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ABSTRACT

This study involves the transport or stirring properties of
viscous vortex rings. In order to take into account the
Reynolds - number dependence, the method of entrainment
diagrams is applied [1]. The system for pathlines of fluid
particles is developed with the help of obtained analytical
solution for a vortex ring. The idea of such approach is
based on the property of this dynamical system to include
complicated Reynolds - number dependence despite the fact
that the linear solution of Navier-Stokes equations is used.
Unsteady particle trajectories are examined as a bifurcation
of an autonomous system with the initial Reynolds number
as a parameter. It is shown that for small ratio of external
and internal radiuses of the ring three regimes of particle
motion exist and the pattern bifurcates at a two Reynolds
numbers of 140 and 640.

I. INTRODUCTION
There are several problems in which stirring processes in a
vortex ring are of direct relevance, and many others for
which they provide a simple canonical representation of
potentially more complicated processes. Examples range
from the stirring processes in a rising atmospheric thermal
and their implications for cloud formation, to the processes
occurring during the interaction of a vortex ring with a
premixed flame[2]. The interest in the processes of fluid
stirring drives us to the Lagrangian approach based on the
study of motion of an individual fluid particle x in a known
Eulerian velocity field (x,t). As is shown in [1] such
approach can be especially successful if description of the
flow can be reduced to a self-similar form. In this case, the
particle - path equations transform into an autonomous
system in similarity coordinates. The aim of this paper is to
use this approach for the viscous vortex ring.

II. MODEL OF A VISCOUS VORTEX RING
The flow is assumed to be axisymmetric and incompressible
with constant density p and viscosity v.
Figure 1 depicts schematic representation of a vortex ring in
the cylindrical coordinates x,r.

Fig.l
A solution for the limit Re -> 0 is given by the expression
for the vorticity [3]
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and 11 denotes the first-order modified Bessel function of

the first kind. The parameter Xo(t) is the distance, which

the vortex ring passes from the initial moment t Q , and

Rodetermines the ring radius at tg . The flow invariant is

the impulse of vorticity
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with the help of which we can obtain
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where R e o = — is the initial Reynolds number and
v

M
Fn = — the initial circulation.
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The mixing processes of ring are determined by interaction
of strain and diffusion and are described by the advection-
diffusion equation. A linear solution of this equation for the

Oand for the Schmidt number Sc=— =1 is
D

limit Re

given by the expression for a passive scalar

C , = + x' (6)

where C j = , D denotes the coefficient of diffusion and
C 0

Co is determined by condition of the conservation of C.
The contour lines of C| for this case represent shapes
which are symmetrical about the r|-axes. In accordance
with results of the numerical calculations the contour lines
of Cj lose this symmetry with the increase of Re due to
nonlinearity. The applied approach allows us to determine
the range of Re, at which the contribution of the
nonlinearity is significant, and to obtain particle trajectories
for this interval.

III. FIELD OF THE STREAMFUNCTION
The vorticity is related to the streamfunction ^¥ by the
equation
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Boundary conditions follow from the symmetry about the x
axis and the decay of ¥ at the infinity

) -»oo . (8)

The dimensionless streamfunction is O = —.
3

The Fourier - Hankel integral transforms of the vorticity (0
<t>

and of the function f = — from the equation (7) are:

(9)

where J j denotes the first-order Bessel function. Using the

inverse Fourier- Hankel integral transform for f , we obtain
follows
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The integration with respect to a presented in [4] gives

u2 + a 2 , T 1 ) , (10)

where
42

and erf(z) is the error function. Thus, we have the
expression for Hr'in the form of a single integral
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and the two velocity components in dimensionless form
inside the moving vortex ring become

j—

f=
2v2cr dr\

The obtained vorticity distribution (1) transforms into
Phillips' result [5] in long time limit and at t -» 0 it tends
to delta-function. The behavior of the evaluated
streamfunction (11) for early times and in long time is
consistent with this statement and at t - » 0 it tends to
circular vortex line. The expression for a circular line
vortex in our designations is written as

rf+(x+<j)2

where Kand E are elliptical integrals of the first and
second kind, respectively.
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Fig.2 Comparison of SF with T*. Solid lines represent the

contour plots of 90, 70, 50, 30 and 10% of x¥max -Eq.(l 1)

and broken lines the same values of circular line vortex -
Eq.(13)for x=10.
Formally we can describe the starting ring's motion for
t -> 0 using the obtained solution when the initial

Reynolds number Re 0 is very small. But a circular line
vortex is a limiting solution of the full Navier-Stokes
equations and usually used for the description of a starting
ring for any Reynolds numbers. The variable x is the ratio
of external and internal radiuses for the initial stage of a
vortex ring development. These properties permit to
consider expressions (12) as approximations for early times
of ring's evolution for fixed x .

IV. ENTRAINMENT DIAGRAMS
The equations for particle paths are

x = nr? + U W r = ~ 4 ~ ? (14)
r • or ' r

K ox ' y '
where the dot denotes the time derivative and
U(t) = — - — is the velocity of the frame moving with the

dt

vortex ring. The corresponding system in dimensionless
variables <3, r\ is

da a 2V2 Reg x dr) r\

ds 2 V^ 8 ' ' ds 2
where s= In t. The system (15) is considered as an
autonomous system with the Reynolds number Re0 as a
parameter for fixed values of T . The pattern of particle
displacements in coordinates a, r\ is independent of
velocity for a moving observer [1]. The structure of the
flow is examined by finding and classifying critical points
of (15); points (CTC, r)0) at which both right-hand sides of
(15) are equal to zero. In spite of the trivial Reynolds -
number dependence of the solution (1,11), which is valid
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for Re -> 0, the system (15) exhibits a Reynolds - number
dependence that is quite complex. We expect that the linear
solution in system (15) behaves similarly to the nonlinear
solution. In [6] this approach was applied to the problem of
an impulsively started, axisymmetric, laminar jet. Figure 3
(a, b) shows particles trajectories (15) for two values of the
Reynolds number and for x=10. For small Reynolds
number, pathlines converge to a single node, which lies on
the axis r|. All trajectories for this regime are similar: the
particles are involved due to diffusion. At a Reynolds
number of Reo=14O new critical points occur - a two
saddles and two foci lying symmetrically to either side of
axis r\. Particles trajectories are divided into two parts:
some of them as well as earlier are involved due to diffusion
when other part begins to be involved in the core of ring
due to growth of concentration of vorticity. At a Reynolds
number of Reg =640 saddles disappear and all the

trajectories begin to be directed towards the centre of vortex
ring.
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Fig.3 Particle trajectories for Reo=4O (a) and 200(b)

presented by (15) for x=10, critical points are marked by

Using the Hankel's integral transforms .(9) and Parseval's
theorem we can calculate the translation velocity of the ring
U(t) [7] and particles trajectories in a system in which there
is a relative wind, -U

do
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Here as the translation velocity of a ring the speed of the
three -dimensional vortex centroid is applied[8].
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Fig.4. Velocity vectors for Reg =500 presented by (16) for

x=10.
Velocity vectors in this system give evident representation
about particle motion (Fig.4) and are in good agreement
with results of direct numerical simulation of a laminar
vortex ring [9]. The carried out analysis shows that with the
increase of Reynolds numbers the particle trajectories take
the forms conducting to formation of a wake.
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