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ABSTRACT

Linear and nonlinear stability of the flow between
coaxial cylinders is investigated. The linear analysis
is carried out within scope of temporal linear sta-
bility theory. The eigenvalue map is obtained with
the collocation method based on Chebyshev poly-
nomials. The nonlinear analysis is based on a novel
parallel code for DNS of a coaxial pipe flow. It'is
shown that the major source of finite amplitude in-
stability is associated with the interaction of three-
dimensional disturbances and streamwise rolls.

INTRODUCTION

“Classical” shear flows as pipe Poiseuille flow, plane
Couette flow have received much considerations for
the recent years. The active interest in the flows is
associated with the problem of bypass in laminar-
turbulent transition. The flows are stable with
respect to infinitesimal disturbances, while experi-
ments revealed that there are critical Reynolds num-
bers above which the flows might be turbulent. Be-
sides the understanding of specific flows, analysis
of the bypass transition may be also important for
other types of flows when level. of perturbations
is sufficiently high. Various “transition scenarios”
have been proposed for bypass mechanisms of tran-
sition. A brief discussion of them are presented
in[1, 2, 3] where a conception of self-sustaining pro-
. cess (SSP) is also proposed and illustrated with
plane Couette flow. The idea is in the following. No
matter what is the initial source, weak streamwise
rolls are excited in the flow and they 'redistribute
the streamwise momentum, and spanwise fluctua-
tions occur in streamwise velocity. The flow becomes
unstable with respect to three-dimensional wave-
like type of disturbances, that, in turn, sustain the
streamwise rolls. In the case of a pipe flow the SSP
includes a generation of circumferential fluctuations
in streamwise velocity, which are analogous to the
spanwise variations in plane Couette flow. Recently,
the idea of SSP found a support in experiments[4]
with pipe Poiseuille flow subjected to controlled dis-
turbances. The main result of the experiments in-
dicates that the laminar-turbulent transition occurs
only when a mean velocity distortion by the longi-
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“tudinal vortices is developed.

In present paper we study a stability of flow be-
tween two concentric cylinders, r; and ro are radii of
external and internal cylinders, respectively. When
the gap width is relatively small with respect to the
radii ( ry — 7y € 7y ), the flow corresponds to plane
Poiseuille flow. If the gap width is comparable with
the biggest radius ( 7y —r2 =~ r1 ), the flow is similar
to the pipe Poiseuille low. We are interested in an
intermediate case, when ro/ 71 =~ 0.5 — 0.7 and the
goal is to find out the SSP in this type of flow.

The basic tool of the present study is the di-
rect numerical simulation of incompressible fluid in
a coaxial cylinder. The flow is assumed to be pe-
riodic in the streamwise direction, periodic bound-
ary conditions for the velocity are also used in ax-
ial direction. We consider an incompressible flow
governed by the Navier Stokes equations. Reynolds
number is based on distance between two coaxial
cylinders. We use a cylindrical coordinates sys-
tem (r,8,z). The velocity vector is of the form
V = ue, + veg + we, , where u, v, w are the velocity
components, and e,,es, e, are unity vectors in the
radial,circumferential and axial directions. No slip
and impermeable boundary conditions are taken on
the internal walls of cylinders.

LINEAR ANALYSIS

We begin our analysis with the eigenvalue problem
by using the temporal theory. We consider a lam-
inar incompressible flow in a framework of the lin-
earized Navier-Stokes equations for velocity compo-
nents and pressure disturbance. The disturbances
for velocities u, v, w, and pressure disturbance p are
proportional to eXmf+n¥s~wt) yhere parameter m
is an integer azimuthal index, 7 is an integer stream-
wise index, L -is the tube length and w is a fre-
quency. We obtain the governing equations as a sys-
tem of ordinary differential equations with boundary
conditions and obtain the eigenvalue problem for w.
The frequency w is a complex one and, according
to the temporal theory, the disturbance grows when
Im{w) > 0. It was verified that it is enough to
choose 60 Chebyshev polynomials for the first few
tens of eigenmodes. The map of complex frequency
w of modes with » = 1, m = 1 is shown in Fig.1



for Re 20000 and various relations ry/ry. It is
shown that for ro/r; > 0.6 there is an unstable
mode. The maps for m = 0,2 and 3 are similar.
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Fig. 1 FEigenvalues in the complex planew. <
-ro/ry =09, +~ry/ry =08, O—ry/r = 0.7,
X = 7‘2/7‘1 = 0.06 s VAN -—7‘2/7‘1 = 0.5.

DIRECT NUMERICAL SIMULATIONS

1. Linear Theory and DNS

We have compared results of numerical simulations
with the presented above results of linear temporal
theory. We have chosen initial velocity field as a sum
of the basic flow and a small amplitude first unstable
eigenmode. A development of the velocity field in
space and time has been considered. The solutions
are presented in dimensionless form with distance
between coaxial cylinders as length scale and with
the maximum of the mean axial velocity as a veloc-
ity scale. We have checked two cases: small axisym-
metric and non axisymmetric perturbations of the
basic velocity profile. For both cases the Reynolds
number Re = 20000,75/r1 = 0.7. The amplitude
of the axial velocity disturbance was chosen equal
to 0.007. A comparison between the dynamics of
the perturbation obtained from the numerical sim-
ulation and from the stability analysis is done by
space comparing in Fig. 2 and by time comparing
in Fig. 3. Analogous results were obtained for case
non-axisymmetric flow with m = 1,n = 2.
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Fig. 2 The solid curves 1, 2, 3 show the solution
according to the linear theory for z = L, z = 0.47L,
z = 0.3L correspondingly, © - numerical solution at
the same conditions, at time moment t=6T, T
2n/Re(w).
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Fig. 3 The solid line shows the dynamics of ax-
ial velocity perturbation w(t) for the unstable linear
eigenmode. © — numerical solution.
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2. Finite amplitude analysis

We carried out numerical experiment with the ini-
tial disturbance consists of two eigenmodes with
equal streamwise numbers n = 1. They have az-
imuthal numbers equal by value but of opposite sing
: m = £1. Amplitude of axial velocity component
for each mode was chosen equal to 0.025. In these
simulations Re = 15500 , ro/r; = 0.7. The dynam-
ics of axial velocity perturbation is shown on Fig. 4.
One can see a fast build up of initial disturbances
and then their destruction, The Fourier analysis of
the velocity field for this case shows that from ¢ > 0
a strong growth of nonlinear harmonics with n = 0
and m = %2 takes place.

To examine an importance of the modes with
n = 0, m = %2, correspouding to counterrotating
rolls, for an origin of turbulence we carried out sev-
eral experiments. In those simulations Re = 13000 ,
ro/r1 = 0.7 and linear unstable eigenmode was ab-
sent. We present below just some typical results.
Experiment 1. The eigenvalue for modes with
n = 1,m = £1 and maximal value of Im{w) is
w; = 0.51414 — 70.00249. There are small decreas-
ing harmonics: Re(w;)/Im(w;) = —206. These two
modes have been used as initial disturbances of the
basic Jaminar flow in the first of the simulation. The
maximal value of axial velocity component for each
mode was equal to 0.025. The dynamics of axial
velocity perturbation is shown on Fig. 5. It is sim-
ilar to dynamics of unstable modes, which is shown
on Fig. 4. There is a fast build up of disturbances
at t < 50 and the Fourier analysis of velocity fleld
show a strong growth of harmonics with n = 0 and
m = £2 - corresponding to counterrotating rolls.
At t > 50 numerical scheme becomes unstable. The
longer time of development of instability is associ-
ated with decreasing of initial modes in this case.
Experiment 2. Velocity components w(r),v(r),w(r)
have been selected by Fourier transform for modes
with n = 1,m = £1 and modes with n = 0,m = £2
at time moment t = 36. For this moment modes



with n = 1, = +£1 are closed to initial eigenmodes
but velocity harmonics with n = 0, m = %2 have al-
ready increased considerably. Maximal value of w(r)
for modes with » = 0, m = £2 is equal half of one
for initial disturbance. Harmonics with n = 1 and
m = +3 have been excited too, but maximal value
of w(r) for these harmonics is 6.5 times less then one
for harmonics with n = 0, m = *2. Two first of se-
lected modes have been used as initial disturbances

of the basic flow in first simulation. The result is

shown in Fig. 6(curve 1). The two azimuthal modes
of the small amplitude do not cause a transition.
The modes corresponding rolls have been used as
initial disturbances in second simulation. The re-
sult is presented in Fig. 6 (curve 2), and we see that
the streamwise rolls of the small amplitude also do
not cause a transition.

Final step of our study is simulation with the ini-
tial disturbance consisted of four selected modes.We
observed in this case that the growth of mean value
of perturbation at t < 240 is produced by a strong
growth of the modes with n = 0, m = +2. The dy-
namics of axial velocity perturbation for this case
is shown in Fig. 7. One can see a development of
instability in this case. The growth of mean value of
perturbation at ¢ < 240 is also produced by a strong
growth of the modes with n = 0, m = %2 corre-
sponding to two pairs of counterrotating streamwise
rolls.
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Fig. 4 The dynamics of the axial velocity per-
turbation w in fixed point, Re = 15500.
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Fig. 5 The dynaztm'cs of the axial velocity per-
turbation w in a fixed point. Re = 13000, an initial
disturbance of the flow has heen chosen as sum of
small decaying eigenmodes with n =1, m = 1.

CONCLUSION

The stability of the flow in a coaxial pipe has beeh
analyzed by means of DNS. 'We have found a basic

mechanism of instability in coaxial pipe - interaction
of two counterrotating modes with streamwise rolls.
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Fig. 6 Curve 1l shcﬁw dynamics of w when an
initial disturbance have been chosen as sum of non-
linear modes with n = 1, m = +1. Curve 2 show

- dynamics of w when an initial disturbance are coun-
terrotating rolls.
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Fig. 7 The dynamics of w for case when an

initial disturbance have been chosen as sum of non-
linear modes with n = 1, m = +1 and modes with
n=0m=%2.
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