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ABSTRACT

The Hamiltonian formalism for the motion of a
deformable body in an inviscid irrotational fluid
is generalized for the case of the motion in a
bounded fluid. We found that the presence of
the boundaries in a liquid leads to the chaotiza-
tion of the body's motion. The "memory" effect
connected with a free surface boundary condition
is also accounted for.

INTRODUCTION

The classical hydrodynamic problem of the
motion of submerged bodies, (Lamb 1945 §3-5)
has recently received renewed interest stimulated
by the rapidly growing industry of underwater
vehicles (UV) operating in deep sea. For this
purpose, the problem of a non-linear control of
rigid autonomous UV, based on a simple poten-
tial hydrodynamic model in an unbounded space,
has been extensively and rigorously elaborated in
recent years by a number of investigators. It is
important to stress that the dynamical model of
UV operating in an unbounded otherwise quies-
cent fluid, should be extended towards more re-
alistic hydrodynamical circumstances in nature,
involving, say, canals, rivers, ports, harbors, off-
shore structures and also the proximity of free-
surfaces or interfaces.

HAMILTONIAN FORMALISM

A corresponding dynamical system arising from
the motion of a deformable body with a velocity
U and angular velocity fi in an unbounded po-
tential flow field (otherwise at rest) is connected
with the group E(3) of motions of the Euclidean
space R? (see, for example, Leonard & Marsden

1997). This group represents the configuration
space of the dynamical system comprised by a
deforma,ble body moving in a potential stream
and referred to 3. coordinate system attached to
the moving body. On the phase space of the sys-
tem there exist the following 6 coordinates Mi,
M%, M3, pi, p2, pz which represent the corre-
sponding generalized impulses in the Hamilto-
nian formalism

= (vpbi + f)v Kd{t),

M = zTv + (/
These are in fact just, the linear momentum (an-
gular momentum) of the body plus the Kelvin
impulse (Kelvin impulse-couple) induced in the
fluid due to the motion and deformation of the
body. We introduce here the 3 by 3 added-
mass tensors T, Z and R which correspond to
the translational, coupled and rotational motion
respectively (Lamb 1945). We also denote by
Krf (Pd) the deformation Kelvin-impulse (Kelvin
impulse-couple) (see, for details, Miloh & Galper
1993) and select the density of the fluid to be
unity, i. e. pj =• 1.

It can be shown (see also Galper &; Miloh
1995) that also for more general cases (de-
formable body embedded in a non-uniform ambi-
ent flow field moving near some external or mov-
ing boundaries) the dynamical equations of the
body's motion still remain Hamiltonian with the
generalized impulses given again as the general-
ized impulses of the body plus the generalized
impulses induced in the fluid due to the body's
motion.

The presence of some rigid boundaries breaks
the £(3) group of symmetry of the system. The
first integrals p2 and M • p which are valid for
the motion in an unbounded space are no longer
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conserved and the corresponding spatial coordi-
nates expressed in the body attached coordinate
system, should be considered.

We choose as the generalized coordinates for
the body the position of its centroid X referred
to the attached coordinate system. We also in-
troduce an orthogonal operator Q(t), which in-
stantaneously connects the body-fixed and the
laboratory coordinate systems. The conjugated
generalized impulses are represented by the to-
tal angular and linear momentum of the system
("body" + "fluid"). The kinetic energy of the
system expressed in terms of the generalized co-
ordinates and impulses serves as the Hamiltonian
given by

_ 1
~ 2

+(p(X,Q,t),

where all tensorial geometrical parameters and
Kelvin impulses (impulse-couples) now depend
on the space variables. The reason being that
the Green function of the body combined with
the rigid boundaries depend on the position and
orientation of the body. We denote here by
¥>(X, Q-, t) the energy of the fluid induced by the
pure deformations of the body. We have also in-
troduced in the above the following 6-by-6 sym-
metric added-mass tensor of the body

p -
M-

K
- P

• J~l P
M

~ K
p
JL

vpb\ +
R

Note that the proposed formalism allows us to
consider along the same line boundaries (in-
terfaces or free surfaces) with different phys-
ical boundary conditions (i.e., porous bound-
aries, elastic structures, etc). It is important
only to have linear boundary conditions on the
boundaries without time-derivatives (i.e., to pose
boundary conditions without memory).

EQUATIONS OF MOTION

If the body or the boundary hold an axisym-
metric property (we imply that an axisymmetric
body preserve the symmetry in the course of de-
formations) then one can define the unit vector
h aligned along the axis of symmetry (similar
to a "Poisson vector" used for the description

of a body's orientation in vacuum (Marsden &
Ratiu 1995)). We can replace now Q by h ex-
pressed in the body attached coordinate system
as an orientation variable. Correspondingly, the
equation of the motion for X and h are given
in accordance with the reference to the rotating
coordinate system as

+«AX=U
dX

~dt

dt
The fact that the momentum (angular momen-
tum) induced in the fluid by the moving body
can be linearly expressed in terms of the instan-
taneous values of the body's velocities (transla-
tional and rotational) and also the corresponding
purely geometric parameters (Green function)
depending only on the geometry of the body and
of the boundaries, strongly simplified the derived
equations of motion. They are found to be a sys-
tem of 12 coupled ODE (which means that there
is no memory effect in the system) given by

p + J2 A p = -

and

These equations resemble mathematically the
equations for the geodesical trajectory of a
charged point on the manifold E(3) endowed by
the Riemann metric (defined by the boundary)
moving in an effective magnetic and electric field.

INTEGRABILITY
We recall that for a rigid body moving in an
unbounded space there is a classification of in-
tegrability of the motion of the body as a func-
tion of its shape. It has been shown analytically
by Kozlov & Onichenko (1982) that except for a
number of "degenerate" shapes, such as, for ex-
ample, bodies of revolution (Holmes et. al 1997),
the Kirchhoff equations are, in principle, nonin-
tegrable and, therefore, the motion of the body
may be chaotic (see also Aref & Jones 1993).
In particular, it was shown by numerical exper-
iments, that chaos manifests itself both in the
orientation dynamics of the body and in the ge-
ometry of its trajectory in ,space. For a rigid
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body moving in the vicinity of the boundaries
the integrability of the motion is defined by the
combined shape of the body and the boundaries.
Thus, for a rigid body moving in an unbounded
space the only translational motion without ro-
tation (rectilinear due to the D'Alambert para-
dox), or a rotational motion with a fixed cen-
troid, are fully integrable. For the case of a
motion in the vicinity of the boundaries, the
integrability of the above mentioned two par-
ticular cases depends on the geometry of the
boundaries. Moreover, generally speaking, nor
the motion without rotation neither that with
pure rotational motion are integrable. Hence,
one can conclude immediately that the presence
of boundaries in the fluid leads to a further chao-
tization of the motion.
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MEMORY EFFECT
Consider now the motion of a deformable body
moving beneath a free surface with the stan-
dard linearized boundary conditions applied on
the free surface. By invoking the Laplace trans-
form we can express the energy of the sys-
tem ("body"+"liquid") as a corresponding time-
integration of the body's velocities combined
with the space- and time-dependent added-
masses. The resulting variational problem of de-
termining the body's trajectory, should be re-
solved by using the causality principle. As an
example, it can be shown that for a sphere pen-
etrating a free surface, the derived equation of
motion ~an be integrated. Note finally, that it is
just the memory effect which leads to the well-
known "ricochet" phenomena (see also Birkhoff
& Gaywood 1949).
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ABSTRACT
Flow of isochoric constant-viscosity fluids obeys

continuity and the Navier-Stokes equations. They are
difficult to solve being nonlinear with a nonslip boundary
condition at solid walls. Berker presented many solutions,
but some of them, e.g. irrotational velocity, contradict the
nonslip condition. Radial flow, possible between two
nonparallel planes, is shown to be impossible in a cone,
though an approximate solution exists. Parallel (equidistant)
streamlines are possible only if rectilinear, concentric or
coaxial circles, or helices of equal inclination on coaxial
cylinders. Two-way flows resemble ideal and Stokes flows.
The author presents some spatial jets impacting on a fixed or
parallelly moving boundary. A general unsteady spatial
solution near a plane boundary is expressed as power series
of z, distance from the wall, which shows most boundary
layer solutions to be valid only up to z2 terms. Uniform
steady-state flow at a constant piezometric gradient in the
x-direction, between nonparallel planes, has a definite
solution only up to second-order terms in (y,z), due to
undefined boundary condition at <». Acceleration averaged
over time gives insight into the properties of
pseudoturbulent or chaotic (turbulent) flows. Turbulent
shear is redefined and Reynolds (turbulent) stresses loose
their physical meaning.

INTRODUCTION
Laminar flow of constant density p and kinematic

viscosity v fluids in a barotropic force field, obeys the
Navier-Stokes equations (NSE) relating velocity V(u,v,w)
and pressure p (or piezometric potential P = g Z + p/p,
where Z - elevation, g - gravity acceleration, to the space
vector r(x,y,z) and time t, through the continuity equation:

divV = 0 (1)
The acceleration is:

A = V, + curl V x V + grad (V2/2) =
= - grad P - v curl curl V (2)

The NSE has to obey a nonslip boundary condition (BC) at
solid walls. Eliminating P from (2) we get the compatibility
equation:

curl V, + curl (curl V x V) + v curl3 V = 0 (3)
Agrawal [2] gives a large number of exact solutions of

(1) and (2) or (3), but many of them, e.g. irrotational V, do
not satisfy any real BCs. The difficulty is due in part to the
nonlinearity of NSE, but mainly to the nonslip BC.
Approximate solutions may be obtained by numerical
methods or by neglecting part [3], [16] or all [6] of small
quadratic terms, leading to Stokes' equation. The results are

useful at low Reynold numbers (Re), but sometimes of
dubious validity. A number of special solutions are given
later.

RADIAL FLOW IN A CONE
Radial flow between two nonparallel planes is

possible [5], yet radial flow in a cone is impossible [2].
Proof: In spherical coordinates (R,8,cp), V has only a
radial component u, with v = 0, w = 0. By (1),
U = f(0,(p,t)/R2. Introduced into (2):

At = u t + uuR = - P R + v [ ( R 2 u R ) R / R 2 - 2 u / R 2 ] ;

A2 =0 = - P e / R + v . 2 u e / R ;

A3 = 0 = -P<p / R s i n 8 + v . 2u<p / R 2 s i n 6

Eliminating P we get:
2^ + 4vRf - R3f= function of (R,t)

As R and fare mutually independent, the only solution is
f = f(t). As f = 0 on the cone 0 = 90, we have f(t) s 0,
hence V = 0. The difference from two-dimensional flow
is due to the different topologies. [6] find nevertheless an
approximate solution, u=k(cos29 - cos28o)/R

2, neglecting
all quadratic terms. This shows the danger of applying
blindly approximate solutions.

PARALLEL FLOW BETWEEN TWO
MUTUALLY INCLINED PLANES

The unidirectional velocity u(y,z) between two planes
inclined at 45°, for a given grad P is [9]:

uyz+U2z = - k ; u = kz(y-z)[l+c(yz+y2)] (5)
k = Px/2v; c - an arbitrary constant.

There exist an infinite number of solutions of the
Poisson equation fulfilling nonslip BCs on the planes. A
single solution may be said to exist only up to quadratic
terms. This apparent contradiction is due to the
undefined BC at GO. One should be wary of boundary
layer solutions when BC at oo is not exactly known.

EQUIDISTANT OR PARALLEL STREAMLINES
Irmay [12] shows that equidistant; i.e. parallel

streamlines in steady-state flow are possible only if they
are rectilinear and unidirectional, or concentric or
coaxial circles, or equally inclined helices on coaxial
cylinders.

(4)
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