


JP0050306



# 原子カコードの高速化(スカラ並列化編) 平成10年度作業報告書



箭竹陽一<sup>\*</sup>・足立将晶・久米悦雄・川井 渉<sup>\*</sup>・川崎信夫 根本俊行<sup>\*</sup>・石附 茂<sup>\*</sup>・小笠原忍

日本原子力研究所 Japan Atomic Energy Research Institute

本レポートは、日本原子力研究所が不定期に公刊している研究報告書です。

入手の問合わせは、日本原子力研究所研究情報部研究情報課(〒319-1195 茨城県那 珂郡東海村)あて、お申し越し下さい。なお、このほかに財団法人原子力弘済会資料セ ンター(〒319-1195 茨城県那珂郡東海村日本原子力研究所内)で複写による実費頒布 を行っております。

This report is issued irregularly.

Inquiries about availability of the reports should be addressed to Research Information Division, Department of Intellectual Resources, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken  $\mp$  319-1195, Japan.

C Japan Atomic Energy Research Institute, 2000
 編集兼発行
 日本原子力研究所

# 原子カコードの高速化 (スカラ並列化編) - 平成10年度作業報告書 -

日本原子力研究所計算科学技術推進センター 箭竹 陽一\*\*・足立 将晶<sup>※</sup>・久米 悦雄・川井 渉<sup>\*</sup> 川崎 信夫<sup>※</sup>・根本 俊行<sup>\*</sup>・石附 茂<sup>\*</sup>・小笠原 忍<sup>※</sup>

(2000年2月1日受理)

本報告書は、平成10年度に計算科学技術推進センター情報システム管理課で行った原子カコードの高速化作業のうち、Paragonにおけるスカラ並列化作業部分について記述したものである. 原子カコードの高速化作業は、平成10年度に12件行われた.これらの作業内容は、今後同種の作業を行う上での参考となりうるよう、作業を大別して「ベクトル/並列化編」、「スカラ並列化編」及び「移植編」の3分冊にまとめた.

本報告書の「スカラ並列化編」では、連続エネルギー粒子輸送モンテカルロコード MCNP4B2、 連続エネルギー及び多群モデルモンテカルロコード MVP/GMVP 及び光量子による固体溶融蒸 発シミュレーションコード PHCIP を対象に実施した Paragon 向けのスカラ並列化作業につい て記述している.

別冊の「ベクトル/並列化編」では、汎用トカマク回路シミュレーションプログラム GTCSP を対象に実施した VPP500 向けベクトル化作業について、イオン性融体分子動力学計算コード MSP2、渦電流解析コード EDDYCAL、受動的冷却システム試験解析コード THANPACST2 及 び MHD 平衡コード SELENEJ を対象に実施した VPP500 向けベクトル/並列化作業について 記述している.また、別冊の「移植編」では、連続エネルギー粒子輸送モンテカルロコード MCNP4B2 及び軽水炉安全解析コード RELAP5(RELAP5/MOD2/C36-05, RELAP5 /MOD3.2.1.2) の AP3000 への移植作業について記述している.

日本原子力研究所(東海駐在):〒319-1195 茨城県那珂郡東海村白方白根 2-4

<sup>※</sup> 外来研究員: 富士通株式会社

<sup>\*</sup> 富士通株式会社

<sup>\*\*</sup> 株式会社日立製作所

# Vectorization, Parallelization and Porting of Nuclear Codes (Parallelization on Scalar Processors) - Progress Report Fiscal 1998 -

Yo-ichi YATAKE\*\*, Masaaki ADACHI<sup>\*</sup>, Etsuo KUME, Wataru KAWAI<sup>\*</sup>, Nobuo KAWASAKI<sup>\*</sup>, Toshiyuki NEMOTO<sup>\*</sup>, Shigeru ISHIZUKI<sup>\*</sup> and Shinobu OGASAWARA<sup>\*</sup>

Center for Promotion of Computational Science and Engineering (Tokai Site) Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken

(Received February 1, 2000)

Several computer codes in the nuclear field have been vectorized, parallelized and transported on the FUJITSU VPP500 system, the AP3000 system and the Paragon system at Center for Promotion of Computational Science and Engineering in Japan Atomic Energy Research Institute. We dealt with 12 codes in fiscal 1998. These results are reported in 3 parts, i.e., the vectorization and parallelization on vector processors part, the parallelization on scalar processors part and the porting part. In this report, we describe the parallelization on scalar processors.

In this parallelization on scalar processors part, the parallelization of Monte Carlo N-Particle Transport code MCNP4B2, Plasma Hydrodynamics code using Cubic Interpolated Propagation Method PHCIP and Vectorized Monte Carlo code (continuous energy model / multi-group model) MVP/GMVP on the Paragon are described.

In the vectorization and parallelization on vector processors part, the vectorization of General Tokamak Circuit Simulation Program code GTCSP, the vectorization and parallelization of Molecular Dynamics Ntv Simulation code MSP2, Eddy Current Analysis code EDDYCAL, Thermal Analysis Code for Test of Passive Cooling System by HENDEL T2 code THANPACST2 and MHD Equilibrium code SELENEJ on the VPP500 are described. In the porting part, the porting of Monte Carlo N-Particle Transport code MCNP4B2 and Reactor Safety Analysis code RELAP5 on the AP3000 are described.

Keywords: MCNP4B2, MVP/GMVP, PHCIP, Parallelization, Paragon, Nuclear

Codes

<sup>%</sup> On leave from FUJITSU, Ltd

<sup>\*</sup> FUJITSU,Ltd

<sup>\*\*</sup> HITACHI,Ltd

### JAERI-Data/Code 2000-016

目

次

| 1. | はじ  | めに            | 1  |
|----|-----|---------------|----|
| 2. | MCI | NP4B2 コードの並列化 | 3  |
|    | 2.1 | 概要            | 3  |
|    | 2.2 | 並列化           | 3  |
|    | 2.3 | 効果            | 5  |
|    | 2.4 | まとめ           | 5  |
| 3. | MVI | P/GMVP コードの整備 | 24 |
|    | 3.1 | 概要            | 24 |
|    | 3.2 | リスタートファイルの修正  | 24 |
|    | 3.3 | まとめ           | 25 |
| 4. | PHC | IP コードの並列化    | 29 |
|    | 4.1 | コード概要         | 29 |
|    | 4.2 | Paragon への移植  | 29 |
|    | 4.3 | 並列化           | 29 |
|    | 4.4 | 並列化の効果        | 32 |
|    | 4.5 | まとめ           | 32 |
| 5. | おわ  | りに            | 43 |
| 謝  | 辞.  |               | 43 |

### JAERI-Data/Code 2000-016

# Contents

| 1. | Intro | $\operatorname{pduction}$    | 1  |
|----|-------|------------------------------|----|
| 2. | Para  | llelization of MCNP4B2       | 3  |
|    | 2.1   | Overview                     | 3  |
|    | 2.2   | Parallelization              | 3  |
|    | 2.3   | Effect of Parallelization    | 5  |
|    | 2.4   | Summary                      | 5  |
| 3. | Inpr  | ovement of MVP/GMVP          | 24 |
|    | 3.1   | Overview                     | 24 |
|    | 3.2   | Modification of Restart File | 24 |
|    | 3.3   | Summary                      | 25 |
| 4. | Para  | llelization of PHCIP         | 29 |
|    | 4.1   | Overview of PHCIP            | 29 |
|    | 4.2   | Porting to Paragon System    | 29 |
|    | 4.3   | Parallelization              | 29 |
|    | 4.4   | Effect of Parallelization    | 32 |
|    | 4.5   | Summary                      | 32 |
| 5. | Con   | cluding Remarks              | 43 |
| Ac | know  | ledgements                   | 43 |

## 1. はじめに

計算科学技術推進センター情報システム管理課では、原研が保有する各種のスーパーコンピュ ータの効率的な運用とコンピュータ資源の有効利用を促進するため、計算需要の多い原子力コー ドをユーザに代わってスーパーコンピュータ上に整備し、それぞれのコードに最適な高速化を施 す作業を実施している.この作業は、コンピュータの効率的利用を推進するのみならず、ユーザ の計算待ち時間の短縮を通じてユーザの仕事の効率化へも貢献するものと思われる.

原子力コードの高速化作業は、平成10年度に12件行われた.これらの作業内容は、今後同 種の作業を行う上での参考となりうるよう、作業を大別して、「ベクトル/並列化編」、「スカ ラ並列化編」及び「移植編」の3分冊にまとめた.なお、例年分冊としていた「ベクトル化編」 と「並列化編」については、近年、ベクトル化のみでチューニングを終えるコードが減少し、更 なる高速化のため、ベクトル化のみならず並列化をも施すチューニングが増大しており、今年度 からこれら2つを合わせて1分冊とすることにした.また、本年度から新たに Paragon での高 速化作業成果を加え、編成を前述のように見直している.

本報告書の「スカラ並列化編」では、連続エネルギー粒子輸送モンテカルロコード MCNP4B2, 連続エネルギー及び多群モデルモンテカルロコード MVP/GMVP 及び光量子による固体溶融蒸 発シミュレーションコード PHCIP を対象に実施した Paragon 向けのスカラ並列化作業につい て記述している.別冊の「ベクトル/並列化編」では、汎用トカマク回路シミュレーションプロ グラム GTCSP を対象に実施した VPP500 向けベクトル化作業について、イオン性融体分子動 力学計算コード MSP2, 渦電流解析コード EDDYCAL、受動的冷却システム試験解析コード THANPACST2 及び MHD 平衡コード SELENEJ を対象に実施した VPP500 向けベクトル/ 並列化作業について記述している.また、別冊の「移植編」では、連続エネルギー粒子輸送モン テカルロコード MCNP4B2 及び軽水炉安全解析コード RELAP5(RELAP5/MOD2/C36-05, RELAP5/MOD3.2.1.2)の AP3000 への移植作業について記述している.なお、平成10 年度に 実施した高速化作業のうち、ここで取り上げなかったいくつかのコードに関しては、ユーザとの 連名により別途 JAERI-Data/Code を執筆する予定であるので、そちらを参照されたい.

2章では、連続エネルギー粒子輸送モンテカルロコード MCNP4B2 を対象に実施した Paragon における並列化作業について述べる.本作業では MPI による並列版の整備及びユーザ が独自にカスタマイズしたルーチンの MCNP4B2 コードへの組み込みを実施した.この結果, 並列化効果はシングル実行時に比較して最大 64 ノードの並列実行で、約 32.5 倍の速度向上が得 られた.

3章では、連続エネルギー及び多群モデルモンテカルロコード MVP/GMVP を対象に実施した Paragon における整備作業について述べる.本作業では、既存の MPI による並列版の不具合である、リスタートファイルの入出力部の改善を実施した.この不具合はリスタートファイル出力時に、3ノード以上の計算でデッドロックを起してしまうというもので、今回の改善により200ノードまでの計算が可能となった.

4章では、光量子による固体溶融蒸発シミュレーションコード PHCIP を対象に実施した Paragon における並列化作業について述べる.本作業では、差分式の並列化にネイバリング通 信を用い、MPI による並列化を施した.しかしながら、通信回数が多く、並列化の効果は4ノー ドで約3.4倍にとどまった.

なお、本報告書の作業は箭竹が担当した.

## 2. MCNP4B2 コードの並列化

### 2.1 概要

本章では、連続エネルギー粒子輸送モンテカルロコードMCNP4B2に対して、MPI (Message Passing Interface)によるインテル製スカラ並列計算機 Paragon 向きの並列化整備作 業について述べる. MPIでの並列化は、既存のPVM (Parallel Virtual Machine)版を基に実 施する. 通信バッファ容量の最適化を行うため、MPI及び通信バッファの設定にはC言語を使 用し、MPI版MCNP4B2のParagonでの整備を実施した. 更に、ユーザが独自にカスタ マイズした線源ルーチン (source.f)の組み込みも実施した.

MCNPコードは、米国のロスアラモス国立研究所で開発された連続エネルギー時間依存の中 性子・光子結合モンテカルロ輸送計算コードであり、任意の1~3次元空間を扱うことができ る.1998年10月現在,MCNPコードは、本作業で並列化したMCNP4B2まで公開さ れており、中性子、2次ガンマ線、ガンマ線及び電子の輸送計算を行なうことができる[1].

2.2 並列化

2.2.1 並列化整備の内容

本作業では、MPIを用いたMCNP4B2コードの並列化整備及びユーザが独自にカスタマ イズした線源ルーチンの組み込みを実施し、実行シェルスクリプト等の実行環境を整えた.

2.2.2 MPIによる並列化

MCNP4B2コードのMPIによる並列化作業では、通信バッファ容量の最適化を行うた め、MPI及び通信バッファの設定にC言語を使用し、既存のPVM版をMPI版に修正した. PVMからMPIへの変換には、MCNP4AコードをParagonに整備する時に使用した clib.c ファイル(PVMから Paragon 用のデータ通信関数NXへの変換ファイル)を、PVMから MPIに変換する様に修正して使用した. PVMからMPIに変換する様に修正した clib.c ファ イルを、Fig.2.1に示す.

2.2.3 サンプルデータによるテスト計算

MCNP4B2コードの並列化パッケージに含まれていたサンプルデータを用いてテスト計算 を実施した.テストを実施したサンプルデータは,以下に示す29種類を計算ノード数5で実施 した(一部,5ノード以外のケースも有り).

- 1 simple neutron problem to test some basic operations of mcnp.
- 2 three different tallies of the same physical quantity.
- 3 many features of the general source.
- 4 photons.

#### JAERI-Data/Code 2000-016

5 toroidal tokamak. 6 cutoffs, flagging, and variance reduction features. 7 generate surface source for test No.8 . use surface source from test No.7 8 9 kcode in complicated cells and sdef. 10 general test problem. 11 intertwined super pretzels with s(a,b), mode n p.  $1 \ 2$ porosity tool model. 1 3check of the volume calculator, rotational symmetry case.  $1 \ 4$ test general source in repeated structures. 15 test filled lattice and skewed lattice. test general source in a lattice. 16 kcode in a rectangular finite lattice. 17 18 kcode in a hexagonal prism lattice. 19 multigroup boltzman-fokker-planck ver.of test No.20. 20continuous energy electron version of test No.19. 21 electron-photon -generates surface source for test No.22.  $2\ 2$ electron-photon ssr from test No.21 23 forward 80 group electron-photon detector chip problem reflecting lattice. 15x15 at 3.75 w/o u-235 enrichment. 2425 test No.24(restart) 2.6test No.25(restart) 27 fission surface source from test No.09 28 Coupled Neutron-Photon Adjoint Problem

2 9 ssr from test No.07; copy of inp08 to test auger production

No.1 ~ No.29 のサンプル計算の内, No.1, 2は, マルチタスク用のデータを若干修正する ことにより実行可能となった.また, No.8, 29についてはシングルタスクは実行可能で精度も 保たれている.しかし,マルチタスクは実行可能であるが,サンプル結果との誤差は大きい(提 供されたサンプル実行シェル内に、マルチタスクはサンプル結果との誤差は大きく,検討中との コメント有り). No.23, 27 も,サンプル結果との誤差が若干大きい.その他のサンプル計算 は,実行可能であり,これらの計算結果は,MCNP4B2コードの並列パッケージに含まれて いたサンプル計算結果とほぼ一致している.

#### 2.2.4 線源ルーチンの組み込み

#### 2.2.4.1 線源ルーチンの構造

ユーザが独自にカスタマイズして使用していたNX版の線源ルーチン (source.f) を Fig.2.2に 示す. このルーチンは、NX版のMCNP4Bコードで使用されていたものであり、ルーチン内

#### JAERI-Data/Code 2000-016

で使用される初期データも、ルーチン内の代入文で設定されている.また、線源ルーチン内の計 算で必要とされるコモンデータも、MCNP4BとMCNP4B2とでは差異がないため、 MCNP4B2コードの線源ルーチン (source.f) に、ユーザが独自にカスタマイズした部分を組 み込み、修正を行った.修正した線源ルーチン (source.f) を Fig.2.3に示す. Fig.2.3はソース上 Fig.2.2と同一であり、ユーザカスタマイズ部をコメント文 (CYS-CYE) で囲んである.

2.2.4.2 ユーザデータによるテスト計算

MCNP4B(ユーザが独自にカスタマイズした線源ルーチンを組み込んだ)で使用されて いた計算データを用いてテスト計算を実施した.テストデータは、ユーザより提供された4種類 のデータを使用した.MCNP4B用のデータは、MCNP4B2にそのまま使用することがで き、MCNP4B2の計算モデルは基本的にMCNP4B2と同一であるため、MCNP4Bの 計算結果とMCNP4B2の計算結果とを比較した.計算結果を比較検討した結果、両者の計算 結果は、ほぼ一致し、有意な差はなかった.

#### 2.3 効果

線源ルーチンを修正したMCNP4B2を用いて、那珂研 Paragon での1ノードから
128ノードまでの経過時間を測定した.測定結果をTable2.1に示す. Table2.1より速度向上率は、64ノードで32.5倍となった.

+-----+
|計算条件
(1)計算データ : ユーザ提示テストデータNo. 1
(2) ヒストリ数 :100000
(3)最適化レベル: - 04

#### 2.4 まとめ

本作業では、連続エネルギー粒子輸送モンテカルロコードMCNP4B2に対して、MPI によるインテル製スカラ並列計算機 Paragon 向き並列化整備作業を実施した.MPIの並列化 は、既存のPVM版を基に、修正した clib.c ファイルを利用して実施した.更に、ユーザが独自 にカスタマイズした線源ルーチンの組み込みを実施した.那珂研 Paragon での速度向上率は、 64ノードで32.5倍となった.サンプル計算 No.8、29 でのマルチタスクの計算結果の精度 の問題は、今後のMCNPコード整備計画を踏まえて、新たな情報を入手しだい検討する.

| 計算ノード数 | 経過時間 (sec) | 速度向上率 |
|--------|------------|-------|
| 1      | 39838      | 1.0   |
| 2      | 20186      | 2.0   |
| 4      | 10408      | 3.8   |
| 8      | 5398       | 7.4   |
| 16     | 3076       | 13.0  |
| 32     | 1719       | 23.2  |
| 64     | 1226       | 32.5  |
| 128    | 1386       | 28.7  |

Table 2.1 Speed up ratio.

速度向上率測定(那珂研 Paragon) 並列化コード: MCNP4B2 (MPI) 解析条件 (1)計算データ: ユーザ提示テストデータNo. 1 (ヒストリ数 =100000)

```
/*
* allPid[0] はマスタープロセス ID、
* allPid[1] から allPid[numSlaves] はスレーブプロセス ID
*/
static pid_t allPid[MAXCPU]; /* 全プロセス ID */
                numSlaves; /* 全スレーブプロセスの個数 */
static int
/* 使用中リストヘッダ */
static MsgBuffer uHead = { NULL, 0, 0, 0, InvalidBufID, NULL };
/* 未使用リストヘッダ */
static MsgBuffer fHead = { NULL, 0, 0, 0, InvalidBufID, NULL };
static CtlBuffer ctlBuffer = { /* バッファ制御構造体 */
NULL, 0, 0, InvalidBufID, InvalidBufID, &uHead, &fHead
};
/* データサイズ表 */
static size_t dataSize[] = {
 sizeof(char),
 sizeof(unsigned char),
 sizeof(short),
 sizeof(int),
 sizeof(float),
 2 * sizeof(float),
 sizeof(double),
 2 * sizeof(double)
};
/* アロケート関数 */
static void *alloc(void *ptr, size_t size)
ſ
  if (ptr == NULL)
   return malloc(size);
  else
   return realloc(ptr, size);
}
```

Fig. 2.1 Modified file clib.c (1/14).

```
/*
 * ポインタの配列を大きくする。
 * 戻り値: 成功 0
          失敗 1
 *
*/
static int enlarge_array(void)
{
 /* ys */
 int mynode;
  /* ve */
 int rv = 0;
  const size_t initsize = 512;
  size_t size = ctlBuffer.size == 0 ? initsize : ctlBuffer.size * 2;
 void *p;
  if ((p = alloc(ctlBuffer.array, sizeof(MsgBuffer *) * size)) != NULL) {
   ctlBuffer.array = p;
   ctlBuffer.size = size;
  } else {
   /* ys */
   MPI_Comm_rank(MPI_COMM_WORLD,&mynode);
   fprintf(stderr, "(%ld): not enough memory.\n", mynode);
   /* ye */
   rv = 0;
  }
  return rv;
}
/*
 * ポインタの配列長をチェックする。
 * 戻り値: 成功 1
           失敗 0
 */
static int check_array(void)
Ł
  int rv = 1;
  if (ctlBuffer.indx >= ctlBuffer.size && enlarge_array()) rv = 0;
  return rv;
}
```

Fig. 2.1 Modified file clib.c (2/14).

```
/*
 * メッセージバッファ領域を作成する。
 */
static MsgBuffer *create_msgbuffer(void)
ł
 MsgBuffer *mb = NULL;
  /* ys */
  int mynode;
  /* ye */
  if (check_array()) {
    if ((mb = alloc(NULL, sizeof(MsgBuffer))) != NULL) {
      mb->buffer = NULL;
      mb->size = 0;
      mb \rightarrow indx = 0;
      mb->leng = 0;
      mb->bufid = ctlBuffer.indx++;
      mb->next = NULL;
    } else {
    /* ys */
/* fprintf(stderr, "(%ld): not enough memory.\n", mynode()); */
     MPI_Comm_rank(MPI_COMM_WORLD,&mynode);
      fprintf(stderr, "(%ld): not enough memory.\n", mynode);
    /*
       ye */
    }
  }
  return mb;
}
  リストから p->next を削除する。
 */
static void del_msgbuffer(MsgBuffer *p)
{
  if (p->next->next != NULL) *(ctlBuffer.array + p->next->next->bufid)
                                                                      = p;
 p->next = p->next->next;
}
```

Fig. 2.1 Modified file clib.c (3/14).

```
* リストの p の直後に q を挿入する。
*/
static void add_msgbuffer(MsgBuffer *p, MsgBuffer *q)
{
 if (p->next != NULL) *(ctlBuffer.array + p->next->bufid) = q;
 q->next = p->next;
  *(ctlBuffer.array + q->bufid) = p;
 p \rightarrow next = q;
}
/*
 * p が指すメッセージバッファを初期化する。
 */
static void clear_msgbuffer(MsgBuffer *p)
Ł
 p \rightarrow indx = 0;
 p \rightarrow leng = 0;
}
/*
 * 新しいメッセージバッファを得る。
 */
static MsgBuffer *get_msgbuffer(void)
{
  MsgBuffer *mb;
  if ((mb = ctlBuffer.freep->next) != NULL) {
    del_msgbuffer(ctlBuffer.freep);
    add_msgbuffer(ctlBuffer.usedp, mb);
    clear_msgbuffer(mb);
  } else if ((mb = create_msgbuffer()) != NULL) {
    add_msgbuffer(ctlBuffer.usedp, mb);
  }
  return mb;
}
```

Fig. 2.1 Modified file clib.c (4/14).

```
/*
* バッファ領域を大きさをチェックし、
* 必要なら領域を拡大する。
* 戻り値: 成功 1
           失敗 0
*/
static int enlarge_buffer(MsgBuffer *mb, size_t request)
ſ
 /* ys */
 int mynode;
 /* ye */
 int rv = 1;
 size_t size = mb->indx + request;
 void *p;
 if (mb->size < size) {</pre>
    if ((p = alloc(mb->buffer, size)) != NULL) {
     mb->buffer = p;
     mb->size = size;
   } else {
   /* ys */
/* fprintf(stderr, "(%ld): not enough memory.\n", mynode()); */
     MPI_Comm_rank(MPI_COMM_WORLD,&mynode);
      fprintf(stderr, "(%ld): not enough memory.\n", mynode);
    /* ye */
      rv = 0;
    }
  ł
 return rv;
}
```

Fig. 2.1 Modified file clib.c (5/14).

```
/*
* バッファ領域をアロケートする。
 * 戻り値: 成功 1
           失敗 0
 *
 */
static int alloc_buffer(MsgBuffer *mb, size_t size)
ſ
  /* ys */
  int mynode;
  /* ye */
  int rv = 1;
  void *p;
  if (mb->size < size) {</pre>
    if ((p = alloc(mb->buffer, size)) != NULL) {
      mb->buffer = p;
      mb->size = size;
    } else {
    /* ys */
/* fprintf(stderr, "(%ld): not enough memory.\n", mynode()); */
MPI_Comm_rank(MPI_COMM_WORLD,&mynode);
      fprintf(stderr, "(%ld): not enough memory.\n", mynode);
    /* ye */
      rv = 0;
    }
  }
  return rv;
}
/*
 * 活性受信バッファを解放する。
 */
static void free_rcvbuffer(void)
{
  MsgBuffer *mb;
  if (ctlBuffer.rcvid != InvalidBufID) {
    mb = (*(ctlBuffer.array + ctlBuffer.rcvid))->next;
    del_msgbuffer(*(ctlBuffer.array + mb->bufid));
    add_msgbuffer(ctlBuffer.freep, mb);
    ctlBuffer.rcvid = InvalidBufID;
  }
}
```

Fig. 2.1 Modified file clib.c (6/14).

```
/*
* 活性バッファがあればそれをクリアし、
* 新しく活性バッファを用意する。
*/
static int ready_msgbuffer(int *active)
ł
 MsgBuffer *mb;
  if (*active == InvalidBufID) {
   if ((mb = get_msgbuffer()) != NULL) *active = mb->bufid;
 } else {
   clear_msgbuffer((*(ctlBuffer.array + *active))->next);
 }
 return *active + 1;
}
/*
 * 活性受信バッファがあればそれをクリアし、
 * 新しく活性受信バッファを用意する。
 */
static void pvmfinitrecv(int *bufid)
£
  *bufid = ready_msgbuffer(&ctlBuffer.rcvid);
7
/*
 * 活性送信バッファがあればそれをクリアし、
 * 新しく活性送信バッファを用意する。
 * ※ encoding 引数が省略されていることに注意せよ。
 */
void pvmfinitsend_(int *bufid)
Ł
  *bufid = ready_msgbuffer(&ctlBuffer.sndid);
}
 * 活性送信バッファヘデータをパックする。
 * ※ stride 引数が省略されていることに注意せよ。
 */
void pvmfpack_(int *what, void *xp, int *nitem, int *info)
{
  size_t bytes = dataSize[*what] * *nitem;
  MsgBuffer *mb = (*(ctlBuffer.array + ctlBuffer.sndid))->next;
  if (enlarge_buffer(mb, bytes)) {
   memcpy(mb->buffer + mb->indx, xp, bytes);
   mb->indx += bytes;
  } else {
    *info = InfoError;
  }
}
```

Fig. 2.1 Modified file clib.c (7/14).

```
/*
 * 活性送信バッファのデータを送信する。
 */
void pvmfsend_(int *tid, int *msgtag, int *info)
ſ
 MsgBuffer *mb = (*(ctlBuffer.array + ctlBuffer.sndid))->next;
 /* ys */
  /* csend(*msgtag, mb->buffer, mb->indx, *tid, myptype()); */
 MPI_Send(mb->buffer, mb->indx, MPI_BYTE, *tid, *msgtag,
          MPI_COMM_WORLD);
  /* ye */
7
/*
 * 活性送信バッファのデータを全スレーブに送信する。
 * ※ ntask 引数、task id 引数が省略されていることに注意せよ。
     スレーブの番号は 1 から numSlaves と仮定している。
 */
void pvmfmcast_(int *msgtag, int *info)
{
  static int first = 1;
  static long allnode[MAXCPU];
  long idx;
  MsgBuffer *mb = (*(ctlBuffer.array + ctlBuffer.sndid))->next;
  if (first) {
    for (idx = 0; idx <= numSlaves; ++idx) allnode[idx] = idx;</pre>
    first = 0;
  7
  /* ys */
  /* gsendx(*msgtag, mb->buffer, mb->indx, allnode + 1, numSlaves); */
  for (idx=1;idx<=numSlaves; ++idx) {</pre>
  MPI_Send(mb->buffer, mb->indx, MPI_BYTE, idx, *msgtag,
          MPI_COMM_WORLD);
  /* ye */
}
```

Fig. 2.1 Modified file clib.c (8/14).

```
/*
* *msgtag のメッセージを受信する。
* ※ task id 引数が省略されていることに注意せよ。
*/
/* ys */
void pvmfrecv_(int *msgtag, int *bufid, int *tid )
/* void pvmfrecv_(int *msgtag, int *bufid) */
/* ye */
Ł
 MsgBuffer *mb;
 long count;
 /* ys */
 MPI_Status stat;
 int count1;
 /* ye */
 /* ys */
 /* cprobe(*msgtag); */
 MPI_Probe(MPI_ANY_SOURCE, *msgtag, MPI_COMM_WORLD, &stat);
  /* ye */
 pvmfinitrecv(bufid); /* 活性受信バッファを用意する。 */
  if (*bufid > 0) {
   mb = (*(ctlBuffer.array + *bufid - 1))->next;
   /* ys */
   /* count = (size_t)infocount(); */
   MPI_Get_count(&stat, MPI_BYTE, &count1 );
   count = (size_t)count1;
   /* ye */
    if (alloc_buffer(mb, (size_t)count)) { /* 受信する。 */
      /* ys */
      /* crecv(*msgtag, mb->buffer, count); */
      MPI_Recv(mb->buffer, count, MPI_BYTE, MPI_ANY_SOURCE,
               *msgtag, MPI_COMM_WORLD, &stat );
        *tid = stat.MPI_SOURCE;
       /* printf("tid=%d\n", *tid ); */
      /* ye */
      mb->leng = (size_t)count;
#ifdef SLIM_MEMORY
      if (count == 0) free_rcvbuffer();
#endif
    } else { /* 活性受信バッファを無効にする。 */
      free_rcvbuffer();
    }
  }
}
```

Fig. 2.1 Modified file clib.c (9/14).

```
* 活性受信バッファからデータをアンパックする。
* ※ stride 引数が省略されていることに注意せよ。
*/
void pvmfunpack_(int *what, void *xp, int *nitem, int *info)
Ł
 size_t bytes = dataSize[*what] * *nitem;
 MsgBuffer *mb = (*(ctlBuffer.array + ctlBuffer.rcvid))->next;
 memcpy(xp, mb->buffer + mb->indx, bytes);
 mb->indx += bytes;
#ifdef SLIM_MEMORY
 if (mb->indx >= mb->leng) free_rcvbuffer();
#endif /* SLIM_MEMORY */
}
/*
  メッセージが到着しているかどうか調べる。
* ※ task id 引数が省略されていることに注意せよ。
* ※ bufid は負ならばエラー、ゼロなら未到着、正なら到着を示すが、
     正の場合でも返される値はバッファ ID ではないことに注意せよ。
*
*/
void pvmfprobe_(int *msgtag, int *bufid)
ſ
 /* ys */
 int flag;
 MPI_Status stat;
 /* *bufid = (int)iprobe(*msgtag); */
 MPI_Iprobe(MPI_ANY_SOURCE, *msgtag, MPI_COMM_WORLD,
           &flag, &stat );
 *bufid = flag;
  /* ye */
7
 * メッセージがどこから来たか調べる。
 * ※ bufid 引数、bytes 引数、msgtag 引数が省略されていることに注意せよ。
 * ※ pvmfrecv の呼出し直後に呼び出されることを仮定している。
 */
void pvmfbufinfo_(int *tid)
ſ
  /* ys */
 MPI_Status stat;
 /*
 *tid = infonode();
 */
  *tid = stat.MPI_SOURCE;
 /* yds */
 /* printf("(tid=%d\n)", *tid ); */
 /* yde */
  /* ye */
}
```

Fig. 2.1 Modified file clib.c (10/14).

```
/*
* 活性受信バッファを切り替える。
*/
void pvmfsetrbuf_(int *bufid, int *oldbuf)
{
 *oldbuf = ctlBuffer.rcvid + 1;
 if (*bufid > 0) {
   ctlBuffer.rcvid = *bufid - 1;
 } else {
   ctlBuffer.rcvid = InvalidBufID;
 }
}
/*
 * スレーブ数をマスターから受信する。
 */
void recvnsub_(void)
{
  /* ys */
  int myid;
 MPI_Status stat;
  /* crecv(NsubTag, &numSlaves, sizeof numSlaves); */
 MPI_Bcast(&numSlaves, 1, MPI_INT, MasterID, MPI_COMM_WORLD);
  /* if (mynode() > numSlaves) exit(0); */
 MPI_Comm_rank(MPI_COMM_WORLD, &myid );
  if ( myid > numSlaves) exit(0);
  /* ye */
7
 * スレーブ数を全スレーブに送信する。
 * numnodes() - 1 個送る。
 * ※ numnodes() が MAXCPU を超えないかどうか検査していないことに注意せよ。
 */
void sendnsub_(int *nsub)
{
  /* ys */
  /* long allnode[MAXCPU];
  long num = numnodes();
  int idx;
  for (idx = 1; idx < num; ++idx) allnode[idx] = idx;</pre>
  gsendx(NsubTag, nsub, sizeof *nsub, allnode + 1, num - 1);
  */
  MPI_Bcast(nsub, 1, MPI_INT, MasterID, MPI_COMM_WORLD);
  /* ye */
 numSlaves = *nsub;
}
```

Fig. 2.1 Modified file clib.c (11/14).

```
/*
* プロセッサ数をえる。
*/
void mnump_(int *np, int *in)
{
 /* ys */
 int size;
 /* *np = numnodes(); */
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 *np = size;
/* ye */
 *in = 0;
}
/**
 ** 対角送信法
 ** ノード 0 から他のノードへデータを分配する。
 **/
struct Partition {
 long rows; /* 行数 */
            /* 列数 */
 long cols;
 long mynd; /* ノード番号 */
            /* 行番号 */
 long myrw;
            /* 列番号 */
 long mycl;
};
static struct Partition Partition;
void mydistinit_(void)
{
 long ndnm, rows, cols, qut, rem;
  /* ys */
  int myid, size;
  /*Partition.mynd = mynode();
 ndnm = numnodes();
  */
 MPI_Comm_rank(MPI_COMM_WORLD, &myid );
 Partition.mynd = myid;
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 ndnm = size;
 nx_app_rect(&rows, &cols);
```

Fig. 2.1 Modified file clib.c (12/14).

```
Partition.myrw = Partition.mynd / cols;
 Partition.mycl = Partition.mynd % cols;
 qut = ndnm / cols;
rem = ndnm % cols;
 if (!qut) {
    Partition.rows = 1;
    Partition.cols = rem;
  } else if (!rem) {
    Partition.rows = qut;
   Partition.cols = cols;
 } else if (Partition.mycl < rem && Partition.myrw < qut) {</pre>
    Partition.rows = qut + 1;
    Partition.cols = cols;
  } else if (Partition.mycl < rem && Partition.myrw == qut) {</pre>
    Partition.rows = qut + 1;
    Partition.cols = rem;
  } else {
    Partition.rows = qut;
    Partition.cols = cols;
  }
}
void mydist_(int *msgtag, int *bufid)
{
  int tid;
  int count;
  MsgBuffer *mb;
  /* ys */
  int *idy;
  /* ye */
  if (Partition.myrw || Partition.mycl) {
   /* ys */
    /* pvmfrecv_(msgtag, bufid); */
    pvmfrecv_(msgtag, bufid, idy);
    /* ye */
    mb = (*(ctlBuffer.array + ctlBuffer.rcvid))->next;
```

Fig. 2.1 Modified file clib.c (13/14).

```
if (!Partition.myrw && Partition.mycl < Partition.cols - 1) {
      /* ys */
      /*
      csend(*msgtag, mb->buffer, (long)mb->leng, Partition.mynd + 1,
                                                        myptype());
      */
      MPI_Send(mb->buffer, (long)mb->leng, MPI_BYTE, Partition.mynd + 1,
               *msgtag, MPI_COMM_WORLD);
      /* ye */
    }
    if (Partition.myrw < Partition.rows - 1) {</pre>
      /* ys */
      /*
      csend(*msgtag, mb->buffer, (long)mb->leng,
Partition.mynd + Partition.cols, myptype());
      */
      MPI_Send(mb->buffer, (long)mb->leng, MPI_BYTE,
         Partition.mynd + Partition.cols, *msgtag, MPI_COMM_WORLD);
      /* ye */
    }
  } else {
    if (!Partition.myrw && Partition.mycl < Partition.cols - 1) {</pre>
      tid = Partition.mynd + 1;
      pvmfsend_(&tid, msgtag, bufid);
    }
    if (Partition.myrw < Partition.rows - 1) {</pre>
      tid = Partition.mynd + Partition.cols;
      pvmfsend_(&tid, msgtag, bufid);
    }
  }
}
               _____ 対角送信法 ______
/**
                                                                     **/
```

Fig. 2.1 Modified file clib.c (14/14).

```
SUBROUTINE SOURCE
                 (途中省略)
c..by crc
      COMMON/PFDE/ PDP(100,100)
С
 1010 IF (J11-00104) 201,200,201
  201 J11=00104
c..by crc
       RO=SRC(1)
с
С
       R = SRC(2)
с
       A = SRC(3)
с
       ZO=SRC(4)
с
       MO=SRC(5)
с
       ENS=SRC(6)
с
       TA=SRC(7)
с
      TB=SRC(8)
      R0=rdum(1)
      R = rdum(2)
      A = rdum(3)
      ZO=rdum(4)
      MO=rdum(5)
      ENS=rdum(6)
      TA=rdum(7)
      TB=rdum(8)
c..by crc
        THETA1=-3.1415926
С
С
        THETA2= 3.1415926
       THETA1=-0.3141592
       THETA2= 0.3141592
С
        THETA1=-0.1570796
С
        THETA2= 0.1570796
С
        THETA1=-0.0785398
С
        THETA2= 0.0785398
C** SOURCE PARAMETER**
             (途中省略)
  100 R
            = RANG(X)
      ERG
            = ENRG(1)
      IF(R.LE.PROB(1))
                                     GO TO 125
      DO 110 I=1,IMAX
      IF(R.GE.PROB(I).AND.R.LE.PROB(I+1))
                                             GO TO 120
  110 CONTINUE
            = IMAX
      Ι
  120 P1
            = PROB(I)
      P2
            = PROB(I+1)
      E1
            = ENRG(I)
      E2
            = ENRG(I+1)
            = E1+(R-P1)*(E2-E1)/(P2-P1)
      ERG
  125 CONTINUE
      WRITE(6,620) I,R,P1,P2,E1,E2,ERG
CRC
  620 FORMAT(1X, I5, 1P6E12.3)
      RETURN
      END
```

Fig. 2.2 source.f (used in MCNP4B).

```
subroutine source
               (途中省略)
CYS
      COMMON/PFDE/ PDP(100,100)
С
 1010 IF (J11-00104) 201,200,201
  201 J11=00104
c..by crc
       RO=SRC(1)
С
       R = SRC(2)
С
       A = SRC(3)
С
       ZO=SRC(4)
с
      MO=SRC(5)
с
      ENS=SRC(6)
с
      TA=SRC(7)
С
      TB=SRC(8)
с
      RO=rdum(1)
      R = rdum(2)
      A = rdum(3)
      ZO=rdum(4)
      MO=rdum(5)
      ENS=rdum(6)
      TA=rdum(7)
      TB=rdum(8)
c..by crc
С
        THETA1=-3.1415926
С
        THETA2= 3.1415926
       THETA1=-0.3141592
       THETA2= 0.3141592
С
        THETA1=-0.1570796
С
        THETA2= 0.1570796
С
        THETA1=-0.0785398
        THETA2= 0.0785398
С
C** SOURCE PARAMETER**
                   (途中省略)
  100 R
            = RANG(X)
      ERG = ENRG(1)
                                     GO TO 125
      IF(R.LE.PROB(1))
      DO 110 I=1, IMAX
      IF(R.GE.PROB(I).AND.R.LE.PROB(I+1))
                                             GO TO 120
  110 CONTINUE
            = IMAX
      Ι
  120 P1
            = PROB(I)
            = PROB(I+1)
      P2
      E1
            = ENRG(I)
            = ENRG(I+1)
      E2
            = E1+(R-P1)*(E2-E1)/(P2-P1)
      ERG
  125 CONTINUE
CRC
      WRITE(6,620) I,R,P1,P2,E1,E2,ERG
  620 FORMAT(1X, 15, 1P6E12.3)
CYE
      RETURN
      END
```

Fig. 2.3 source.f (modified for MCNP4B2).

# 参考文献

 Version 4B Manual 「MCNP-A General Monte Carlo N-Particle Transport Code Version 4B 」,LA-12625-M, March 1997.

# 3. MVP/GMVP コードの整備

#### 3.1 概要

本章では、連続エネルギー及び多群モデルモンテカルロコード MVP/GMVP に対して、 MPIによるインテル製スカラ並列計算機 Paragon 向きの並列化整備作業について述べる.

MPIによる並列化は、関西研 Paragon 上で既存のPVM版を基に実施されている.よって、 本作業では、並列化版の不具合であるリスタートファイルの出力部分の改善を検討した.

MVP/GMVPは、中性子及び光子を対象とした輸送計算を行なうコードである.数値解法は、 ベクトル化モンテカルロ法であり、仮想粒子を各バッチ(世代)で処理する.各バッチの仮想粒 子の計算は各計算ノードに分割して実施され、最終的な統計量及び各種計算結果は、ひとつのホ ストノードが、ホスト以外の各ノードから計算データを集めて処理する.各ノードが使用する初 期乱数は、ホストノードで作成した後、ホストノード以外の各ノードに転送される.

#### 3.2 リスタートファイルの修正

3.2.1 現行のファイル設定の問題点

現行の MVP/GMVP コードのリスタートファイルの出力は、ホスト以外のノードで計算され たデータをホストノードに転送し、ホストノードがまとめて、リスタートファイルを出力する 方法をとっている. Paragon には、並列ファイル入出力を高速に行なう pfs が整備されている が、 MVP/GMVP コードは、並列入出力機能が整備されていない他の並列計算機との互換性を 考慮し、 pfs の採用を見送っている.

Fig.3.1に、リスタートファイルの入出力部及びモンテカルロ計算部の上位ルーチンである、 actmppの一部(リスタートファイル出力部)を示す. Fig.3.1内の a)のif ブロックでは、ホス トノードが実行され、1の部分では、ホストノード自身で計算されたデータのファイル出力を行 なっている.また、2の部分では、3の部分でホスト以外のノードから送信されたデータを受信 してファイル出力を行なっている.データの送受信には、ブロック型送受信関数を使用してい る.現行のリスタートファイル出力部のロジックでは、ホストノード自身が、自分自身のデータ の書き込み、及び他ノードからの送信データの受信書き込みを連続的に実施しなければならず、 ホストノードの負担が大きい.ユーザが提示した基本的なサンプルデータを使用して、リスター トファイル出力を実施したところ、計算ノード数2ノードまでは正常終了したが、それ以上の ノード数でリスタートファイル出力を実行すると、リスタートファイル出力部でデッドロックを 起こしてしまうことが確認された. 3.2.2 ファイル設定方法の変更

Fig.3.2に、デッドロックを防ぐ為の改良を施した actmpp の一部(リスタートファイル出力 部)を示す. Fig.3.2の1の部分では、ホストノードが、自分自身のデータのファイル出力を実 施している. ホスト以外のノードは、ホストノードが MPI \_\_ BARRIER を call するまで、 MPI \_\_ BARRIER で実行をロックされている. Fig.3.2の 2 の部分では、ホストノードとそれ 以外のノードとの1対1のデータ通信及びファイル出力が、ノード番号の順番通りに実施され、 リスタートファイル出力部でのデッドロックを回避している.

3.2.3 サンプルデータによるテスト計算

改良を施した actmpp ルーチンを使用して、サンプルデータによるテスト計算を実施した. サンプルデータの内容を下記に示す.

PWR FULL CORE pin power cal.仮想粒子数128000スキップバッチ数10計算バッチ数200ファイル名pwr05pe004.inp計算ノード数128

テストは、下記の2ケースを実行し、計算結果を比較した.

 テストケース A : 計算バッチ数 100 でリスタートファイルを出力し 計算バッチ数 101 からリスタート計算.
 テストケース B : リスタート計算はせずに,計算バッチ数 200 まで 計算.

テストケースA, Bの計算結果を, それぞれ Fig.3.3, Fig.3.4に示す. Fig.3.3, Fig.3.4よ り, テストケースA, Bの計算結果は一致し, リスタートファイルの入出力が正確に行なわれて いることが検証された. しかしながら, 計算ノード数を256にすると, デッドロックが生じ, リスタートファイルの出力ができなくなる. 計算ノード数をパラメータとしたテスト計算を実施 したところ, 計算ノード数200までは, リスタートファイルの入出力が, 正確に行われている ことを確認している.

### 3.3 まとめ

本作業では、連続エネルギー及び多群モデルモンテカルロコード MVP/GMVP に対して、 MPIによるインテル製スカラ並列計算機 Paragon 向きの並列化整備作業を実施した.

MPIによる並列化は、関西研 Paragon 上で、既存のPVM版を基に実施されている.よって、本作業では、並列化版の不具合であるリスタートファイルの出力部分の改善を実施し、計算 ノード数128までのリスタート計算を可能にした.

```
С
      ... output data body ...
С
С
     ... task 1 outputs data for himself and get data from other task.
С
С
        if ( IDTASK.eq.1 ) then
                                                               --+
           call RESTOT( IOW, H, 1, IDTASK, TITLE )
                                                               1
                                                       ____
           do 110 ITSK = 2, NTASK
              call RESTOT( IOW, H, 1, ITSK, TITLE )
                                                       ----
                                                              2 a)
 110
           continue
             call RWIND( IROT )
        else
                                                                 -+
           call RESTOT( IOW, H, 1, IDTASK, TITLE )
                                                              3
        end if
```

Fig. 3.1 Output part for restart file in subroutine ACTMPP.

```
С
      ... output data body ...
С
С
     ... task 1 outputs data for himself and get data from other task.
С
С
CYDS
         if ( IDTASK.eq.1 ) then
                                                           - - +
            call RESTOT( IOW, H, 1, IDTASK, TITLE )
                                                              1
         end if
         call MPI __BARRIER(MPI __COMM __WORLD,ierr)
                                                           --+
  С
         do 110 ITSK = 2, NTASK
                                                           --+
           if ( IDTASK.eq.1 ) then
              call RESTOT( IOW, H, 1, ITSK, TITLE )
           end if
           if ( IDTASK.eq.ITSK ) then
                                                              2
              call RESTOT( IOW, H, 1, IDTASK, TITLE )
           end if
           call MPI __BARRIER(MPI __COMM __WORLD,ierr)
                                                           -----+
  110
         continue
           call RWIND( IROT )
CYDE
```

Fig. 3.2 Modified output part in subroutine ACTMPP.

| ******                                                                                                                                                       |             |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|
| * EVENTS OF NEUTRONS *                                                                                                                                       |             |                   |
| ********                                                                                                                                                     |             |                   |
|                                                                                                                                                              | COUNT WEI   | GHT SUM           |
| SOURCE PARTICLES                                                                                                                                             | 25600000.   | 0.256000D+08      |
| FISSION NEUTRONS (WHEN JEIGN=0)                                                                                                                              | 0.          | 0.00000D+00       |
| NEUTRONS INCREASED BY (N,MN) REACTION                                                                                                                        | 28291.      | 0.216487D+05      |
| SOURCE PARTICLES<br>FISSION NEUTRONS (WHEN JEIGN=O)<br>NEUTRONS INCREASED BY (N,MN) REACTION<br>FISSION REACTION PREVENTED (JEIGN=O)<br>(N,GAMMA+X) REACTION | Ο.          | 0.00000D+00       |
| (N,GAMMA+X) REACTION                                                                                                                                         | 0.          | 0.00000D+00       |
| COLLISION                                                                                                                                                    | 937990883.  | 0.795684D+09      |
| SPLITTING (IMPORTANCE OR WEIGHT WINDOW)                                                                                                                      | 0.          | 0.00000D+00       |
| SPLITTING PREVENTED                                                                                                                                          | 0.          | • • • • • • • • • |
| LEAKAGE                                                                                                                                                      | 4320.       | 0.368210D+04      |
| ENERGY CUTOFF                                                                                                                                                | 0,          | 0.00000D+00       |
| KILLED (IMPORTANCE OR WEIGHT WINDOW)<br>SURVIVED (IMPORTANCE OR WEIGHT WINDOW)                                                                               | 0.          | 0.00000D+00       |
| SURVIVED (IMPORTANCE OR WEIGHT WINDOW)                                                                                                                       | 0.          | 0.00000D+00       |
| KILLED (WEIGHT CUTOFF)                                                                                                                                       | 12850398.   | 0.695244D+06      |
| SURVIVED (WEIGHT CUTOFF)                                                                                                                                     | 778206.     | 0.778206D+06      |
| KILLED AT FISGEN AND PHTGEN                                                                                                                                  | 0.          | 0.00000D+00       |
| ANALOG ABSORPTION                                                                                                                                            | 12773573.   | 0.984942D+07      |
| NUMBER OF FREE FLIGHT                                                                                                                                        | 4448415047. |                   |
| NUMBER OF BOUNDARY CROSSING                                                                                                                                  | 3510552164. |                   |
| NUMBER OF REFLECTION                                                                                                                                         | 0.          |                   |

Fig. 3.3 Output of test case A(include restart calculation).

| * EVENTS OF NEUTRONS *                  |             |              |
|-----------------------------------------|-------------|--------------|
| *******                                 |             |              |
|                                         | COUNT       | WEIGHT SUM   |
| SOURCE PARTICLES                        | 25600000.   | 0.256000D+08 |
| FISSION NEUTRONS (WHEN JEIGN=0)         | 0.          | 0.00000D+00  |
| NEUTRONS INCREASED BY (N,MN) REACTION   | 28291.      | 0.216487D+05 |
| FISSION REACTION PREVENTED (JEIGN=0)    | 0.          | 0.00000D+00  |
| (N,GAMMA+X) REACTION                    | 0.          | 0.00000D+00  |
| COLLISION                               | 937990883.  | 0.795684D+09 |
| SPLITTING (IMPORTANCE OR WEIGHT WINDOW) | 0.          | 0.00000D+00  |
| SPLITTING PREVENTED                     | 0.          | 0.00000D+00  |
| LEAKAGE                                 | 4320.       | 0.368210D+04 |
| ENERGY CUTOFF                           | 0.          | 0.00000D+00  |
| (ILLED (IMPORTANCE OR WEIGHT WINDOW)    | 0.          | 0.00000D+00  |
| SURVIVED (IMPORTANCE OR WEIGHT WINDOW)  | 0.          |              |
| (ILLED (WEIGHT CUTOFF)                  | 12850398.   | 0.695244D+06 |
| SURVIVED (WEIGHT CUTOFF)                | 778206.     | 0.778206D+06 |
| KILLED AT FISGEN AND PHTGEN             | 0.          |              |
| ANALOG ABSORPTION                       | 12773573.   | 0.984942D+07 |
| NUMBER OF FREE FLIGHT                   | 4448415047. |              |
| NUMBER OF BOUNDARY CROSSING             | 3510552164. |              |
| NUMBER OF REFLECTION                    | 0.          |              |

Fig. 3.4 Output of test case B(no restart calculation).

# 参考文献

- [1] 森 貴正, 中川 正幸: MVP-GMVP 連続エネルギー法及び多群法に基づく汎用中性子・ 光子輸送計算モンテカルロコード, JAERI-Data/Code 94-007,1994 年 8 月.
- [2] 森 貴正, 中川 正幸, 佐々木 誠: 汎用モンテカルロコード MVP-GMVP の改良, 私信, 1996 年5月.

### 4. PHCIP コードの並列化

#### 4.1 コード概要

本作業の目的は、光量子による固体溶融蒸発シミュレーションコードPHCIPのスカラー並 列による高速化である.PHCIPコードは、連続体運動方程式を用いて計算を行っている.移 流項の数値解法にはCIP (Cubic Interpolated Propagation) 法及びC-CUP法を、圧力ポ アソン方程式の解法にはICCG (Incomplete CHOLESKY decomposition Conjugated Gradient) 法を用いている.また、本コードの解析体系は2次元となっている.

本章では、インテル製スカラ並列計算機 Paragon に対する、上記 PHC I Pコードの並列化 作業について記述する. PHC I Pコードの並列化は、数値解法にC I P法 [1], C-CU P法 及びその他の差分法で計算を実行している部分については、隣接ノードからのデータを受送信す るネイバリング通信を使用した. なお通信ライブラリにはMPIを使用している.

#### 4.2 Paragonへの移植

並列化作業の前作業として、PHCIPコードのParagon(那珂研)1ノードへの移植作業 を実施し、下記条件にてテスト計算を実施した.PHCIPコードは、VPP500でベクトル化 されているが、ソースプログラムに特殊なコーディングは施されていない.

| (a)  | 移植先計算機 | : | Paragon S2 |
|------|--------|---|------------|
| \~~/ |        |   |            |

| (b) 最適化 | : -00 | (コンパイル時最適化なし | ) |
|---------|-------|--------------|---|
|---------|-------|--------------|---|

- (c) 計算体系 : 50\*50\*1(X-Y-Z)
- (d) 計算条件 : time step iteration 5回

移植時に発生した Warning 及び error を Fig.4.1に示す.また,移植時のソースプログラムの 変更箇所 (変更ルーチンは IFORM, CIP3D) を Fig.4.2に示す.次に,ソースプログラムを Fig.4.2に示した通りに変更して,Paragon 上での動作確認を実施した.その時使用した入力デー タの内容と計算結果の一部 (計算結果の妥当性を評価するために参照した部分) を,それぞれ Fig.4.3, Fig.4.4, Fig.4.5に示す.Fig.4.4, Fig.4.5より,部分的に表記の相違((\*)部分) はあ るが,これは,WRITE 文の書式指定子にフリーフォーマットを用いている結果であり,数値 そのものの計算結果については一致している.これより,PHCIPコードの Paragon 1 ノー ドへの移植作業の妥当性を確認した.

#### 4.3 並列化

#### 4.3.1 並列化方針

Fig.4.6に、PHCIPコードのソースツリー図を示す.また、並列化前のソースプログラムを用いた各サブルーチンの経過時間及び呼び出し回数をTable4.1に示す. Table4.1内のメイン

プログラム (MAIN) の経過時間には、初期化及び入出力ルーチン (INITLZ, RFORM, IFORM) の経過時間は含んでいない. Table4.1より、本コードは、計算量が顕著に多くなるホットスポットがなく、計算コストが、各ルーチンに分散しているルーチン構成であるため、以下の方針に基づいて並列化作業を実施することとした.

- (1) データ初期化及び入出力ルーチン (INITLZ, RFORM, IFORM) の並列化はしない.
- (2) タイムステップのループの中にあるループは基本的に全て並列化を実施する.
- (3) タイムステップのループが反復する間は、各ノードは自分が担当するデータのみ をもち、通信が必要な場合も必要最小限の通信のみを実施する(ネイバリング通信).
- (4) 多くの計算ノードを使用した場合の計算パフォーマンスを向上させる為、2次元 2方向(i,j方向)に領域分割して並列化を実施する.多ノード計算では、1 方向に分割するより、2方向分割の方が各ノード当たりの通信データ量は少なく なる(ただし、通信時の立ち上げ回数は2倍となる).
- 4.3.2 並列化手法
- 4.3.2.1 並列化用基本定数作成

並列化用の基本定数をMAINルーチンで作成し, include file である'mpi.para.inc' にコモン文で設定した. 'mpi.para.inc' の内容は, Fig.4.8を参照のこと. 以下, Fig.4.7を参照しながら, 内容を説明する. 以下の番号は, Fig.4.7に示した番号と対応している.

- 1. カルテシアントポロジーにより計算を担当するノードに隣接する上下左右方向のノード番号を設定する.
  - idown : -i 方向のノード番号を設定
     iup : +i 方向のノード番号を設定
     jdown : -j 方向のノード番号を設定
     jup : +j 方向のノード番号を設定
- 2. 各ノードが担当する i 方向メッシュの初期値 (ISTA) を設定.

各ノードが担当する i 方向メッシュの終値 (IEND) を設定.

各ノードが担当する j 方向メッシュの初期値 (JSTA) を設定.

- 各ノードが担当する j 方向メッシュの終値 (JEND) を設定.
- 【(IM+1)\*(JM+1)\*(KM+1) 体系 (最外周境界メッシュを含む)】
- 各ノードが担当する i 方向メッシュの初期値 (ISTA1)を設定.
- 各ノードが担当する i 方向メッシュの終値 (IEND1) を設定.
- 各ノードが担当する j 方向メッシュの初期値 (JSTA1) を設定.
- 各ノードが担当する j 方向メッシュの終値 (JEND1) を設定.

【NX\*NY\*NZ 体系 (最外周境界メッシュは含まない)】

3. itype1() : テスト計算用ルーチンの為の派生データの設定.

【(IM+1)\*(JM+1)\*(KM+1) 体系 (最外周境界メッシュを含む)】

itype2() : テスト計算用ルーチンの為の派生データの設定.

【NX\*NY\*NZ 体系 (最外周境界メッシュは含まない)】

4. cart \_\_ stridei :ネイバリング通信用の i 方向の派生データの設定. cart \_\_ stridej :ネイバリング通信用の j 方向の派生データの設定.

4.3.2.2 カルテシアントポロジーの設定

MPIには、カルテシアントポロジーという各プロセスを直角座標系に割り当てる機能がある. このカルテシアントポロジーで設定されたプロセスは自分自身の直角座標系での座標位置の他にも、隣接するプロセスの有無、周期境界条件の設定を自分自身で判断して正確にデータの通信を実施することができる. 実際の設定方法を, Fig.4.7 (1/2)内の1に示す. Fig.4.7内に示されている idown,iup,jdown,jup には下記に示す様な計算を担当するノードに隣接する上下左右方向のノード番号が設定される.

idown : -i 方向のノード番号を設定 iup : +i 方向のノード番号を設定 jdown : -j 方向のノード番号を設定 jup : +j 方向のノード番号を設定

Fig.4.9に簡単な例を示す.枠内の番号はノード番号を示す.周期境界条件が設定されていないとすると、ノード番号1に対する下記の変数は

idown= MPI PROC NULL
iup = 5
jdown= 0

jup = 2

となる.ノード番号に MPI PROC NULL が設定されると、MPIは通信を行なわず、送受信バッファ内のデータは変更されることなく動作が終了する.

4.3.2.3 ネイバリング通信

今回並列化したPHCIPコードは、差分計算式全体の大部分を占めているため、担当のノー ドは、隣接したノードより隣接メッシュのデータを受けとらなければならない. MPIの派生 データにより並列化したソースリストを、Fig.4.10に示す.以下、Fig.4.10の内容について説明 する.

- 1. j 方向側のノードから、+ j 側に隣接しているノードの- j 側の境界ひとつ外側のメッシュへの通信.
- 2. + j 方向側のノードから, j 側に隣接しているノードの+ j 側の境界ひとつ外側のメッシュへの通信.

- 3. i 方向側のノードから、+ i 側に隣接しているノードの- i 側の境界ひとつ外側のメッシュへの通信.
- 4. + i 方向側のノードから, i 側に隣接しているノードの+ i 側の境界ひとつ外側のメッシュへの通信.

## 4.4 並列化の効果

本コードの約95%の処理を並列化した.並列化した実行ファイルを用いて実行ノード数と経 過時間,通信時間及び速度向上率の関係をTable4.2に示す.

(計算条件)

| (1) | 並列計算機          | : | 関西研 Par | agon    |
|-----|----------------|---|---------|---------|
| (2) | 計算体系           | : | 50*50*1 | (X*Y*Z) |
| (3) | iteration time | : | 1 回     |         |
| (4) | 最適化レベル         | : | -04     |         |

MPIを使用して、1ノードあたりの計算領域を、ij方向に2次元分割して並列化を試みた ところ、基本的に通信回数が多過ぎて並列化の効果がでない結果となり、速度向上率は、関西研 Paragonの4ノードで約3.4倍となった.

2方向に分割すると、計算ノードが多い場合、1方向のみ分割する場合より1ノードあたりの 通信データ量は減少するが、通信関数の立ち上げ回数が2倍となってしまう. Table 4.2の" 通信時間 (sec) \*1" が示す通り、2次元分割の並列化により計算ノード数の増加に対する通信時 間の増加は抑えられる傾向は示されたが、通信関数の立ち上げ回数の増加による通信時間への影 響の方が大きい為、並列化効果は低い結果となった.

#### 4.5 まとめ

本作業では、まず、PHCIPコードが Paragon 上で正常に動作する様に修正を行い、計算 結果が、VPP500と同等であることを確認した.次に、Paragon 向き並列化作業を実施した. 並列化作業では、差分式の並列化には「ネイバリング通信」を用い、ij方向に2次元分割して 並列化を実施した.2次元分割の並列化により、計算ノード数の増加に対する通信時間の増加は 抑えられる傾向は示されたが、通信関数の立ち上げ回数の増加による通信時間の影響の方が大き い為、並列化効果は低い結果となった.

## JAERI-Data/Code 2000-016

| No | ルーチン名  | 経過時間 (sec) *1 | 呼び出し回数 |
|----|--------|---------------|--------|
| 1  | INITLZ | 8.42E+00      | 1      |
| 2  | ARTVIS | 1.91E-01      | 1      |
| 3  | POISN  | 2.95E+00      | 1      |
| 4  | VELVIS | 3.14E-01      | 1      |
| 5  | ADVVEL | 1.77E-01      | 1      |
| 6  | GRDNAV | 1.60E+00      | 6      |
| 7  | CIP3D  | 9.08E+00      | 6      |
| 8  | FTAN   | 2.05E-01      | 1      |
| 9  | BOUND  | 5.35E-01      | 2      |
| 10 | FARTAN | 3.11E-01      | 1      |
| 11 | SHIFT  | 2.14E-01      | 11     |
| 12 | RFORM  | 2.20E+01      | 10     |
| 13 | BOUNDR | 3.18E-01      | 5      |
| 14 | BOUNDU | 9.41E-02      | 5      |
| 15 | BOUNDV | 7.22E-02      | 5      |
| 16 | BOUNDW | 4.10E-02      | 5      |
| 17 | MICCG  | 5.84E-01      | 1      |
| 18 | BOUNDT | 1.67E-01      | 2      |
| 19 | BOUNDF | 3.34E-01      | 4      |
| 20 | BOUNDG | 1.02E+00      | 12     |
| 21 | IFORM  | 7.49E+00      | 4      |
| 22 | ICCG   | 4.24E-01      | 1      |
| 23 | MAIN   | 1.60E+01      | 1      |

Table 4.1 Execution time of original PHCIP code.

- \*1 経過時間は、そのルーチンから呼び出している子ルーチンの経過時間も含んでいる. (測定条件)
  - (a)移植先計算機 : Paragon S5MP (関西研 2CPU/1node)
    (b)最適化 : -O4
    (c)計算体系 : 150\*150\*1(X-Y-Z)
    (d)計算条件 : time step iteration 1回

| 1 4 | 11.70 |      |       | · · · · · · · · · · · · · · · · · · · |
|-----|-------|------|-------|---------------------------------------|
|     |       |      |       | 1.0                                   |
| 4   | 3.40  | 0.93 | 0.014 | 3.4                                   |
| 16  | 3.80  | 2.20 | 0.028 | 3.1                                   |
| 36  | 4.80  | 3.58 | 0.093 | 2.4                                   |
| 64  | 4.80  | 3.60 | 0.120 | 2.4                                   |
| 121 | 5.10  | 3.57 | 0.390 | 2.3                                   |
| 256 | 6.60  | 4.01 | 1.590 | 1.8                                   |
| 484 | 9.80  | 4.17 | 4.510 | 1.2                                   |

Table 4.2 Speed up ratio.

\*1 差分式、ネイバリング通信部

\*2 ICCG法、ノード0にデータ集約

速度向上率測定(関西研 Paragon) 並列化コード: PHCIP(ij 方向分割版)

## 解析条件

(1) 計算体系 : 50\*50\*1

(2) iteration time :  $1 \square$ 

(3) 計算時間には入出力,初期化ルーチンの経過時間は含めない

(4) 最適化レベル:-04

(5) ノード1で使用した実行ファイルは、並列化プログラミング前のもの

```
(warning)
PGFTN-W-0093-Type conversion of expression performed
PGFTN-W-0093-Type conversion of expression performed
O inform, 3 warnings, 0 severes, 0 fatal for cip3d
(error)
PGFTN-S-0210-Exponent width not used in the Ew.dEe or Gw.dEe
(CCUP3D.50*50.f: 2763)
PGFTN-S-0210-Exponent width not used in the Ew.dEe or Gw.dEe
(CCUP3D.50*50.f: 2772)
0 inform, 0 warnings, 2 severes, 0 fatal for iform
```

Fig. 4.1 Warning and error messege.

```
(1) warning (CIP3D)
     C******* S
     С
             X1 = -SIGN(1.0,CX)
             Y1 = -SIGN(1.0, CY)
     С
     С
             Z1 = -SIGN(1.0, CZ)
             X1 = -DSIGN(1.0D0, CX)
             Y1 = -DSIGN(1.0D0, CY)
             Z1 = -DSIGN(1.0D0,CZ)
     C***** E
(2) error (IFORM)
     C******* S
                    FORMAT(1H ,2X,I3,11E12)
     C6210
                    FORMAT(1H ,2X,13,11E12.4)
     6210
     C******
     C******* S
                    FORMAT(1H ,2X,I3,10E12)
FORMAT(1H ,2X,I3,10E12.4)
     C6230
     6230
     C***** E
```

Fig. 4.2 Modification of original code source (1-node).

```
REYNLS=1000.D0,
UWALL=1.0D0,
IDIGIT=1,
GASCON=1.0D0,
GAMMA=1.4D0,
NXIN=50,
NYIN=50,
NZIN=1,
DT=0.005D0,
MXSTEP=5,
NSTEP=100,
IPLANE=1,
NOPRT=1,
ITMAXP=500,
EPSP=1.0D-6,
P0=1.0D0,
DEN0=1.4D0,
U0=3.0D00,
V0=0.0D0,
W0=0.0D0,
XLAM=0.0D0
```

Fig. 4.3 Input data for test calculation.

.

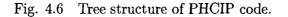

| GAS CONSTANT (2<br>RATIO OF SPECIF<br>NUMBER OF MESH<br>NUMBER OF MESH<br>NUMBER OF MESH<br>MESH WIDTH : DX | •                                  | R AT 1ATM.) =<br>R AIR) = 1<br>REAL CELL ONL'<br>REAL CELL ONL'<br>REAL CELL ONL'<br>DETERMINED) = | = 1.000000<br>.40000000000<br>Y) =<br>Y) =<br>Y) =<br>2.0000000000 | 000000000<br>0000<br>50<br>50<br>1<br>0000000E-02 (*) |
|-------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|
| MESH WIDTH : DZ                                                                                             | (AUTOMATICALY I<br>(AUTOMATICALY I |                                                                                                    |                                                                    |                                                       |
| (途中省略)<br>ISTEP=                                                                                            | 1 PRESSURE ITER                    |                                                                                                    |                                                                    |                                                       |
| ISTEP=                                                                                                      | 2 PRESSURE ITER                    | ATION COUNT=                                                                                       | 4                                                                  |                                                       |
| ISTEP=                                                                                                      | 3 PRESSURE ITER                    | RATION COUNT=                                                                                      | 4                                                                  |                                                       |
| ISTEP=                                                                                                      | 4 PRESSURE ITER                    | RATION COUNT=                                                                                      | 4                                                                  |                                                       |
|                                                                                                             | 5 PRESSURE ITER                    |                                                                                                    |                                                                    |                                                       |
| **** YUN : U-                                                                                               | VELOCITY                           |                                                                                                    | 2                                                                  |                                                       |
| J= I= 0                                                                                                     | 1                                  | 2                                                                                                  | 3                                                                  | 4                                                     |
| •                                                                                                           | 7 8                                | 9                                                                                                  | 10                                                                 |                                                       |
| -                                                                                                           | 00 2.124E-01                       | 5.880E-01                                                                                          | 9.735E-01                                                          | 1.372E+00                                             |
| 2.487E+00 2.74                                                                                              | 6E+00 2.769E+00                    | ) 2.768E+00                                                                                        | 2.768E+00                                                          |                                                       |
| 50 0.000E+                                                                                                  | 00 2.124E-01                       | 5.880E-01                                                                                          | 9.735E-01                                                          | 1.372E+00                                             |
| 2.487E+00 2.74                                                                                              | 6E+00 2.769E+00                    | ) 2.768E+00                                                                                        | 2.768E+00                                                          |                                                       |
| 49 0.000E+                                                                                                  | 00 1.690E-01                       | 5.517E-01                                                                                          | 9.554E-01                                                          | 1.374E+00                                             |
|                                                                                                             | 6E+00 2.994E+00                    |                                                                                                    |                                                                    |                                                       |
|                                                                                                             | 00 1.699E-01                       |                                                                                                    |                                                                    |                                                       |
|                                                                                                             | 1E+00 3.000E+00                    |                                                                                                    |                                                                    |                                                       |
|                                                                                                             | 00 1.700E-01                       |                                                                                                    |                                                                    |                                                       |
|                                                                                                             |                                    |                                                                                                    |                                                                    |                                                       |
|                                                                                                             | 1E+00 3.000E+00                    | J 3.000E+00                                                                                        | 3.000E+00                                                          |                                                       |
| (以下省略)<br>                                                                                                  |                                    |                                                                                                    |                                                                    |                                                       |

Fig. 4.4 Result of test calculation on VPP500.

TANGENT TRANFORMATION (IDIGIT=1...ON / 0...OFF) = NUMBER OF MESH IN X-DIRECTION (REAL CELL ONLY) = 50 NUMBER OF MESH IN Y-DIRECTION (REAL CELL ONLY) = 50 NUMBER OF MESH IN Z-DIRECTION (REAL CELL ONLY) = 1 MESH WIDTH : DZ (AUTOMATICALY DETERMINED) = 2.0000000000000000000((\*) (途中省略) 1 PRESSURE ITERATION COUNT= ISTEP= 4 2 PRESSURE ITERATION COUNT= ISTEP= 4 ISTEP= 3 PRESSURE ITERATION COUNT= 4 4 PRESSURE ITERATION COUNT= ISTEP= 4 ISTEP= 5 PRESSURE ITERATION COUNT= 4 ====== C-CUP : ICYC= 5 ------\*\*\*\*\* YUN : U-VELOCITY K= 1 \*\*\*\*\* J= I= 0 1 2 З 4 6 7 8 9 10 5.880E-01 51 0.000E+00 2.124E-01 9.735E-01 1.372E+00 2.487E+00 2.746E+00 2.769E+00 2.768E+00 2.768E+00 50 0.000E+00 2.124E-01 5.880E-01 9.735E-01 1.372E+00 2.487E+00 2.746E+00 2.769E+00 2.768E+00 2.768E+00 49 0.000E+00 1.690E-01 5.517E-01 9.554E-01 1.374E+00 2.652E+00 2.966E+00 2.994E+00 2.994E+00 2.994E+00 48 0.000E+00 1.699E-01 5.526E-01 9.558E-01 1.374E+00 2.656E+00 2.971E+00 3.000E+00 3.000E+00 3.000E+00 47 0.000E+00 1.700E-01 5.528E-01 9.559E-01 1.374E+00 2.656E+00 2.971E+00 3.000E+00 3.000E+00 3.000E+00 (以下省略)

Fig. 4.5 Result of test calculation on Paragon.

| MAIN -   - INITLZ | - IFORM  |        |        |        |        |        |
|-------------------|----------|--------|--------|--------|--------|--------|
| - ARTVIS          |          |        |        |        |        |        |
| - POISN           | - BOUNDR | BOUNDU | BOUNDV | BOUNDW | MICCG  | ICCG   |
| VELVIS            |          |        |        |        |        |        |
| - ADVVEL          |          |        |        |        |        |        |
| - GRDNAV          | — BOUNDG |        |        |        |        |        |
| — CIP3D           | - BOUNDG |        |        |        |        |        |
| - FTAN            |          |        |        |        |        |        |
| — BOUND           | - BOUNDR | BOUNDU | BOUNDV | BOUNDW | BOUNDT | BOUNDF |
| — FARTAN          |          |        |        |        |        |        |
| - SHIFT           |          |        |        |        |        |        |
| — RFORM           |          |        |        |        |        |        |
|                   |          |        |        |        |        |        |
|                   |          |        |        |        |        |        |
|                   |          |        |        |        |        |        |



```
dims(1) = iprocs
         dims(2) = jprocs
         periods(1) = .false.
         periods(2) = .false.
         ndim = 2
         reorder = .false.
с
      call MPI_CART_CREATE( comm_calc, ndim, dims, periods,
            reorder, cart_comm, ierr )
     &
      call MPI_CART_GET( cart_comm, ndim, cart_dims,
     &
            cart_periods, cart_coords, ierr )
      call MPI_CART_RANK(cart_comm, cart_coords, cart_rank,
     &
              ierr )
      call MPI_COMM_SIZE( cart_comm, cart_size, ierr )
с
                                                       +====+
      call MPI_CART_SHIFT( cart_comm, 0, 1,
                                                              +
     &
            idown, iup, ierr )
                                                              1
     call MPI_CART_SHIFT( cart_comm, 1, 1,
     &
            jdown, jup, ierr )
                                                             +
    --- set type vector of arrays -----
                                                       +====
                                                            =+
c٠
      call PARA_RANGE(0, im, iprocs, cart_coords(1), ista, iend )
      call PARA_RANGE(0, jm, jprocs, cart_coords(2), jsta, jend )
С
      istal = ista
                                                        +---+
      iend1 = iend
                                                              +
      jsta1 = jsta
jend1 = jend
if (cart_coords(2) .eq. 0 ) then
         jsta1 = 1
      endif
                                                              2
      if (cart_coords(1) .eq. 0 ) then
         ista1 = 1
      end if
      if (cart_coords(2) .eq. jprocs-1 ) then
         jend1 = JM - 1
      endif
```

Fig. 4.7 Initialization process for parallel execution (1/2).

```
if (cart_coords(1) .eq. iprocs-1 ) then
        iend1 = IM - 1
     end if
                                                +
с
                                           +====+
     do irank = 0, isize-1
       icoords(1) = irank/jprocs
       icoords(2) = JMOD(irank, jprocs)
С
       call PARA_RANGE(0, im, iprocs, icoords(1),
       &
    82
с
       istay = istax
       iendy = iendx
       jstay = jstax
       jendy = jendx
с
     if (icoords(2) .eq. 0 ) then
        jstax = 1
     end if
     if (icoords(1) .eq. 0 ) then
        istax = 1
     end if
     if (icoords(2) .eq. jprocs-1 ) then
        jendx = JM - 1
     endif
     if (icoords(1) .eq. iprocs-1 ) then
       iendx = IM - 1
     end if
       &
       call PARA_TYPE_BLOCK2(1, im-1, 1, istax, iendx, jstax, jendx,
    &
                       MPI_DOUBLE_PRECISION, itype2(irank))
     end do
                                          ---- 3
     call PARA_TYPE_BLOCK2A(0, im, 1, jlen, MPI_DOUBLE_PRECISION,
    X.
                          cart_stridej )
     call PARA_TYPE_BLOCK2A(0, jm, ilen, 1, MPI_DOUBLE_PRECISION,
    &
                          cart_stridei )
                                            ____
                                                      4
```

Fig. 4.7 Initialization process for parallel execution (2/2).

٦

| +              | +                                              |
|----------------|------------------------------------------------|
| parameter (ip) | rocs=11, jprocs=11)                            |
|                | ize=iprocs*jprocs)                             |
|                | group_world,comm_world,group_calc, comm_calc,  |
| &              | group_write, comm_write,                       |
| <u>گ</u>       | comm_ctow, comm_wtoc, cart_comm,               |
| ž              | <pre>cart_dims(2), cart_rank, cart_size,</pre> |
| æ              | <pre>cart_coords(2),cart_periods(2),</pre>     |
| &              | idown, iup, jdown, jup,                        |
| ũ.             | ista, iend, jsta, jend,                        |
| ů<br>k         | ista1,iend1,jsta1,jend1,                       |
| &              | cart_stridei,cart_stridej,                     |
| ~<br>&         | nprocs, myrank,                                |
| ~<br>&         | itype1(0:isize-1),itype2(0:isize-1)            |
| +              | +                                              |
| iproc          | s : i 方向計算ノード数                                 |
| jproc          |                                                |
| isize          |                                                |
| —              | world $\sim \text{cart_periods}(2)$            |
|                | ミュニケータ、カルテシアントポロジー用変数                          |
| idown          |                                                |
| 14091          | (ネイバリング通信に使用)                                  |
| iup            | : 計算を担当するノードの+i方向の隣接ノード番号                      |
| jdown          |                                                |
| jup            | : 計算を担当するノードの+j方向の隣接ノード番号                      |
| ista1          |                                                |
| 15041          | 〔NX*NY*NZ 体系 (最外周境界メッシュは含まない)〕                 |
| iend1          |                                                |
| Ténat          |                                                |
| jsta1          |                                                |
| Jour           | 〔NX*NY*NZ 体系 ( 最外周境界メッシュは含まない)〕                |
| jend1          |                                                |
| Jonar          | 〔NX*NY*NZ 体系 (最外周境界メッシュは含まない)〕                 |
| ista           | : 各ノードが担当するi方向メッシュの初期値                         |
| 1000           | 〔 (IM+1)*(JM+1)*(KM+1) 体系 ( 最外周境界メッシュを含む) 〕    |
|                |                                                |
| iend           | : 各ノードが担当する i 方向メッシュの終値                        |
|                | 〔 (IM+1)*(JM+1)*(KM+1) 体系 ( 最外周境界メッシュを含む) 〕    |
|                |                                                |
| jsta           | : 各ノードが担当する j 方向メッシュの初期値                       |
| J+++           | 〔 (IM+1)*(JM+1)*(KM+1) 体系 ( 最外周境界メッシュを含む) 〕    |
|                |                                                |
| jend           | : 各ノードが担当する J 方向メッシュの終値                        |
| J              | 〔 (IM+1)*(JM+1)*(KM+1) 体系 ( 最外周境界メッシュを含む) 〕    |
|                |                                                |
| cart           | stridei : i 方向のネイバリング通信用派生データ                  |
| cart           | stridej : j 方向のネイバリング通信用派生データ                  |
| nproc          | s : Paragon で使用できるノード総数                        |
| myran          |                                                |
| itvpe          | 1(0:isize-1) : グローバル通信用派生データ                   |
| JF-            | 〔NX*NY*NZ 体系 ( 最外周境界メッシュは含まない) 〕               |
| itvpe          | 2(0:isize-1) : グローバル通信用派生データ                   |
| JF-            | 〔 (IM+1)*(JM+1)*(KM+1) 体系 ( 最外周境界メッシュを含む) 〕    |
|                |                                                |
|                |                                                |

Fig. 4.8 Include file 'mpi.para.inc'.

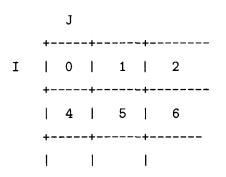



Fig. 4.9 Cartesian Topology.

|   | k                                            | <pre>MPI_IRECV(A(ista,jsta-1),1,cart_stridei,jdown,1,</pre>                                                                                                                                                                         | <br>1 |
|---|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 8 | 5                                            | <pre>MPI_IRECV(A(ista,jend+1),1,cart_stridei,jup,1,</pre>                                                                                                                                                                           | <br>2 |
| ł | call<br>2<br>call                            | <pre>MPI_IRECV(A(ista-1,jsta),1,cart_stridej,idown,1,</pre>                                                                                                                                                                         | <br>3 |
|   | ۶<br>ک                                       | <pre>cart_comm,jsend1,ierr) MPI_IRECV(A(iend+1,jsta),1,cart_stridej,iup,1,</pre>                                                                                                                                                    | <br>4 |
| c | Ł                                            | <pre>MPI_ISEND(A(ista,jsta),1,cart_stridej,idown,1,</pre>                                                                                                                                                                           |       |
|   | call<br>call<br>call<br>call<br>call<br>call | MPI_WAIT(ifecv1,istatus,ierr)<br>MPI_WAIT(isend1,istatus,ierr)<br>MPI_WAIT(irecv2,istatus,ierr)<br>MPI_WAIT(isend2,istatus,ierr)<br>MPI_WAIT(jrecv1,istatus,ierr)<br>MPI_WAIT(jrecv2,istatus,ierr)<br>MPI_WAIT(jsend2,istatus,ierr) |       |

Fig. 4.10 Communication part of subroutine COMDIM.



[1] T.Yabe et al: A universal solver for hyperbolic equations by cubic-polynomial interpolation, Computer Physics Communications ,66(1991)219-242.

## 5. おわりに

計算科学技術推進センター情報システム管理課で実施している原子力コードの高速化作業は、 毎年 10 数件を順調にこなし、平成 10 年度に 12 件の作業を完了、平成 11 年度にも 14 件の作業 が計画されている.これら作業は、ユーザからの依頼に応じ、原子力コードを原研が保有する 各種スーパーコンピュータ向けに最適なベクトル化、並列化を施すチューニングを行うもので あり、コード実行時間の大幅な短縮に寄与している.さらに、単一プロセッサ上ではメモリ不足 から実行できないようなジョブを並列化効果により可能にするなど、計算機のスループットの向 上、ターンアラウンドタイムの短縮、それによるユーザの仕事の効率化、計算可能なジョブの範 囲の拡大など、計算機の効率的な運用と計算機資源の有効利用に大いに貢献するものと考えてい る.

本報告書では、連続エネルギー粒子輸送モンテカルロコード MCNP4B2,連続エネルギー及 び多群モデルモンテカルロコード MVP-GMVP 及び光量子による固体溶融蒸発シミュレーショ ンコード PHCIP を対象に実施したスカラ並列化作業について記述した.

今回は、スカラ並列による高速化作業、並びにファイル I/O の不具合修正作業を実施したが、 高速化効果が不十分な計算コードもあり、並列化を考慮した計算アルゴリズムの見直し、並列 I/O の導入等が、今後の課題になるものと思われる.また、今後の並列化による高速化作業で は、汎用性が高い通信ライブラリとして MPI の利用を推進する.

最後に、本報告書がこれらの仕事に携わる人々に多少なりとも参考になれば幸いである.

## 謝 辞

本作業を行う上で,作業を依頼された炉心プラズマ第1実験室西谷健夫氏(2章)、炉物理研 究グループ長家康展氏(3章)、光量子シミュレーション研究グループ内海隆行氏(4章)、に は、コード内容の把握に際し御協力頂きました.また,本報告書の作成に当り数値実験グループ の渡辺正氏には御指導と御助言をいただきました.さらに,本作業を円滑に遂行するための各種 事務処理については山田圭子氏に御協力を頂きました.ここにこれらの方々に感謝の意を表しま す.最後に,本報告書を執筆する機会を与えて下さいました計算科学技術推進センター長秋元正 幸氏,情報システム管理課長藤井実氏,(株)日立製作所公共情報営業本部部長代理高田尚紀氏 に感謝致します. This is a blank page.

# 国際単位系 (SI) と換算表

表1 SI基本単位および補助単位

| 記号            | 名称     | 車   |       |
|---------------|--------|-----|-------|
| m             | メートル   | さ   | 長     |
| kg            | キログラム  | 量   | 質     |
| s             | 秒      | 間   | 時     |
| Α             | アンペア   | 流   | 電     |
| К             | ケルビン   | 学温度 | 熱力    |
| mol           | モル     | 質量  | 物     |
| $c\mathbf{d}$ | カンデラ   | 度   | 光     |
| rad           | ラジアン   | 面角  | <br>¥ |
| sr            | ステラジアン | 体角  | 立     |

#### 表3 固有の名称をもつ SI 組立単位

| 量             | 名 称    | 記号           | 他の SI 単位<br>による表現 |
|---------------|--------|--------------|-------------------|
| 周波数           | ヘルッ    | Hz           | $\mathbf{s}^{1}$  |
| カ             | ニュートン  | N            | m-kg/s²           |
| 圧 力 , 応 力     | パスカル   | Pa           | N/m²              |
| エネルギー, 仕事, 熱量 | ジュール   | J            | N∙m               |
| E 率, 放射束      | ワット    | W            | J/s               |
| 電気量,電荷        | クーロン   | С            | A∙s               |
| 電位,電圧,起電力     | ボルト    | v            | W/A               |
| 静電容量          | ファラド   | F            | C/V               |
| 電気抵抗          | 1 - 4  | Ω            | V/A               |
| コンダクタンス       | ジーメンス  | $\mathbf{S}$ | A/V               |
| 磁束            | ウェーバ   | Wb           | $V \cdot s$       |
| 磁束密度          | テスラ    | Т            | Wb/m²             |
| インダクタンス       | ヘンリー   | Н            | Wb/A              |
| セルシウス温度       | セルシウス度 | °C           |                   |
| 光 束           | ルーメン   | lm           | cd∙sr             |
| 照 度           | ルクス    | lx           | lm/m²             |
| 放 射 能         | ベクレル   | Bq           | s <sup>-1</sup>   |
| 吸収線量          | グレイ    | Gy           | J/kg              |
| 線量且当量         | シーベルト  | Sv           | J/kg              |

| 表? SIと併用される単位 |
|---------------|
|---------------|

| 名称     | 記号        |
|--------|-----------|
| 分、時、日  | min, h, d |
| 度,分,秒  | • • •     |
| リットル   | 1, L      |
| トン     | t         |
| 電子ボルト  | eV        |
| 原子質量単位 | u         |

1 eV=1.60218 × 10<sup>-19</sup> J 1 u=1.66054 × 10<sup>-27</sup> kg

| 表 4 | SIと共に暫定的に |
|-----|-----------|
|     | 維持される単位   |

| <u> </u>          |      | 1   |    |          |
|-------------------|------|-----|----|----------|
|                   | 名称   |     | 記  | 号        |
|                   | グストロ | - L | Å  | <u> </u> |
| バ                 |      | ~   | b  |          |
| バ                 | _    | n   | ba | Г        |
| ガ                 |      | ル   | G  | al       |
| +                 | ュリ   | -   | С  | i        |
| $\scriptstyle  u$ | ントク  | ・ン  | F  | ł        |
| ラ                 |      | ۲   | ra | d        |
| V                 |      | 4   | re | m        |

1 Å= 0.1 nm=10<sup>-10</sup> m 1 b=100 fm<sup>2</sup>=10<sup>-28</sup> m<sup>2</sup> 1 bar=0.1 MPa=10<sup>5</sup> Pa 1 Gal=1 cm/s<sup>2</sup>=10<sup>-2</sup> m/s<sup>2</sup> 1 Ci=3.7×10<sup>10</sup> Bq 1 R=2.58×10<sup>-4</sup> C/kg 1 rad = 1 cGy = 10<sup>-2</sup> Gy 1 rem = 1 cSy = 10<sup>-2</sup> Sy

表

## 表5 SI接頭語

| 倍数              | 接頭           | 語      | 記  | 号   |  |  |  |  |  |
|-----------------|--------------|--------|----|-----|--|--|--|--|--|
| 1018            | エク           | サ      | E  |     |  |  |  |  |  |
| 1015            | ペ            | 9      | Р  | •   |  |  |  |  |  |
| 1012            | Ŧ            | タ<br>ラ | Т  |     |  |  |  |  |  |
| 10°             | ¥            | ガ      | G  | r   |  |  |  |  |  |
| 10 <sup>6</sup> | ×            | ガ      | N  | 1   |  |  |  |  |  |
| 10 <sup>3</sup> | ŧ            |        | k  |     |  |  |  |  |  |
| 10²             | ヘク           | ۲.     | h  |     |  |  |  |  |  |
| 10'             | $\vec{\tau}$ | カ      | da | a . |  |  |  |  |  |
| 10 - 1          | デ            | 2      | d  |     |  |  |  |  |  |
| 10-2            | セン           | ・チ     | с  |     |  |  |  |  |  |
| 10-3            | Ę            | ŋ      | n  | ì   |  |  |  |  |  |
| 10-6            | マイ           | クロ     | μ  |     |  |  |  |  |  |
| 10-9            | +            | 1      | n  |     |  |  |  |  |  |
| 10-12           | ۲°           | 7      | р  |     |  |  |  |  |  |
| 10-15           | 71           | 4 F    | f  |     |  |  |  |  |  |
| 10-18           | 7            | ۲_     | a  |     |  |  |  |  |  |

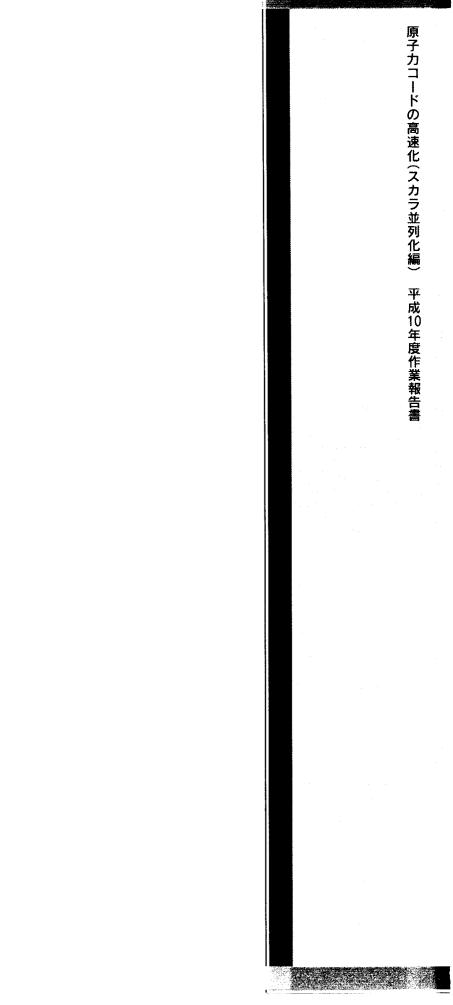
#### (注)

- 表1-5は「国際単位系」第5版,国際 度量衡局 1985年刊行による。ただし、1 eV および1 uの値は CODATA の 1986年推奨 値によった。
- 2. 表4には海里、ノット、アール、ヘクタ ールも含まれているが日常の単位なのでこ こでは省略した。
- barは、JISでは流体の圧力を表わす場合に限り表2のカテゴリーに分類されている。
- EC閣僚理事会指令では bar, barn および「血圧の単位」mmHgを表2のカテゴリ ーに入れている。

| 力       | $N(=10^{5} dyn)$ | kgf      | lbf      |  |  |
|---------|------------------|----------|----------|--|--|
|         | 1                | 0.101972 | 0.224809 |  |  |
| 9.80665 |                  | 1        | 2.20462  |  |  |
|         | 4.44822          | 0.453592 | 1        |  |  |

|     | -                                                                                 |
|-----|-----------------------------------------------------------------------------------|
| 動粘度 | $1 \text{ m}^2/\text{s} = 10^4 \text{St}(2 \text{ k} - 22)(\text{cm}^2/\text{s})$ |

| 圧 | MPa(=10 bar)               | kgf/cm <sup>2</sup>      | atm                        | mmHg(Torr)                | lbf/in <sup>2</sup> (psi) |
|---|----------------------------|--------------------------|----------------------------|---------------------------|---------------------------|
|   | 1                          | 10.1972                  | 9.86923                    | 7.50062 × 10 <sup>3</sup> | 145.038                   |
| カ | 0.0980665                  | 1                        | 0.967841                   | 735.559                   | 14.2233                   |
|   | 0.101325                   | 1.03323                  | 1                          | 760                       | 14.6959                   |
|   | 1.33322 × 10 <sup>-4</sup> | $1.35951 \times 10^{-3}$ | $1.31579 \times 10^{-3}$   | 1                         | $1.93368 \times 10^{-2}$  |
|   | 6.89476 × 10 <sup>-3</sup> | $7.03070 \times 10^{-2}$ | 6.80460 × 10 <sup>-2</sup> | 51.7149                   | 1                         |


| エネ            | $J(=10^{7} erg)$            | kgf• m                      | kW•h                        | cal(計量法)                    | Btu                         | ft•lbf                      | eV                         | 1 cal = 4.18605 J (計量法)                    |
|---------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|----------------------------|--------------------------------------------|
| iv            | 1                           | 0.101972                    | $2.77778 \times 10^{-7}$    | 0.238889                    | 9.47813 × 10 <sup>- 4</sup> | 0.737562                    | 6.24150 × 10 <sup>18</sup> | = 4.184 J (熱化学)                            |
| <i>¥</i><br>1 | 9.80665                     | 1                           | 2.72407 × 10 <sup>-6</sup>  | 2.34270                     | 9.29487 × 10 <sup>-3</sup>  | 7.23301                     | 6.12082 × 10 <sup>19</sup> | $= 4.1855 \text{ J} (15 ^{\circ}\text{C})$ |
| ・<br>仕<br>事   | $3.6 \times 10^{6}$         | 3.67098 × 10 <sup>5</sup>   | 1                           | 8.59999 × 10⁵               | 3412.13                     | 2.65522 × 10 <sup>6</sup>   | 2.24694 × 10 <sup>25</sup> | = 4.1868 J (国際蒸気表)                         |
| •             | 4.18605                     | 0.426858                    | $1.16279 \times 10^{-6}$    | 1                           | 3.96759 × 10 <sup>-3</sup>  | 3.08747                     | 2.61272 × 1019             | 仕事率 1 PS(仏馬力)                              |
| 熱量            | 1055.06                     | 107.586                     | 2.93072 × 10 <sup>-4</sup>  | 252.042                     | 1                           | 778.172                     | 6.58515 × 10²1             | = 75 kgf·m/s                               |
|               | 1.35582                     | 0.138255                    | $3.76616 \times 10^{-7}$    | 0.323890                    | 1.28506 × 10 <sup>-3</sup>  | 1                           | 8.46233 × 10 <sup>18</sup> | = 735.499 W                                |
|               | 1.60218 × 10 <sup>-19</sup> | 1.63377 × 10 <sup>-20</sup> | 4.45050 × 10 <sup>-26</sup> | 3.82743 × 10 <sup>-20</sup> | 1.51857 × 10 <sup>-22</sup> | 1.18171 × 10 <sup>-19</sup> | 1                          |                                            |

換

算

| 放 | Bq                     | Ci                        | 吸  | Gy   | rad | 照     | C/kg                    | R    | 線           | Sv   | rem |
|---|------------------------|---------------------------|----|------|-----|-------|-------------------------|------|-------------|------|-----|
| 射 | 1                      | $2.70270 \times 10^{-11}$ | 収線 | 1    | 100 | 照射線   | 1                       | 3876 | 重           | 1    | 100 |
| 能 | 3.7 × 10 <sup>10</sup> | 1                         | 耻  | 0.01 | 1   | HAL . | 2.58 × 10 <sup>-4</sup> | 1    | <u>9</u> 4, | 0.01 | 1   |

(86年12月26日現在)

