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ABSTRACT
The concept of dynamic stability of elastic

structures subjected to sudden (step) loads is
discussed. The various criteria and related
methodologies for estimating critical conditions are
presented with the emphasis on their similarities and
differences. These are demonstrated by employing a
simple mechanical model. Several structural
configurations are analyzed, for demonstration
purposes, with the intention of comparing critical
dynamic loads to critical static loads. These
configurations include shallow arches and shallow
spherical caps, two bar frames, and imperfect
cylindrical shells of metallic as well as laminated
composite construction. In the demonstration
examples, the effect of static preloading on the
dynamic critical load is presented.

INTRODUCTION
Dynamic stability or instability of elastic

structures has received considerable attention in the
past thirty years. The beginning of the subject can be
traced to the investigation of Koning et.al. [1], who
considered the response of an imperfect (half-sine
wave) simply supported column subjected to a sudden
axial load of specified duration. Since then, several
studies have been conducted by various investigators
on structural systems, which are either suddenly
loaded or subjected to time-dependent loads (periodic
or non-periodic) and several attempts have been made
to find common response features and to define
critical conditions for these systems. As a result of
this, the term "Dynamic Stability" encompasses
many classes of problems, and many different
physical phenomena. Therefore, it is not surprising
diat there exist several uses and interpretations of the
term.

A large class of structural problems, that has
received considerable attention and does qualify as a
category of dynamic stability, is that of impulsively
loaded configurations and configurations which are
suddenly loaded with loads of constant magnitude and
infinite duration. These configurations under static
loading, are subject to either limit-point instability or
bifurcational instability with unstable post-buckling
branch (violent buckling).

Solutions to such problems started appearing
in the literature in the early 1950's. Hoff et.al. [2]
considered the dynamic stability of a pinned half-sine
arch under a half-sine distributed load. Budiansky
et.al. [3] in studying the axisymmetric behavior of a

shallow spherical cap under suddenly applied loads
defined the load to be critical when the transient
response increases suddenly with very little increase
in the magnitude of the load. This concept was
adopted by numerous investigators [4] in the
subsequent years, because it is tractable to computer
solutions. Finally, the concept was generalized in a
subsequent paper by Budiansky [5] in attempting to
predict critical conditions for imperfection-sensitive
structures under time-dependent loads.

Conceptually, one of the best efforts in the
area of dynamic buckling, under suddenly applied
loads, is the work of Hsu and his collaborators [6,7].
In his studies, he defined sufficiency conditions for
stability and sufficiency conditions for instability,
thus finding upper and lower bounds for the critical
impulse or critical sudden load. Independently,
Simitses [8] in dealing with the dynamic buckling of
shallow arches and spherical caps termed the lower
bound as a minimum possible critical load (MPCL)
and the upper bound as a minimum guaranteed critical
(MGCL). Finally, Thompson [9] presented a
criterion for estimating critical conditions for
suddenly-loaded systems.

FUNDAMENTAL CONCEPTS
The totality of concepts and methodologies

used by the various investigators in estimating
critical conditions for suddenly loaded elastic systems
can be classified in the following three groups: (a)
The Equations of Motion Approach [3]. The
equations of motion are (numerically) solved for
various values of the load parameter (ideal impulse, or
sudden load), thus obtaining the system response.
The load parameter, at which there exists a large
(finite) change in the response, is called critical, (b)
The Total Energy - Phase Plane Approach [6,7].
Critical conditions are related to characteristics of the
system phase-plane, and the emphasis is on
establishing sufficient conditions for stability (lower
bounds) and instability (upper bounds), (c) The Total
Potential Energy Approach [2,8]. Critical conditions
are related to characteristics of the system total
potential. Through this approach also, lower and
upper bounds of critical conditions are established.
This last approach is applicable to conservative
systems only. The common concept in all three
approaches is that there exists dynamic stability, if
the motion resulting from the sudden application of
the loads is bounded. Of course, one must exercise
special care in establishing allowable bounds for the



resulting motion. These concepts and the related
methodologies will be discussed, during the
presentation, through a simple mechanical model.
The interested reader is referred to [4].

APPLICATIONS
In this section, results are presented for a few

structural elements and configurations. The sudden
loads are step loads of constant magnitude and finite
duration, including the extreme cases of ideal impulse
and constant load of infinite duration. The oral
presentation includes a half-sine sudden load, an
eccentrically loaded two bar frame and a shallow
spherical cap.' For all of these elements, the
construction material is a metal. For details, see [4].

In addition, results are presented for metallic
and laminated cylindrical shells, subjected to suddenly
applied uniform axial compression and bending
moment (individual application). Moreover, results
are presented for laminated cylindrical shells,
subjected to suddenly applied external pressure. The
motivation for these studies is the physical relevance
of dynamic loads during the service of aircraft, surface
ships, submarines and jet engine casings. The nature
and source of these loads could be attributed to gusts,
blasts, high sea waves and the loss of one or more
blades during the operation of a jet engine (blade out).

Metallic Cylinders
Consider a metallic cylinder, subjected to

either uniform axial compression or bending moment,
which are suddenly applied. The thin cylindrical shell
is imperfect and the material and geometric properties
are:
E = 72.4(109) Pa, p. = 0.3, R = L = 0.1016 m, t =
0.1016(10"3)m, and

w° (x, y) = at sin In — - — cos 40. Fig. 2 depicts

o/ \ ( 2nx
w (x,y)-at -cos

V
at -cos + 0.1 sin—cosn#

where E is Young's modulus, (i is Poisson's ratio,
R, L and t are the radius, length and thickness,
respectively, and w° the initial geometric

imperfection. Note that a = wmax/f. Fig. 1 depicts
dynamic compression critical loads versus duration
time for two imperfection amplitudes. For more
results and details, see [10].

Laminated Cylinders
The next application is a laminated

cylindrical shell made out of Boron/Epoxy under the
same loads with the following properties: E\\ =

206.9 (109)Pa; E22 = E33 = 18.62 (109) Pa; G12 =
G13 = 4.48 (109) Pa; E23 = 2.556 (109> Pa; \xn =
H13 = 0.21; H13 = 0.45; R = L= 0.1905m; hp iy =

1 . 3 4 6 ( 1 0 - 3 ) m; (45%45°) a n d

dynamic critical loads versus duration time, T and a =
0.5. For more details see [10].

Finally, results are presented herein for
laminated, imperfect, composite shells subjected to
"step" external pressure with and without static
preloading. Because of space limitations, limited
results are shown on this paper. The lecture will
provide greater detail. The construction material for
these cylindrical shells is Graphite/Epoxy and
material and geometric properties are: p = 1.6 (10^)
Kg/m3; E n = 136.9 GPa; E22 = E33 = 9.86 GPa;
G12 = G13 = 5.65 GPa; G23 = 2.69 GPa; \in = H13
= 0.293; H23 = 0.45; R = 17.78cm; h p i y =

0.1778mm; L/R = 2,3,5; ( 9 0 ° / o ° ) , i=2,3,4&5;

a n d
( « : / » ; ) , •

= 0.01,0.05 and 0.10

= 0.08763mm, 0.43815mm and 0.8763mm)

A finite element code for thick shells was
employed (in ABAQUS) and both implicit and
explicit time integration methods were used. Results
were generated by employing all three methods
discussed earlier. Details of the employed solution
methodology can be found in [11].

Fig. 3 depict critical pressures in psi versus

duration time in microseconds for (905 / 0 3 ) , and

L/R = 2,3,5. Note that as the cylinder length
increases the difference between the static critical
pressure and the dynamic critical pressure (for infinite
duration) decreases. Fig. 4 depicts the effect of static
preloading for the same configurations as in Fig. 3.
The oral presentation will contain more results.
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Fig. 1. Dynamic Critical Load for a Metallic Cylinder



2. Dynamic Critical Load for a Laminated
Cylinder
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Fig. 4. Effect of Static Preloading
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Abstract

In this work, flutter of large span wings is analyzed. The
flutter phenomenon, in this case, is a result of the coupling
between the bending vibrations of the wings and the pitch
oscillations of the body due to the aerodynamic forces. A
simple mathematical model of the system is constructed.
The model includes a central rigid body and two symmetric
rigid wings which have an angular degree of freedom to
model their bending. Aerodynamic forces and moments are
applied to the body and the wings. Torque proportional to
the bending angle is applied between the body and each of
the wings. The equations of motion of the system are
developed with the aid of the Autolev software. Simulation
carried out with these equations enables diagnosis of the
conditions for flutter. It is found that this flutter
phenomenon depends on the geometric relations, flight
velocity and wings rigidity. Linearization of the equations
of motion demonstrates that flutter of wings is an
instability which is characterized by the positive real value
of one of the eigenvalues of the system. Adding control
forces which are produced by the automatic pilot and are
applied by control surfaces deflection eliminates the flutter
phenomenon in all practical cases.

Introduction
This work deals with flutter properties of an aircraft

having four degrees of freedom (DOF); vertical up-down
movement, pitch and two wings bending. The flutter
analysis is done for uncontrolled and for pitch - controlled
aircraft. The analysis method combines an aeroelastic
model with a control model for time-domain simulations.

This work can be compared to the classic case of flutter
of wings having two DOF which was analyzed by
Hancock [1]. Hancock deals with flutter as a result of
coupling between bending and torsion of the wings. In the
present work the flutter due to coupling between the pitch
of the aircraft and the bending of its wings is addressed,
while the wings are assumed to be rigid in torsion.

The case of a missile controlled by pneumatically
activated fins was analyzed by Yehezkely and Karpel [2]
.In [2] only an open-loop control was analyzed while in the
present work a closed-loop auto-pilot control is considered.

The present work combines both simulation of the
nonlinear equations of motion together with analysis of the
eigenvalues of the system after linearization. In the first
part, the system without the auto-pilot control forces is
analyzed. The dependence between the system parameters
and the flutter phenomenon is investigated and presented.

In the second part of the work, the influence of control
forces which are produced by the automatic pilot is
analyzed. These forces are applied by control surfaces
deflection at the rear part of the body. Addition of these
control forces changes the aerodynamic behavior of the
body and the flutter properties of the aircraft.

The Model
Figure I describes a model of a body wing aircraft type

system. The model includes the following elements: central
rigid body (A) and two symmetric rigid wings, (B) and
(C). The body (A) has two DOF; a linear DOF Z in the
vertical direction and an angular DOF a for the pitch. For
simplicity it is assumed that the main body has a planar
motion with constant velocity V in the horizontal direction

The wings (B) and (C), which are connected to the
central body by angular flexible joints, have an angular
DOF, qh and qc respectively, to model the wings bending.
The bending flexibility of wings B and C with respect to
the body A is modeled by torsion springs connecting B and
CtoA.

AoK.G.I 1Z

Fig.l: System configuration

Equations of Motion
To deal with the current flutter problem, the following

frames are defined. ah bb ct and n-, (i = 1,2,3) are sets of
three dextral, mutually perpendicular unit vectors, fixed in
A, B, C, and N (Newtonian reference frame) respectively,
directed as described in figure 1. Two DOF are imposed on
the body A, according to the above mentioned assumptions,
one linear DOF in the vertical n^ direction and an angular
DOF a (pitch) about 713 . Two other DOF represent the
bending of the wings B and C about A with angles qB and
qc . Four generalized speeds are required to describe the
motion of the system in N. The first two may be defined as:

U2A
N(HA a3 = d (2)

N Awhere V " is the velocity of the mass center Ao of A

N A
inN, CO is the angular velocity of A in N, a is the
pitch angle and d its time derivative. In addition, the



other two generalized speeds of the system may be defined
as: (13)

(3)

A A B
U3A- CO -o.3-q.B

u3A+A(oB a3 =qc

where A(bB and ''(fl are respectively, the angular
velocities of B and C relative to A, and qB and qc are the
bending angles of B and C.

The generalized inertia forces may be formulated after

expressing the terms for CO and N(oc, the angular

velocities of B and C in N and N \B» and N \C«, the
velocities of Bo and Co , the mass centers of B and C, in
N. Now from equations ( 2) and (3):

(4)

(5)

Next, by defining the following position vectors from Ao to
Bo and Co (see fig. 1):

pA"/AB = -slal+s2a3

" — STD-LP - 1331/3

,AJAC _ „ .

" = " ^ 3

then with Eq. (1 )

JAB

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Using equations (10),(l 1) and (12) and defining the

direction cosines between W/,#/ and t>;- and between

ni,di and Cj (7=1,2,3), leads to the required expressions

for the evaluation of the inertia forces, partial angular
velocities and partial velocities. Kane's formulation [3] can
now be adapted to derive expressions for generalized
inertia forces.

The active forces and torque are as follows:

1. The following aerodynamic forces and torque are
assumed:

1.1 Normal force on the main body (A), at the point Al,
due to the pitch angle a:

1.2 Normal force on the main body, due to the vertical
velocity z, at A1:

1.3 Pitch damping torque on (A):

TA = QdSrCr{Cr /2V)Cmqda3

(14)

(15)

2
where Qd = 0.5 pK , p is the air density, Sr and Cr are the

reference area and length, C,oc^ and Cmq are the body lift

slope and the pitch torque damping coefficients.

2. On the wings (B) and (C) the following forces and ••
torque are applied:

2.1 Normal force due to the pitch angle a, acting at the
control points B2 and C2 of wings B and C,
respectively:

2.2 Damping force due to the pitch rate (X at B2 and C2:

F2
B2=QdSrC^[{sl-s5)d/V]b2

F2
C2 = QdSrC™ns[(s\ -s5)d I V]c2

2.3 Normal damping force due to the vertical velocity of
the body i :

(18)

2.4 Normal damping force due to the bending rate qg on
the point Bl of wing B and qQ on point Cl of wing C:

(19)

where Q ' is the lift slope coefficient for each wing

while (s3 + s4) and ( s i — £5) are geometric distances
from point AB to Bl, from AC to Cl and from Ao to B2
and C2, as illustrated in Fig. 1.

3. The torque due to the bending angles qg and qc, of the
B and C respectively can be expressed as:

wbHB 1 ( 2 Q )

TAIC=-Kwqccx

where Kw is a spring constant which represents the bending
elasticity of the wings.

4. The influence of a control force Fz, which is produced
by the automatic pilot, is applied by a control surface
deflection and acts at point A2 (Fig. 1). This force may
be expressed as:



(21)
where 8 is a function of the pitch angle and pitch rate a and

d :
(22)

and C/5 ,Cr\ and Cfi are constants parameters of the

auto-pilot.

When the velocity in N of Al, A2, B1,B2,C1, and C2 is
derived, contribution of the active forces in Eqs. (14-23) to
the generalized active forces can be obtained. Substitution
of these generalized active forces and the generalized
inertia forces in Kane's equations [3], leads to the equations
of motion of the system. In the present work, these
equations were derived and coded with the aid of Autolev 3
software [4].

Analysis and Results
Simulation of the equations of motion was performed

for an aircraft with the following parameters: Masses:
mA=50, mB=mc= 1.5kg. Inertia: IA2=10, IBi=IS2= 0.1,
Icl=IC2=0.1kgm2. Lengths: SI =0.14, S2=0.1, S3=0.6,
S4=0.3, S5=0.05, S6=0.1 and S7=0.75 m. Ku. = 2000N/rad

Qd/V
2 = 0.6 kg/m\

rbody _

Sr = C, = 0.3 m

and Cmq = 5

In Fig 2, results are given for an initial pitch
disturbance of 0.01 radian for a case where the auto-pilot
control is not applied. Results are given for three velocities:
1. For V = Vf =96.3m/sec which is the critical flutter
velocity for this set of parameters. 2. For V = 85 m/sec
which is below the critical flutter velocity - thus the initial
coupled vibrations decay. 3. For V= 105 m/sec which is
above the critical speed - thus the coupled vibration
amplitudes diverge. The increase of the frequency with the
velocity can also be observed.

0.5 15
TIME[sec|

2.5

Fig. 2: Influence of velocity on the bending
amplitude, for (1) - V=Vf=96.3,
(2) - V=85 and (3) V= 105 m/sec

It can be clearly observed that the coupling between the
pitch of the body and the bending of the wings depends
directly on the distances SI (see Fig. 1). As the distance SI
becomes larger, the coupling becomes stronger and thus Vf

tends to become lower. On the other hand, when S1 is
increased the pitch stability of the body (Fig. 1) is also
increased and the damping on the wings (Eqs. 17) becomes
larger. The total influence of SI on the critical velocity Vf
was found after linearization of the equations of motion
was performed (also with the Autolev 3 software). By
examining the eigenvalues of the system, the critical flutter
velocity can easily be determined. The results of this
analysis are described in Fig 3 for the above mentioned set
of parameters.
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Fig 3: Influence of (1) SI axial distance from body
e.g. to wings e.g. (Fig. 1) and (2) Kw - wings
bending constant on critical flutter speed Vf

The influence of the bending spring constant Kw on Vf
is also represented in Fig. 3. In this case the increase of the

critical flutter velocity is proportional to yJKw / Km,

where Kwn is the nominal bending spring constant.

Fig. 4 shows the frequencies of the three modes as a
function of the velocity V. At V equals zero (i.e. zero
airspeed) the system oscillates in its two natural
frequencies. One is the uncoupled bending mode of the
wings of 9.1 Hz, while the second is the a body elevation
mode coupled with wings flapping of 8.9 Hz. At V=0, the
frequency of the coupled pitch/bending flutter mode is
zero. It is seen that the frequencies of the first two modes
decrease markedly with increase of V until they vanish at
about V/Vf=0.6, while the flutter mode frequency increases
with V.
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The behavior of the system changes dramatically when
the control force of the auto-pilot is added. The influence
of the auto-pilot control force is to increase the rigidity of
the body to pitch dynamics and to increase its damping.
This influence is described in Fig. 5 for the following set of
the auto-pilot parameters (Eqs. 21 and 22 and Fig 1):
57=0.75 m, F=105m/sec

.2
^4= 0.5, Cyi =2000—y- and Cf2 =350 sec

Tm m
In this case without the auto-pilot the oscillation amplitudes
diverge. Adding of the control force causes the amplitudes
to decay.

Q.OS

-0.06
0.6 D.8 1

TIME[sec|

Fig. 5: Bending amplitudes (1) without control force
and (2) with control force, at V=105m/sec

The resulting effect of the auto-pilot control force is to
eliminate the unstable zone of the system. This
phenomenon can be observed in Fig. 6 in which the real
part of the flutter mode eigenvalue is described for the
system with and without the control force (assuming that
there is no change in the aerodynamic coefficients for the
given velocity rang). It is clearly demonstrated that while
for the uncontrolled conditions the system is unstable for V
> 96.3 m/sec, (positive real part of the eigenvalue), the
controlled system remains stable throughout the entire
velocity range.

Summary
A flutter phenomenon due to coupling between aircraft

pitch and the bending of its wings was demonstrated. The
influence of various parameters of the system on the critical
flutter velocity was analyzed. It was shown that adding
control forces of the auto-pilot might eliminate the
instability zone of this flutter mode at the given set of the
system parameters.
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