(Arnol'd-Beltrami Childress) magnetic field in the Cartesian coordinates added constant magnetic

field in the direction of z as the model magnetic field,
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Bx =bcos(2ny) + csm(2nz), (6)

By — ccos(2nz) + asin(27rx),

Bz = acos(2n:x) + bsin(2Ky) + Bo

with (a—0.2, b-QA, c=0.6). This magnetic field is periodic in the directions of (x,y,z). The constant magnetic field

Bn is added so that B. >0.

The (x,y,z) coordinates are expanded into Fourier series in terms of the GMC (£, 77, £),

x = $+i X ixlmnexp(2m[lZ+mii+nC]), (7)
I=-Lm=-Ln = l

y = T]+ 1 1 I Y, m „ cxP(2m[l^+mr1+nQ),
l=-Lm = -Ln=\

The space is divided into 20—40 meshes of (<̂ , rj, £). The scalar function v is also expanded by Fourier series. The

GMC are obtained after about 10—35 times iterations so far.

In the previous paper[5], we reported two magnetic field cases of B0=0.5,1.0 without involving clearly magnetic

islands using the number of Fourier mode from L=l to L=7. Fig.l shows the Poincare maps of magnetic surfaces of

Bo=1.0 on the f=0 plane in the GMC. Fig.2 shows the shape and contour of A^(^,77). When the nested magnetic

surfaces exist, they are equal to A^ =Const..

Next, the constant Bo is lowered to B0=0.45, so that the magnetic field involves clearly magnetic islands. The

variation of the magnetic field in the C, direction is larger than the case of Bo = 0.5. Fig.3 shows the GMC mesh of

^,j)=Const. at equal intervals constructed in the number of Fourier mode L=9 on the z=0, 0.25, 0.5, 0.75 planes in the

Cartesian coordinates. The Poincare maps of magnetic surfaces of B0=0.45 is also overlapped in Fig.3. The only

central toroidal field of interest is drawn in the Poincare map and the outside of it is omitted to draw. Fig.4 shows the

Poincare maps of magnetic surfaces on the £=0, 0.25, 0.5, 0.75 planes in the GMC. The magnetic islands of poloidal

mode number M=5,7 and 9 are clearly shown. The magnetic islands rotate as f changes. Fig.5 shows the shape and

contour of averaged magnetic surface A (̂< ,̂TJ). The averaged magnetic surface is A^Const. when the breaking of

nested magnetic surfaces exist. Fig.6 shows the Poincare map on the £=0.75 plane overlapped to Fig.5. The magnetic

islands of M=5 rotate along the averaged magnetic surface; and the width of magnetic islands of M=5,9 could be

measured by the averaged magnetic surface.

In order to evaluate the magnitude of the £ dependent part of n', we calculate the integral,

The integral /^ is plotted against the number of Fourier mode L in Fig.7. It decreases exponentially as L increases.

Since the GMC are constructed so that Iv becomes zero, /^ must converge to zero. So the error of /^ is caused by the

finite truncation error for the most part.

In order to estimate the influence from the breaking of magnetic surfaces, we evaluate the magnitude of the £
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dependent part of H^ and Hn by the integral,

The integral /j^and /^ are plotted in Fig.7. Since A? is minimized in the GMC, Vv* and /if71 are also minimized. Since

H^ and Hn naturally contain the contribution from magnetic islands where the nested magnetic surface does not exist,

only its contribution should be contained in /^ and /^ if the GMC are precisely made up. Since both /^ and /^ are not

saturated and they are not very different from /^, they are mostly reflected by the smallness of number of Fourier mode

more than the breaking of magnetic surfaces.

In order to estimate A £ that relates with the breaking of magnetic surfaces, we calculate the integral,

The shape and contour of E^ are shown in Fig.8. The shape of E* seems like a crater of volcano. The shapes are

roughly unchanged for the number of Fourier mode from L=l to L=9, but the shapes become a deeper crater as L

increases. Although the magnetic islands of poloidal mode number M=5 locate in the middle of the magnetic axis and

the outermost magnetic surface, E, is not especially large there. The largest region of E, is annular and located

around the outside of the outermost magnetic surface. The region of nested magnetic surfaces around the magnetic axis

corresponds to the region of smaller E. . The similar result for E* is obtained for the magnetic field of fio=0.5.

At last, in order to examine the distribution of H1', we calculate the integral

?. (11)

The shape and contour of E^ are shown in Fig.9. Since the shape of E^ is similar to E^q, the region of the outside of

outermost magnetic surface influences on the convergence of E^ alike. Although E^ must converge to zero like /^, the

shape of E^ approaches to that of E^n if L becomes large to L=9. The meaning of this is not clear at the present.

§ 4. Summary

It is shown that the averaged magnetic surface A^ =Const. is equal to the magnetic surface when the nested magnetic

surfaces exist. The GMC can be constructed for the magnetic field involving clearly magnetic islands by the general

algorithm to construct GMC. In this model field H^,Hn and H1' decreases exponentially as the number of Fourier

mode increases. The distribution of A^ that relates with the breaking of magnetic surfaces is estimated. The largest

region of A^ is located around the outside of the outermost magnetic surface. The relationship between A^ and the

region where magnetic surface does not exist should be examined in further detail.
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In the general magnetic configuration of interest the periodic condition in three dimension cannot be used. In order to

drop the periodic conditions of magnetic field in ^ and 77 directions, the B-spline function should be used as the basis of

expansion. The B-spline function that has local support is adequate to treat the general magnetic field involving further

breaking of magnetic surfaces.
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Fig.l. The Poincare map at £=0 in GMC

(B0=1.0,L=7).

Fig.2. The shape and contour of ^(£,77) in GMC

(a)Shape, (b)Contour (B0=1.0, L=7).
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Fig.3. The GMC meshes and Poincare map in (x,y,z) (B0=0.45, L=9)

(a)z=0, (b)z=0.25, (c)z=0.5, (d)z=0.75.

1.2

1.2



1.2
(a) zeta = 0 (c) zeta = 0.5

0.8

0.6

0.4

0.2
0.2 0.4 0.6

xi
(b) zeta = 0.25

0.8

0.8

0.2 0.4 0.6
xi

(d) zeta = 0.75

0.8

0.8

Fig.4. The Poincare map in GMC (£.77,0 (B0=0.45, L=9)

(a)C=0, (b)C=0.25, (c)C=0.5, (d)C=0.75.
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(b) Contour

Fig.6. Af. contour and Poincare map at z=0.75
in GMC (£77,0 (B0=0.45, L=9).
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Fig.5. The shape and contour of Af (£TJ) in GMC (£,77,£) Fig.7.
(a)Shape, (b)Contour (B0=0.45, L=9).

, ln and /^ vs. The number of Fourier mode L

(Bo=0.45).
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Fig.8. The shape and contour of
(a)Shape, (b)Contour.
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Fig.9. The shape and contour of E( (B0=0.45, L=9)
(a)Shape, (b)Contour.


