

KAERI/TR-1596/2000

4

액체금속로 노심 유량분배 계산모듈 개발

Development of Flow Grouping Module for an LMR Core

2000. 6

한국원자력연구소

Please be aware that all of the Missing Pages in this document were originally blank pages

-

제 출 문

한국원자력연구소장 귀하

۰.

본 보고서를 원자력연구개발 중장기과제인 "액체금속로 노심설계기술 개발"과제의 2000년도 기술보고서로 제출합니다.

2000. 6.

과 제 명 : 노심설계기술개발 과제책임자 : 김 영 일 주 저 자 : 김 영 균 공동저자 : 김 원 석 요약문

소듐을 냉각재로 사용하는 액체금속로 노심은 덕트라는 특수한 구조로 된 집 합체들로 구성되어 있으며, 각 덕트는 막힌 유로를 갖고 있어 덕트에서 덕트로의 유량이 없기 때문에, 각각의 집합체를 흐르는 유량을 그 집합체의 출력에 맞도록 노심의 입구에서 미리 분배해 주어야 한다. 이 유량분배는 각각의 핵연료 피복 관의 누적 손상률이 동일하게 되어 핵연료봉의 신뢰성을 확보할 수 있도록 하기 위해 필요한 것이며, 이를 위하여 Orifice라는 노심 유량 분배장치를 사용하게 된 다.

본 보고서에서는 이와 같은 액체금속로의 노심에 대한 열수력학적 특성을 이 해하고, 노심 열수력 개념설계를 위한 전반적인 작업의 흐름도를 살펴본 후, 이 의 해석체제를 확립하기 위하여 구축된 노심의 유량 영역구분을 위한 계산모듈 에 대하여 기술하였다. 이를 바탕으로 하여 노심의 온도분포 계산모듈, 정상상 태 노심 열수력 설계코드 및 부수로 해석코드를 이용한 노심 열수력의 상세한 계산이 가능할 것이다.

먼저 노심 열수력설계 및 특성 분석의 전반적인 작업 흐름에 대하여 살펴본 후, 2장에서는 모듈의 개요에 대하여, 3장에서는 노심설계, 노심배치 및 핵계산 결과 입력자료에 대하여 각각 기술하였고, 4장에서는 계산모델 및 방법에 대하여 설명하였다. 그리고 5장에서는 계산방법 및 계산 결과에 대하여 검토한 후, 6장 에서는 이 결과를 토대로 한 결론과 앞으로의 연구방향에 대하여 기술하였다.

본 보고서에서 계산모듈의 설명을 위해 사용된 데이터는 KALIMER 증식특성 노심설계의 출력 및 유량분배 계산 데이터이며, 본 모듈의 계산은 MSOffice 2000 의 Microsoft Excel 2000을 이용하여 시행된 것이다.

- iii -

Summary

Sodium cooled LMR core is comprised of many duct assemblies which have no flow exchanges between them. So, the required flow to each assembly corresponding to its power has to be allocated in thermal hydraulic design. Flow allocation facility, which is called orifice, is used for this purpose in an LMR core.

In this context, flow grouping module for an LMR core has been developed. This report describes the modeling and method of this module, and explains the calculation procedure and the sample calculation results.

Firstly, LMR core thermal hydraulic conceptual design and analysis procedure was explained in chapter 1. Chapter 2 overviews this flow grouping module, and in chapter 3 core design and configuration data with power distributions were given. The calculation modeling and method of this module were explained in chapter 4, and chapter 5 shows calculation procedure and sample calculation results.

KALIMER breeder core design data, e.g., inlet and outlet temperatures, power distributions and core flow, were used in this report to explain how this module works. And this module works in the environment of Microsoft Excel 2000 of MSOffice 2000.

목 차

요 약 문	iii
Summary	iv
제 1 장 서론	1
제 2 장 모듈의 개요	6
2.1 모듈의 특성	6
2.2 모듈에 사용된 계산 인자	6
제 3 장 입력자료	15
3.1 노심배치 입력자료	15
3.2 노심설계 입력자료	18
3.3 핵계산 결과 입력자료	18
제 4 장 계산모델 및 방법	20
4.1 사이클별 출력계산	20
4.2 집합체별 최대출력과 유량분배 집합채 선정	21
4.3 집합체별 필요유량 계산	21
4.4 집합체 필요유량 정렬	22
4.5 유량영역 구분	22
제 5 장 출력자료	27
5.1 유량분배 결과	27
5.2 온도계산 모듈 입력자료	29
제 6 장 결론 및 토의	30
참고문헌	31

•.

표목차

丑 1.	소듐의 열적 성질 (물과 비교)	1
표 2.	SLTHEN 코드에서 사용되는 HCF 예시	13
표 3.	집합체 분류에 따른 종류	16
표 4.	계산모듈 중 노심배치 입력자료	17
丑 5.	노심설계 입력자료	18
丑 6.	출력계산 결과 입력자료	19
표 7.	핵연료주기당 집합체 출력계산 수식	21
표 8.	최대출력 집합체에 따른 유량분배	23
丑 9.	부수로 냉각재 최고온도에 따른 집합체별 필요유량 계산	24
丑 10	집합체 필요유량 정렬	25
丑 11.	유량영역 구분 계산 결과	26
丑 12	유량분배 계산결과 요약	27
표 13	온도계산 모듈 입력을 위한 집합체별 유량그룹	29

그림목차

그림 1.	액체금속로 노심 열수력 설계 및 특성분석 작업 흐름도	3
그림 2.	MATRA-LMR 코드 개발 계획	5
그림 3.	부수로의 형태와 정의	7
그림 4.	입력자료 작성을 위한 노심배치 번호체계 (1/6 노심)	15
그림 5.	핵연료주기당 집합체 출력계산 그림	20
그림 6.	유량분배 계산결과 (1/6 노심)	28

•. .

제1장 서론

소듐을 냉각재로 사용하는 액체금속로는 높은 출력밀도 및 높은 연소도 특성 으로 인하여 노심의 열수력학적 설계조건이 가압경수로의 경우와는 다른 고유한 특성을 갖게 된다. 가압경수로의 경우 과출력상태나 과도시 DNBR을 만족시키 는 조건, 즉 냉각재의 온도에 설계 제한조건이 주어지지만 액체금속로의 경우에 는 냉각재인 소듐의 열전도율 및 비둥점이 매우 높기 때문에 피복재 온도나 핵 연료의 최대온도에 설계 제한조건을 두게 된다.[1,2] 참고로 표 1에 냉각재인 소 듐의 열적 성질을 가압경수형 원자로 조건하에서의 물과 비교하여 나타내었다.

	r1 ol	소듐	물
	먼취	(500℃, 1기압)	(300℃, 150기압)
및 도 (o)	kg/m³	832.2	724
인 탈 피 (h)	J/kg	1.015×10^6	1.342 X 10 ⁶
비 열 (C,)	J∕kg℃	1.262×10^3	5.531 X 10 ³
열전도도 (k)	W/m℃	66.83	5.547 X 10 ⁻¹
점성계수 (μ)	Pa.s	2.364 X 10 ⁻⁴	9.03 X 10 ⁻⁵
포화온도 (<i>T_s</i>)	C	880.0	342.1
프랜탈수 (Pr)	-	0.0045	0.900

표 1. 소듐의 열적 성질 (물과 비교)

이러한 설계온도를 만족시키면서 냉각재의 노심 출구온도를 높이기 위하여 액 체금속로의 핵연료집합체는 가압경수로의 경우와 달리 6각형 덕트내에 3각형 격 자구조로 핵연료봉을 밀집배열하고 나선격리기 (spiral wire spacer)나 그리드 격 리기(grid spacer) 등으로 그 간격을 유지시키며, 집합체의 출력에 따라 냉각재 유량을 다르게 조절한다. 이러한 여러가지 조건들 때문에 노심의 열수력학적 설 계 및 해석방법은 가압경수로의 경우와 다르게 된다.[3,4]

액체금속로의 냉각지로 사용되는 소듐은 전체 핵연료봉 피복관의 누적 손상률 이 동일하도록 분배되어 핵연료봉의 신뢰성을 확보할 수 있어야 한다. 따라서 유량분배작업에서는 모든 핵연료 집합체에서 최고출력을 보이는 연료봉의 피복 관 중심온도 최대값이 같도록 한다. 모든 핵연료 집합체에서 연료의 최대 연소

- 1 -

도가 같다고 가정하면, 핵분열 생성 기체 압력, 피복관의 손상률이 같게 되는 것 이다. 노심설계, 분석, 제작 및 운전시의 불확정성과 편차를 고려하기 위해서 온 도계산시에는 Hot Channel Factor를 고려하는데, 보통 20 값이 쓰인다.

특히, 액체금속로 노심은 덕트라는 특수한 구조로 된 집합체들로 구성되어 있 으며, 각 덕트는 막힌 유로를 갖고 있어 덕트에서 덕트로의 유량이 없기 때문에, 각각의 집합체를 흐르는 유량을 그 집합체의 출력에 맞도록 노심의 입구에서 미 리 분배해 주어야 한다. 이 유량분배는 각각의 핵연료 피복관의 누적 손상률이 동일하게 되어 핵연료봉의 신뢰성을 확보할 수 있도록 해 주는 것이여, 이를 위 하여 Orifice라는 노심 유량 분배장치를 사용하게 된다. 유량조절, 즉 유량분배 는 노심의 위치에 따라 몇 개로 나뉘어 고정 설치되어 있는 장치에 의해서 이루 어지며, 집합체에 따라서 변화하는 것은 아니다.

핵연료 집합체는 전 노심기간 동안 위치를 바꾸지 않고 한 곳에 머물게 된다. 연료가 연소되기 때문에 출력은 초기노심(BOL)에서 제일 크게 나타난다. 한 번 결정된 유량은 전노심기간 동안 변하지 않기 때문에, 핵연료 집합체의 피복관 최 고온도 또한 초기노심(BOL)에서 나타난다. 연소 가스가 생성됨에 따라서 출력 이 감소하게 되어, 피복관의 최저온도는 가스의 압력이 제일 높은 말기노심 (EOL)에서 나타나게 된다. 집합체의 이러한 특성들로 인하여 피복관의 최고온 도 허용치가 높아질 수 있는데, 이는 초기에는 낮은 가스압력으로 인하여 피복관 손상 누적이 거의 발생하지 않기 때문이다. 연소로 인한 핵연료 집합체 출력변 화 제한조건으로 인하여, 핵연료 집합체를 주어진 유량조건에서 주어진 위치에 전노심 기간동안 머물게 할 수 있는 것이다.

반면에 블랑켙 집합체는 재장전시 그 위치를 바꾸어 준다. 블랑켙 집합체의 위치를 바꾸어 새로운 Orifice 위치에 놓아 유량 재조절이 되는 것이다. 이렇게 하여 출력과 유량의 비율이 전노심 기간동안 일정하게 할 수가 있으며, 각각의 싸이클마다 피복관의 최고온도를 주어진 설계온도에 가깝게 유지할 수가 있다.

액체금속로 노심 열수력 설계 및 특성분석의 전반적인 작업 흐름도를 그림 1 에 나타내었다. 그림에서 보는 바와 같이 노심 핵설계에 의하여 출력분포를 구 하면, 열수력학적 설계목표에 따라 노심내 전체유량을 결정하고, 출력분포에 따 라 설계기준을 만족시키도록 각 집합체별 유량을 계산한다. 그 다음에 각 집합 체의 유사 유량에 따라 동일 유량군을 설정하고 집합체의 압력강하, 온도분포 등 을 계산하여 각 유량군별 집합체에서 압력강하가 같아지도록 Orifice 장치를 설 계한다.

- 2 -

이 때 정상상태시의 냉각재, 피복관 및 핵연료의 최고온도가 설계조건을 만족 하는지를 확인하고 이에 따른 집합체별 최소유량을 결정하여 Orifice 장치 설계 시 반영하여야 한다. 이들 모두의 해석은 핵설계와 연계되어 반복수행하게 되 며, 핵열수력 안전성 분석을 통하여 검증을 받아야 한다.[5]

그림 1. 액체금속로 노심열수력 개념설계 및 특성분석 작업 흐름도

원자로심에서의 유량의 흐름과 열전달은 매우 복잡한 현상을 수반한다. 상호 연계된 부수로간의 열 및 질량의 전달에 관한 현상은 정확하게 알려져 있지 않 으며, 원자로심의 복잡한 기하학적 구조와 큰 폭의 운전조건으로 인하여 실험적 으로 해석한다는 것은 매우 어렵다. 따라서 컴퓨터 코드에 의한 계산모델을 이 용한 해석법과 이의 개량에도 많은 연구가 수행되고 있다.[3,6-9]

액체금속로의 노심열수력설계에서는 핵연료 온도가 설계제한치를 만족시키는 지 확인여부와, 노심구조물해석에 필요한 입력자료를 생산하기위해서 노심의 온 도분포를 정확하게 예측할 필요가 있다. 그러나 액체금속로의 노심에는 수많은 핵연료봉이 조밀하게 배치되어 있어 부수로(subchannel)간에 질량, 운동량, 에너 지전달이 일어나므로, Novendstern모델과 CRT모델 등의 단순해석모델로는 국부 지역의 온도와 유속분포를 정확하게 계산하기 어렵다.

지금까지 개발된 컴퓨터 코드는 경수로형 원자로를 해석하기 위한 것들이 대 부분이며, 액체금속로용으로 개발된 몇몇의 코드들은 그나마 입수하기가 매우 어려운 실정이다. 유로의 하류(downstream) 부분에서 최소의 교란이 발생하는 상태에 국한된 초기조건 문제로는 부분적인 유로폐쇄 문제와 같은 액체금속로의 경우를 정확하게 해석할 수 없다. 따라서 경계조건 문제로서 액체금속로를 해석 해야 할 것으로 보인다.

따라서 이를 해결하기 위한 대표적인 전산코드인 COBRA는 대표적인 부수로 해석용 전산코드이다.[10,11] 본 과제에서는 COBRA 코드를 기반으로 하여 액체 금속로 부수로 해석코드 MATRA-LMR을 개발하고 있다.[12] MATRA-LMR은 단상류에서의 다유로(multichannel) 열수력 해석코드로서 액체금속로의 단상 다 집합체 열수력해석을 위해 COBRA-IV-I를 개선한 것으로 단일집합체 뿐만 아니 라 여러 집합체를 동시에 모사할 수 있도록 개발 중에 있다. MATRA-LMR 코 드의 전체적인 개발계획을 그림 2에 나타내었다. 앞으로 지속적인 개발작업을 통하여 노심유동의 coastdown시 발생하는 자연대류냉각 과도상태시에 중요한 인 접집합체간의 열전달과 유동 재분배 현상(flow redistribution)도 해석할 수 있을 것이다.[11-13]

현재 액체금속로 노심설계기술개발과제에서는 이들을 각각 정비, 보완 및 검증 하고 이들 전산코드에 의한 계산 값을 서로 비교하여 각각의 문제점을 보완하면 서 계속 개발 중이다.

이들 계산모듈 및 계산코드들은 앞으로 더욱 보완하고 검증하여 노심열수력 설계 및 해석을 위한 전산체제로 구축될 것이다.

- 4 -

그림 2. MATRA-LMR 코드 개발 계획

제 2 장 모듈의 개요

2.1 모듈의 특성

이 모듈은 액체금속로의 특징인 유량분배에 관련된 계산을 수행하기 위한 모 듈로서 일반적으로 1/6 노심에 대하여 그 계산을 수행한다. 개념설계 단계에서 는 반사체, 차폐체 및 IVS 집합체 등 출력이 극히 미량으로 발생하는 집합체에 대해서는 계산을 수행하지 않는다. 추후 상세한 계산시 이들 집합체를 고려하게 되는데, 유량그룹에는 거의 영향을 미치지 않기 때문이다.[1,2]

우선, 전체 노심에 흐르는 전체 필요 유량은 노심의 출력과 노심에서의 온도 상승값으로부터 정해진다. 이 전체 유량 중에서 일정 비율의 작은 유량을 집합 체 노스피스 부분에서 바이패스 시켜 노심의 구조물을 냉각시켜 주게 된다. 일 반적으로 이 유량은 전체의 1.5%정도가 되도록 배분한다.

전체 출력값과 설계값을 입력하여, 출력순으로 배열한 후 출력비율이 대략 10%정도 이내의 값을 갖는 집합체를 같은 유량그룹으로 묶는다. 그러나, 집합체 의 종류가 달라지면 비록 출력값이 같더라도 다른 유량그룹으로 분리한다. 이렇 게 하여 분배된 유량으로 집합체별 연료봉 최고온도 분포를 계산하여 재조정하 게 되고 이값을 이용하여 정상상태 노심 열수력해석을 수행하게 된다. 또한 좀 더 정확한 설계를 수행할 때는 비연료집합체까지 고려하여 정확하게 계산하게 되므로, 유량그룹이 증가할 가능성도 있으나, 그 차이는 크지 않다.

2.2 모듈에 사용된 계산 인자

핵연료봉의 온도증가와 부수로를 따라 흐르는 냉각재의 온도증가를 각각 계산 하여 이들 두 개의 온도증가 값을 비교하면 몇 개의 온도증가 보정인자를 유출 할 수가 있다.[5]

이들 계산 인자들을 이해하기 위한 부수로의 형태와 정의를 아래 그림 3에 나 타내었다.

- 6 -

그림 3. 부수로의 형태와 정의

(1) 핵연료 집합체의 온도증가

냉각재가 핵연료봉을 따라 입구에서 출구쪽으로 움직이게 되면, 냉각재 온도는 핵연료봉에서 발생되는 열을 흡수하게 되어 그 온도가 식 (1)과 같이 지속적으로 증가하게 된다.

 $q^{''} = q^{''}_{\max} \cos\left(\frac{\pi z}{H}\right) \tag{1}$

최대온도를 보이는 핵연료봉에 대하여 냉각재, 필름, 피복관, 갭, 핵연료에 이 르는 온도증가를 계산하기 위하여는, 먼저 부수로에서의 온도증가가 최대값을 나 타내는 핵연료봉을 가정하고 이에 따른 온도증가치를 구한다.

부수로에서의 최대 온도증가치는 핵연료 집합체의 평균온도 증가치로부터 계 산할 수 있다. 부수로의 최대 온도증가치를 ΔT_{max}라 하고, 핵연료 집합체의 평 균온도 증가치를 ΔT_B라 하면, ΔT_{max}는 다음과 같이 나타낼 수 있다.

 $\varDelta T_{\rm max} = f \, \varDelta T_B$

(2)

여기에서,

△T_{max} : 부수로의 최대 온도증가

f : 연료봉 온도증가 최고치 인자

△T_B : 핵연료 집합체의 평균온도증가

max : 최대값

B : 핵연료 집합체

핵연료 집합체의 평균온도 증가치 △T_B는 핵연료집합체의 총발생 에너지 Q_B, 이 핵연료집합체를 흐르는 총유량 m_B, 냉각재의 비열 c_P로부터 다음과 같이 나 타낼 수 있다.

$$\Delta T_B = \frac{Q_B}{\dot{m}_B \ c_P} \tag{3}$$

여기에서,

Q_B : 핵연료 집합체의 총발생 에너지

m_B : 핵연료 집합체를 흐르는 냉각재의 총유량

cp : 냉각재의 비열

핵연료 집합체에 n개의 연료봉이 있다면, 연료봉의 평균 열발생량은 다음과 같이 나타낼 수 있다.

$$Q_{avg} = \frac{Q_B}{n} \tag{4}$$

여기에서,

Q_{avg} : 핵연료봉의 평균 열발생량
 n : 핵연료 집합체의 연료봉 개수
 avg : 평균값

한편, 핵연료 집합체를 흐르는 총유량은 m_B 는 다음과 같이 나타낼 수 있다.

$$m_B = \rho \ u_B \ A_B \tag{5}$$

여기에서,

ρ : 냉각재 밀도

u_B : 핵연료집합체를 흐르는 유량의 평균속도

A_B: 핵연료집합체의 유로 단면적

식(5)와 식(4)를 핵연료 집합체의 평균온도 증가식 (3)에 대입하면, 식(3)은 다음 과 같이 된다.

$$\Delta T_B = \frac{n \ Q_{avg}}{\rho \ u_B \ A_B \ c_P} \tag{6}$$

식(6)을 식(2)의 ⊿T_B에 대입하면 식(2)는 다음과 같이 바뀐다.

$$\Delta T_{\max} = f \left[\frac{n \ Q_{avg}}{\rho \ u_B \ A_B \ c_P} \right] \tag{7}$$

(2) 부수로에서의 냉각재 온도증가

최대온도를 갖는 냉각재 부수로의 출구온도증가 ΔT_{max} 는 부수로에 인접한 핵 연료봉으로부터 전달되는 에너지 Q_C 와 부수로를 흐르는 냉각재의 유량 m_C 및 냉각재의 비열 c_p 를 이용하여 다음과 같이 나타낼 수 있다.

$$\Delta T_{\max} = \frac{Q_C}{\tilde{m}_C \ C_P} \tag{8}$$

여기에서,

c : 부수로

Qc: 부수로에 인접한 핵연료봉으로부터 전달되는 에너지

mc : 부수로를 흐르는 냉각재의 유량

그런데 부수로에 인접한 핵연료봉으로부터 전달되 는 에너지 Q_c는 결국 오른쪽 그림에서와 같이 3개의 연료봉으로부터 오는 것인데 이는 연료봉 절반에서 발생한 에너지의 양과 같은 것이다. 이 3개의 연료 봉을 가장 높은 온도를 갖는 연료봉이라고 하면, Q_c 는 다음과 같이 나타낼 수 있다.

$$Q_C = 3 \times \left(\frac{1}{6} Q_{\max}\right) = \frac{Q_{\max}}{2} \tag{9}$$

또한 부수로를 흐르는 냉각재의 유량 m_c는 식(5)에서와 마찬가지로 아래와 같 이 나타낼 수 있다.

$$\dot{m}_c = \rho \ u_c \ A_c \tag{10}$$

여기에서,

uc: 부수로를 흐르는 유량의 평균속도

A_c : 부수로의 유로 단면적

식(9)와 식(10)을 부수로의 평균온도 증가식 (8)에 대입하면 식(8)은 다음과 같

이 된다.

$$\Delta T_{\max} = \frac{Q_{\max}}{2 \rho \ u_C \ A_C \ C_P} \tag{11}$$

(3) 온도증가 보정인자

냉각재의 밀도와 비열이 일정하다고 가정하고, 위에서 구한 식(7)과 식(11)의 △T_{max}를 같이 놓으면 다음과 같이 된다.

$$\Delta T_{\max} = f \left[\frac{n \, Q_{avg}}{\rho \, u_B \, A_B \, c_P} \right] = \frac{Q_{\max}}{2 \, \rho \, u_C \, A_C \, c_P} \tag{12}$$

식(12)를 f에 대하여 나타내면, 연료봉 온도증가 최고치 인자 f는 식(13)와 같이 된다.

$$f = \left(\frac{Q_{\max}}{Q_{avg}}\right) \left(\frac{u_B}{u_C}\right) \left(\frac{A_B}{2 \ n \ A_C}\right) = f_p \cdot f_v \cdot f_g \tag{13}$$

식 (13)에서 관련된 변수끼리 구분하여 묶으며 각각의 항은 다음과 같은 의미 를 갖는다.

$$f_p = \frac{Q_{\max}}{Q_{avg}}$$
 : 출력 최고치 인자
(bundle radial power peaking factor) (14)

$$f_v = \frac{u_B}{u_C}$$
 : 유량 분배 인자 (bundle flow split factor) (15)

$$f_g = \frac{A_B}{2 n A_C}$$
 : 기하학적 인자 (bundle geometry factor) (16)

여기에서, f_p 는 핵계산으로부터 얻는 데이터이고, f_v 는 유속의 비로서 일반적으 로 1.01에서 1.02 사이의 값을 갖게 되며 (1.01 $\leq f_v \leq 1.02$), f_g 는 설계 데이터 로서 일반적으로 약 1.1의 값을 갖는다 ($f_g \approx 1.1$).

(4) 유량 분배율

피복관의 온도증가 $\Delta T_{cladding}$ 이 부수로의 온도증가 ΔT_{SC} 에 비해 무척 작다고 가정하고 ($\Delta T_{cladding}$ << ΔT_{SC}), 모든 집합체에서의 냉각재 온도증가 최고치가 일 정하도록 목표를 설정한다. 그러면 다음과 같은 관계식 (17)로부터

$$\widehat{\Delta T_{NA}} = \frac{\widehat{Q_P}}{\dot{m}_{SC} \ C_P} \tag{17}$$

 \widehat{Q}_P 는

$$\widehat{Q}_P \propto \widehat{Q} \cdot F_1 \cdot f_V \cdot f_g \tag{18}$$

여기에서,

^ : 최고치

SC : 부수로 냉각재 (Subchannel Coolant)

$$F_{1} = \frac{\int_{0}^{h} [Q']_{assembly}}{\int_{0}^{h} [Q']_{fuel}} = \frac{\int_{0}^{1} \left[Q'(\frac{z}{h})d(\frac{z}{h})\right]_{assembly}}{\int_{0}^{1} \left[Q'(\frac{z}{h})d(\frac{z}{h})\right]_{fuel}}$$
(19)

그러므로,

$$\dot{m}|_{assembly} \propto \frac{\left[\widehat{Q} \cdot F_1 \cdot f_v \cdot f_g\right]_{assembly}}{\sum_{assembly=1}^{m} \left[\widehat{Q} \cdot F_1 \cdot f_v \cdot f_g\right]_{assembly}}$$
(20)

$$\Delta T_{uncertainty} = \Delta T \cdot HCF \tag{21}$$

여기에서,

HCF : 공학적 안전계수 (Hot Channel Factor)

(5) 공학적 안전계수 (Hot Channel Factor)

지금까지 기술한 온도증가 계산방법에서는, 이론 및 실험적인 관점에서의 불확 정 요소는 고려하지 않았다. 실제의 노심설계에서는, 측정 및 해석에서의 온도 와 유량의 측정 정밀도, 연료 제조상의 정밀도, 물성치의 편차, 설계에 사용한 상 관식 등에서 발생한 불확정성을 고려하여, 유량 이나 온도, 압력강하 등이 정해 진 제한값을 넘지 않는다는 것을 증명해야 한다. 이 불확정성은 Hot Channel Factor (HCF) 또는 Hot Spot Factor (HSF) 라고 한다. 따라서 HCF는 항상 1이 상의 값을 갖게 된다.

아래에서 HCF의 고찰 방법에 대해서 간략하게 살펴보기로 한다. 일반적으로, 어떤 물리량 Q (예를 들면, 펠렛 직경이라든지, 부수로 유로 단면적의 측정치 등)의 편차 정도는, 분산 σ^2 으로 표현된다. 만약 Q의 분포가 정규분포를 따른 다고 가정하면, 표준편차 σ 에 대하여, $1 \pm \sigma$, $1 \pm 2\sigma$, $1 \pm 3\sigma$ 이내에 물리량이 존재 하는 확률은 각각, 67%, 95%, 99.73%이다. 예를 들면, 3 σ 의 신뢰성 레벨을 설정

- 11 -

한다면, 물리량 Q가 평균치+30 이상의 값을 취할 확률은, 0.13%가 되는 것이다. 마찬가지로 20의 경우에 대응하는 확률은 2.5%가 된다. 액체금속로 열유동설계 에 있어서는, 20레벨에서 충분한 것도 있지만, 통상 30레벨에서의 신뢰성이 요 구될 때도 있다.

 $HCF = 1 + 2\sigma$ 또는 $HCF = 1 + 3\sigma$

HCF는 계통적인 불확정 요인에서 발생하는 것과 통계적 요인에서 발생하는 것으로 나눌 수 있다. 최근에는 재료 데이타의 축적, 해석 기술의 진보, 고도의 품질관리와 함께 오차폭의 신뢰성을 높일 수가 있어, HCF도 보다 합리적인 값을 구할 수 있게 되고 있다. 표 2에 나타낸 HCF 값들은 SLTHEN코드[9]에서 사용되는 값을 나타낸 것인데, 이것은 CRBR 설계시에 사용하였던 데이터를 이용한 것이다.

1

ASSEMBLY TYPE NUMBER

HOT CHANNEL FACTORS FOR 2-SIGMA FUEL CENTERLINE TEMPERATURES

	COOLANT	FILM	CLADDING	GAP	FUEL
DIRECT SUBFACTORS					
INLET FLOW MALDISTRIBUTION	1.020	1.000	1.000	1.000	1.000
FLOW DISTRIBUTION CALCULATIONAL					
UNCERTAINTY	1.030	1.006	1.000	1.000	1.000
PHYSICS MODELING	1.020	1.020	1.020	1.000	1.020
CONTROL ROD BANKING	1.020	1.020	1.020	1.000	1.020
3-SIGMA STATISTICAL SUBFACTORS					
REACTOR DELTA T AND INLET TEMPERATURE					
VARIATION	(1)	1.000	1.000	1.000	1.000
INLET FLOW MALDISTRIBUTION	1.059	1.016	1.000	1.000	1.000
LOOP TEMPERATURE IMBALANCE	(2)	1.000	1.000	1.000	1.000
SUBCHANNEL FLOW AREA	1.019	1.000	1.000	1.000	1.000
FILM HEAT TRANSFER COEFFICIENT	1.000	1.120	1.000	1.000	1.000
COOLANT PROPERTIES	1.017	1.000	1.000	1.000	1.000
FLOW DISTRIBUTION CALCULATIONAL					
UNCERTAINTY	1.058	1.005	1.000	1.000	1.000
EXPER IMENTAL	1.070	1.070	1.070	1.000	1.070
CRITICALITY	1.010	1.010	1.010	1.000	1.010
PELLET DIAMETER	1.017	1.017	1.017	1.000	1.017
UNIRRADIATED FUEL CONDUCTIVITY	· 1.000	1.000	1.000	1.000	1.080
POROSITY OF SWOLLEN FUEL (CONDUCTIVITY)	1.000	1.000	1.000	1.000	1.060
PLUTONIUM (CONDUCTIVITY)	1.000	1.000	1.000	1.000	1.070
FISSILE FUEL DISTRIBUTION	1.050	1.050	1.050	1.000	1.050

(1) FOR COOLANT DELTA T = DT,

HCF = 1+(3/DT) +SQRT(2.304D-3+DT++2 - 3.84D-1+DT + 121) (2) MAXIMUM 3-SIGMA UNCERTAINTY OF 7.4 DEG. F IN INLET DESIGN

HOT CHANNEL FACTORS FOR 2-SIGMA CLADDING TEMPERATURES

	COOLANT	FILM	CLADDING
DIRECT SUBFACTORS			
INLET FLOW MALDISTRIBUTION	1.020	1.000	1.000
FLOW DISTRIBUTION CALCULATIONAL			
UNCERTAINTY	1.030	1.006	1.000
CLADDING CIRCUMFERENTIAL TEMPERATURE			
VARIATION	1.000	2.100	0.900
PELLET-CLADDING ECCENTRICITY	1.000	1.010	1.010
PHYSICS MODELING	1.020	1.100	1.100
CONTROL ROD BANKING	1.020	1.020	1.020
3-SIGMA STATISTICAL SUBFACTORS			
REACTOR DELTA T AND INLET TEMPERATURE			
VARIATION	(1)	1.000	1.000
INLET FLOW MALDISTRIBUTION	1.059	1.016	1.000
LOOP TEMPERATURE IMBALANCE	(2)	1.000	1.000
WIRE WRAP ORIENTATION	1.010	1.000	1.000
SUBCHANNEL FLOW AREA	1.019	1.000	1.000
FILM HEAT TRANSFER COEFFICIENT	1.000	1.120	1.000
PELLET-CLADDING ECCENTRICITY	1.000	1.010	1.010
COOLANT PROPERTIES	1.017	1.000	1.000
FLOW DISTRIBUTION CALCULATIONAL			
UNCERTAINTY	1.058	1.005	1.000
EXPERIMENTAL	1.070	1.070	1.070
CRITICALITY	1.010	1.010	1.010
FISSILE FUEL MALDISTRIBUTION	1.100	1.100	1.100

- (1) FOR COOLANT DELTA T = DT,
- HCF = 1+(3/DT) *SQRT (2. 304D-3*DT+*2 3. 84D-1*DT + 121)
- (2) MAXIMUM 3-SIGMA UNCERTAINTY OF 7.4 DEG. F IN INLET DESIGN

표 2. SLTHEN 코드에서 사용되는 HCF 예시 (2/2)

ASSEMBLY TYPE NUMBER		2			
HOT CHANNEL FACTORS FOR 2-SIGMA FUEL CENTERLINE	TEMPERATURES				
	COOLANT	FILM	CLADDING	GAP	FUEL
DIRECT SUBFACTORS					
INLET FLOW MALDISTRIBUTION	1.020	1.000	1.000	1.000	1.000
FLOW DISTRIBUTION CALCULATIONAL					
UNCERTAINTY	1,030	1.008	1.000	1.000	1.000
PHYSICS MODELING	1.020	1.020	1.020	1.000	1.020
CONTROL ROD BANKING	1.020	1.020	1.020	1.000	1.020
EXPERIMENTAL (NUCLEAR)	1.030	1.070	1.070	1.000	1.030
CRITICALITY	1.010	1.010	1.010	1.000	1.010
HEAVY METAL	1.010	1.010	1.010	1.000	1.010
U-235	1.010	1.010	1.010	1. 0 00	1.010
3-SIGMA STATISTICAL SUBFACTORS					
REACTOR DELTA T AND INLET TEMPERATURE					
VARIATION	(1)	1.000	1.000	1. 0 00	1.000
INLET FLOW MALDISTRIBUTION	1.059	1.018	1.000	1.000	1.000
LOOP TEMPERATURE IMBALANCE	(2)	1.000	1.000	1.0D0	1.000
FILM HEAT TRANSFER COEFFICIENT	1.000	1.210	1.000	1.000	1.000
COOLANT PROPERTIES	1.017	1.000	1.000	I.000	1.000
FLOW DISTRIBUTION CALCULATIONAL					
UNCERTAINTY	1.203	1.006	1.000	1.000	1.000
EXPERIMENTAL	1.070	1.070	1.070	1.000	1.070
CRITICALITY	1.010	1.010	1.010	1.000	1.010
PELLET DIAMETER	1.017	1.017	1.017	1.000	1.017
UNIRRADIATED FUEL CONDUCTIVITY	1.000	1.000	1.000	1.00D	1.080
POROSITY OF SWOLLEN FUEL (CONDUCTIVITY)	1.000	1.000	1.000	1.000	1.060
PLUTONIUM (CONDUCTIVITY)	1,000	1.000	1.000	1.000	1.070
FISSILE FUEL DISTRIBUTION	1.050	1.050	1.050	1.000	1.050

(1) FOR COOLANT DELTA T = DT,

HCF = 1+(3/DT)*SORT(2.304D-3*DT**2 - 3.84D-1*DT + 121)

(2) MAXIMUM 3-SIGMA UNCERTAINTY OF 7.4 DEG. F IN INLET DESIGN

HOT CHANNEL FACTORS FOR 2-SIGMA CLADDING TEMPERATURES

	COOLANT	FILM	CLADDING
DIRECT SUBFACTORS			
INLET FLOW MALDISTRIBUTION	1.020	1.000	1.000
FLOW DISTRIBUTION CALCULATIONAL			
UNCERTAINTY	1.030	1.008	1.000
CLADDING CIRCUMFERENTIAL TEMPERATURE			
VARIATION	1.00 0	3.800	0.800
PELLET-CLADDING ECCENTRICITY	1.000	1.010	1.010
PHYSICS MODELING	1,020	1.120	1.120
CONTROL ROD BANKING	1.020	1.020	1.020
EXPERIMENTAL (NUCLEAR)	1.030	1.070	1.070
CRITICALITY	1.010	1.010	1.010
HEAVY METAL	1.010	1.010	F. 010
U-235	1.010	1.010	1.010
3-SIGMA STATISTICAL SUBFACTORS			
REACTOR DELTA T AND INLET TEMPERATURE			
VARIATION	(1)	1.000	1. 0 00
INLET FLOW MALDISTRIBUTION	1.060	1.018	1.000
LOOP TEMPERATURE IMBALANCE	(2)	1.000	1.000
WIRE WRAP ORIENTATION	1.010	1.000	1.000
FILM HEAT TRANSFER COEFFICIENT	1,000	1.210	1.000
PELLET-CLADDING ECCENTRICITY	1.000	1.010	1.010
COOLANT PROPERTIES	1.017	1.000	1.000
FLOW DISTRIBUTION CALCULATIONAL			
UNCERTAINTY	1.203	1.006	1.000

(1) FOR COOLANT DELTA T = DT,

HCF = 1+(3/DT)*SORT(2.304D-3*DT**2 - 3.84D-1*DT + 121) (2) MAXIMUM 3-SIGMA UNCERTAINTY OF 7.4 DEG. F IN INLET DESIGN

제 3 장 입력자료

3.1 노심배치 입력자료

노심의 구성은 대칭형태를 이루고 있기 때문에 이 모듈에서는 노심의 1/6을 분석대상으로 삼아 계산을 수행하게 되며, 그에 해당하는 집합체 배치를 그림 4 에 나타내었다. 그림에서 보듯이 Ring은 중앙부에서부터 Row는 시계 반대 방 향으로 번호를 증가시킨다.

그림 4. 입력자료 작성을 위한 노심 배치도 (1/6 노심)

- 15 -

표 3은 집합체의 분류에 따른 종류를 나타낸 것이며, 이 분류를 이용하여 계산 모듈 중 노심배치 입력자료를 표 4에 나타낸 것과 같이 작성하게 된다.

표 4에서 사용하고 있는 분류코드의 의미는 다음과 같다. Assy Num는 집합 체의 일련번호이며, DIF Code는 각 집합체에 따른 Ring과 Row를 나타낸 숫자 이고, Position은 이를 잘 구별할 수 있도록 괄호안에 Ring과 Row를 한꺼번에 표시하여 사용하기 위해 나타낸 것이다. Type은 각각의 집합체를 종류에 따라 분류한 것이며, Sort Group은 표 3에서와 같이 그 분류 체계에 따른 번호를 나 타낸다. 이 번호는 출력의 역순으로 정하면 계산 작업을 수행할 때 편리하다. 또한, 필요한 경우에는 Reflector 및 GEM을 추가할 수도 있다.

Use Code는 True 즉 1의 값을 가지면 유량분배를 계산하는 집합체이고, False 즉 0의 값을 가지면 유량분배 계산을 하지 않는 집합체임을 나타낸다.

Assembly Type	Assembly	Sort Group
F1	Fuel (Low Enrichment)	1
F2	Fuel (High Enrichment)	2
IB	Internal Blanket	3
RB	Radial Blanket	4
BS	B₄C Shield	5
RS	SUS Shield	6
CTL	Control Rod	7
USS	Ultimate Shutdown System	8
IVS	In-Vessel Storage	9
GEM	Gas Expansion Module	10

표 3. 집합체 분류에 따른 종류

	G	н	I	J	к	L	M	N	0
17	Input	Table							
	Assy	DIF	Ring	Row	Position	Туре	Sort	Use Code	Assy
l l	Num	Code					Group	False=Omit	Count
								nue-ose	
18									
<u> </u>									
19									
20									
21	1	11	1	1	(1,1)	USS	8	1	1
22	2	21	2	1	(2,1)	IB	3	1	6
23	3	31	3	1	(3.1)	F1	1	1	6
24	4	32	3	2	(3.2)	F1	1	1	6
25	5	41	4	1	(4,1)	CTL	7	1	6
26	6	42	4	2	(4,2)	IB	3	1	6
27	7	43	4	3	(4,3)	IB	3	1	6
28	8	51	5	1	(5,1)	F1	1	1	6
29	10	52	5	2	(5,2)	F1 C1	1	1	6
31	11	54	5	4	(5,3)	F1	1	1	6
32	12	61	6	1	(6.1)	RB	4	1	6
33	13	62	6	2	(6,2)	RB	4	1	6
34	14	63	6	3	(6,3)	F1	1	1	6
35	15	64	6	4	(6,4)	F1	1	1	6
36	16	65	6	5 ·	(6,5)	RB	4	1	6
37	17	71	-	1	(7,1)	RB	4	1	6
38	18	72	<i>'</i>	2	(7,2)	KB DB	4	1	6
40	20	74	7	4	(7.4)	GEM	10	0	6
41	21	75	7	5	(7.5)	RB	4	1	6
42	22	76	7	6	(7,6)	RB	4	1	6
43	23	81	8	1	(8,1)	RF	11	0	6
44	24	82	8	2	(8,2)	RF	11	0	6
45	25	83	8	3	(8,3)	RB	4	1	6
40	26	84	8	4	(8,4) (8,5)	RB DB	4	1	6
48	28	86	8	6	(8,6)	RB	4	1	6
49	29	87	8	7	(8,7)	RF	11	0	6
50	30	91	9	1	(9,1)	BS	5	0	6
51	31	92	9	2	(9,2)	BS	5	0	6
52	32	93	9	3	(9,3)	RF	11	0	6
53	33	94	9	4	(9,4)	RF	11	0	6
55	35	96	9	с 6	(9,5)	RF	11	0	6
56	36	97	9	7	(9.7)	RF	11	0	6
57	37	98	9	8	(9,8)	BS	5	ō	6
58	38	1001	10	1	(10,1)	RS	6	0	6
59	39	1002	10	2	(10,2)	IVS	9	0	6
60	40	1003	10	3	(10,3)	BS	5	0	6
67	41	1004	10	4	(10,4) (10 5)	BC R2	5	0	6
63	42	1005	10	5	(10,5)	BS BS	5	0	9
64	44	1007	10	7	(10.7)	BS	5	0	6
65	45	1008	10	8	(10,8)	BS	5	ő	6
66	46	1009	10	9	(10,9)	IVS	9	0	6
67	47	1101	11	1	(11,1)	RS	6	0	6
68	48	1102	11	2	(11,2)	RS	6	0	6
70	49	1103	11	3	(11,3)	IVS	9	0	6
71	50	1104	11	4	(11,4) (11,5)	IVS IVS	9	0	6
72	52	1106	11	6	(11.6)	IVS	9	0	6
73	53	1107	11	7	(11.7)	IVS	9	ő	6
74	54	1108	11	8	(11,8)	IVS	9	Ō	6
75	55	1109	11	9	(11,9)	IVS	9	0	6
76	56	1110	11	10	(11,10)	RS	6	0	6
77	57	1201	12	1	(12,1)		12	0	6
78	58	1202	12	2	(12,2)	BC	12	0	6
19	28	1203	12	3	(12,3)	67	6	0	6

.

표 4. 계산 모듈 중 노심배치 입력자료

3.2 노심설계 입력자료

이 모듈에서 사용되는 노심설계 입력자료는 표 4에 나타낸 것과 같이 노심의 입구 및 출구 온도, 냉각재의 비열, 노심 열출력, 바이패스 유량 비율 등이다. 본 보고서에서 사용한 데이터는 KALIMER 증식특성 노심을 기준으로 한 것이므 로 표에 나타낸 값들은 KALIMER 증식특성 노심설계의 값들이다.

Core Inlet Temp [°C]	386.2
Core Outlet Temp [℃]	530
Core DT [℃]	143.8
Cp [J/kg-℃]	1272.8
Design [MWth]	392.2
Design Flow [kg/s]	2143
Design Bypass [%]	2.26 (1.5%Leak + Omits)
Orificed Flow [kg/s]	2094

표 5. 노심설계 입력자료

표에서 보듯이 덕트사이를 흐르는 바이패스 유량은 약 1.5% 정도가 되도록 하 는 것이 보통이며, 유량분배 계산에서 직접적으로 분배하지 않는 반사체 집합체 나 차폐 집합체 등으로 흘려 보낼 유량과 합하여 설계 바이패스 유량으로 삼는 다.

3.3 핵계산 결과 입력자료

계산 모듈 중에서 핵계산 결과로 얻은 출력분포를 입력자료로 활용하는 부분 이다. 핵계산에서는 각 집합체별 출력, 집합체내 핵연료봉의 최대선출력, Batch Factor 및 Assembly Radial Peaking Factor값이 BOEC 및 EOEC에서 각각 구해 진다. 표 6에는 계산 모듈 중에서 출력계산 결과 입력자료 부분을 본 보고서에 서 사용한 입력 데이터로 나타내었다.

17 Assy Power (MWh) Pk Pin Linear Power (KWM) '1.073 Pk Pin Batch Factor Assy Rad, Pk. Factor (KWM) '1.073 18 BOEC EOEC BOEC EOEC BOEC EOE BOEC EOE BOE EOE EOE BOE EOE EOE BOE EOE E			Р	Q	R	S	Ť	U	V	w
18 BOEC EOEC BOEC EOEC BOEC EOE BOEC EOE BOEC EOE EOE 19 20	-	17	Assy Power (MWth)		Pk Pin Linear Power (kW/ft) *1.073		Pk Pin Batch Factor		Assy Rad. Pk. Factor	
19 x x x x x x x 21 0.092 0.094 0.041 0.040 1.000 1.001 1.001 22 2.019 2.962 6.844 8.922 1.000 1.000 1.012 1.011 23 7.451 6.379 9.059 7.939 1.000 1.001 1.012 1.001 24 7.439 6.379 8.225 1.000 1.001 1.117 1.069 26 0.661 0.661 0.637 8.225 1.000 1.001 1.161 28 5.715 5.278 8.174 7.065 1.000 1.001 1.061 30 6.682 6.898 5.275 7.106 1.000 1.001 1.219 1.112 35 5.434 1.067 5.459 1.000 1.000 1.219 1.211 36 1.445 1.677 5.595 1.000 1.000 1.219 1.211 1	-	18	BOEC	EOEC	BOEC	EOEC	BOL	EOL	BOEC	EOEC
1 0 0 0 0 0 0 0 0 1000 1000 1001 1001 22 2.019 2.862 6.844 8.922 1.000 1.000 1.012 1.011 23 7.645 6.337 9.106 7.989 1.000 1.001 1.012 1.000 25 0.061 0.061 0.083 0.003 1.000 1.012 1.000 26 2.053 2.790 6.379 8.225 1.000 1.001 1.117 1.065 27 2.053 2.790 6.379 8.225 1.000 1.001 1.018 1.117 1.065 20 0.890 1.067 4.147 4.501 1.000 1.001 1.011 1.016 31 6.452 5.895 6.329 1.000 1.001 1.417 1.321 35 5.213 4.804 7.680 6.576 1.000 1.001 1.421 1.117 1.3		<u>19</u>	·····		· · · ·					
1 0.052 0.059 0.040 1.000 1.000 1.001 1.011 22 2.010 2.662 6.844 6.322 1.000 1.000 1.012 1.011 24 7.439 6.879 0.069 7.939 1.000 1.000 1.012 1.000 25 0.061 0.061 0.068 0.063 1.000 1.011 1.011 26 2.053 2.790 6.379 8.225 1.000 1.000 1.161 1.066 26 5.651 5.275 7.105 1.000 1.000 1.011 1.066 30 6.662 5.895 6.275 7.105 1.000 1.001 1.011 1.066 31 1.444 1.676 5.899 6.329 1.000 1.000 1.219 1.211 1.35 35 5.13 4.804 7.680 6.576 1.000 1.001 1.219 1.211 1.35 36 1.445		21	0.002	0.004	0.041	0.040	1 000	1.000	1 001	1 001
23 7.451 6.375 9.105 7.449 1.000 1.000 1.012 1.111 24 7.453 6.379 9.099 7.339 1.000 1.000 1.012 1.010 25 0.061 0.061 0.068 0.000 1.000 1.010 1.012 26 2.053 2.790 6.379 8.225 1.000 1.000 1.117 1.052 27 2.053 2.790 6.379 8.225 1.000 1.000 1.001 1.011 1.013 30 6.452 5.895 6.329 1.000 1.000 1.001 1.219 1.211 335 1.445	H	22	2 019	2 962	6 844	8 922	1 000	1.000	1 210	1 110
24 7.439 6.275 9.099 7.339 1.000 1.000 1.001 1.	E E E E E E E E E E E E E E E E E E E	23	7 451	6 937	9 105	7 949	1 000	1.000	1.012	1 017
25 0.061 0.061 0.068 0.083 1.000 1.001 1.003 1.003 26 2.053 2.790 6.379 8.225 1.000 1.000 1.117 1.093 27 2.053 2.790 6.379 8.225 1.000 1.000 1.101 1.161 28 6.452 5.895 6.275 7.105 1.000 1.001 1.010 31 6.452 5.895 6.275 7.105 1.000 1.001 1.001 33 1.445 1.676 5.959 6.229 1.000 1.000 1.201 1.219 35 5.213 4.804 7.680 6.576 1.000 1.000 1.472 1.411 36 1.445 1.676 5.859 6.329 1.000 1.000 1.472 1.411 36 1.445 1.676 5.859 6.329 1.000 1.000 1.201 1.212 36 1.445 1.676		24	7.439	6.979	9.099	7.939	1.000	1.000	1.012	1.008
26 2.053 2.790 6.379 8.225 1.000 1.117 1.007 27 2.053 2.790 6.379 8.225 1.000 1.000 1.117 1.097 28 5.715 5.278 8.174 7.058 1.000 1.000 1.010 1.010 1.010 1.010 1.010 1.011 1.016 1.016 1.016 1.010 1.000 1.001 1.001 1.001 1.001 1.001 1.011		25	0.061	0.061	0.088	0.083	1.000	1.000	1.003	1.009
27 2.053 2.790 6.379 8.225 1.000 1.100 1.117 1.000 28 5.715 5.276 6.174 7.058 1.000 1.000 1.001 1.421 1.444 33 1.445 1.678 5.595 6.329 1.000 1.000 1.423 1.411 35 5.213 4.804 7.680 6.576 1.000 1.000 1.433 1.441 36 0.479 0.591 2.009 2.321 1.000 1.000 1.508 1.464 39 0.810 0.955 3.647 3.903 1.0001 1.000		26	2.053	2.790	6.379	8.225	1.000	1.000	1.117	1.097
28 5./13 5.2/28 6.1/4 /.000 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.000 1.001 1.001 1.001 1.000 1.001 1.411 1.411 33 1.445 1.676 5.956 6.329 1.000 1.000 1.472 1.411 35 5.213 4.804 7.680 5.576 1.000 1.000 1.433 1.441 36 0.479 0.591 2.002 2.321 1.000 1.000 1.508 1.464 37 0.301 0.955 3.647 3.903 1.000 1.000 1.626 1.544 41 0.810 0.955 3.647 3.903 1.000		27	2.053	2.790	6.379	8.225	1.000	1.000	1.117	1.097
30 6.882 6.081 8.222 7.086 1.000 1.000 1.011 1.000 31 6.452 5.895 6.275 7.105 1.000 1.000 1.061 1.661 32 0.889 1.678 5.959 6.329 1.000 1.000 1.472 1.411 34 5.213 4.804 7.680 6.576 1.000 1.000 1.472 1.411 35 5.213 4.804 7.680 6.576 1.000 1.000 1.472 1.411 36 1.445 1.676 5.959 6.329 1.000 1.000 1.472 1.411 37 0.301 0.374 1.778 1.394 1.000 1.000 1.601 1.626 38 0.479 0.591 2.009 2.321 1.000 1.000 1.626 1.544 42 0.479 0.591 2.009 2.321 1.000 1.000 1.626 1.544 42	-	28	5.715	5.278	8.174 8.275	7.058	1.000	1.000	1.180	1.181
31 6.452 5.895 6.275 7.105 1.000 1.001 1.061 1.063 33 1.445 1.677 5.959 6.329 1.000 1.000 1.681 1.663 34 5.213 4.804 7.680 6.576 1.000 1.000 1.219 1.211 35 5.213 4.804 7.680 6.576 1.000 1.000 1.472 1.441 36 1.445 1.576 5.959 6.323 1.000 1.000 1.433 1.441 37 0.301 0.374 1.178 1.384 1.000 1.000 1.433 1.441 38 0.810 0.955 3.647 3.903 1.000 1.000 1.626 1.544 40 0.014 0.015 0.077 0.000 1.000 1.508 1.626 41 0.810 0.923 1.011 1.208 1.000 1.000 1.201 1.214 42 0.477		30	6.682	6.081	8.222	7.086	1.000	1.000	1.018	1.034
32 0.889 1.067 4.147 4.501 1.000 1.001 1.461 1.561 33 1.445 1.678 5.559 6.329 1.000 1.000 1.219 1.211 35 5.213 4.804 7.680 6.576 1.000 1.000 1.219 1.211 36 1.445 1.575 5.595 6.329 1.000 1.000 1.433 1.411 37 0.301 0.374 1.178 1.394 1.000 1.000 1.626 1.544 40 0.015 0.025 3.647 3.903 1.000 1.000 1.626 1.544 41 0.014 0.015 0.029 0.019 1.000 1.000 1.508 1.646 43 0.014 0.022 0.023 1.000 1.000 1.461 1.433 44 0.022 0.023 0.107 1.000 1.000 1.471 4.56 44 0.022 0.233 <		31	6.452	5.895	8.275	7.105	1.000	1.000	1.061	1.069
33 1.445 1.678 5.959 6.329 1.000 1.472 1.417 34 5.213 4.804 7.680 6.576 1.000 1.000 1.219 1.211 35 5.213 4.804 7.680 6.576 1.000 1.000 1.472 1.411 36 1.445 1.673 5.959 6.329 1.000 1.000 1.433 1.441 38 0.479 0.591 2.009 2.321 1.000 1.000 1.626 1.544 40 0.015 0.020 0.019 1.000 1.000 1.626 1.544 41 0.810 0.955 3.647 3.903 1.000 1.000 1.508 1.466 42 0.022 0.023 0.077 1.000 1.000 1.586 1.461 43 0.014 0.015 0.007 1.000 1.000 1.734 1.565 44 0.022 0.023 1.041 1.208		32	0.889	1.067	4.147	4.501	1.000	1.000	1.661	1.567
14 5.213 4.804 7.680 6.576 1.000 1.219 1.21 35 5.213 4.804 7.680 6.576 1.000 1.000 1.219 1.21 36 1.445 1.676 5.959 6.329 1.000 1.000 1.472 1.411 37 0.301 0.374 1.178 1.394 1.000 1.000 1.626 1.544 38 0.810 0.955 3.647 3.903 1.000 1.000 1.626 1.544 40 0.015 0.021 0.019 1.300 1.000 1.626 1.544 41 0.810 0.955 3.647 3.903 1.000 1.000 1.501 1.626 42 0.479 0.591 2.009 2.321 1.000 1.000 1.021 1.21 43 0.014 0.015 0.077 0.100 1.201 1.001 1.000 1.001 1.001 1.011 1.433		33	1.445	1.678	5.959	6.329	1.000	1.000	1.472	1.410
36 1.445 1.678 5.595 6.329 1.000 1.000 1.472 1.417 37 0.301 0.374 1.178 1.394 1.000 1.000 1.433 1.417 38 0.479 0.591 2.009 2.321 1.000 1.000 1.625 1.544 40 0.015 0.020 0.019 1.000 1.000 1.000 1.626 1.544 41 0.810 0.955 3.647 3.903 1.000 1.000 1.626 1.544 42 0.479 0.591 2.009 2.321 1.000 1.000 1.561 1.666 43 0.014 0.015 0.079 0.077 1.000 1.000 1.461 1.433 44 0.022 0.023 0.107 0.100 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001		34	5.213	4.804	7,680	6.576 6.576	1.000	1.000	1.219	1.212
37 0.301 0.374 1.178 1.394 1.000 1.000 1.433 1.410 38 0.479 0.591 2.009 2.321 1.000 1.000 1.508 1.646 40 0.015 0.015 0.020 0.019 1.000 1.000 1.626 1.544 40 0.015 0.020 0.019 1.000 1.000 1.626 1.544 42 0.479 0.591 2.009 2.321 1.000 1.000 1.571 1.566 44 0.022 0.023 0.107 0.105 1.000 1.000 1.571 1.566 44 0.022 0.023 0.107 0.105 1.000 1.000 1.734 1.655 47 0.417 0.499 1.970 2.164 1.000 1.000 1.281 1.277 50 0.008 0.02424 1.980 1.000 1.000 1.281 1.277 50 0.0006 0.027		36	1.445	1.678	5.959	6.329	1.000	1.000	1.472	1.410
38 0.479 0.591 2.009 2.321 1.000 1.000 1.608 1.544 39 0.810 0.955 3.647 3.903 1.000 1.000 1.628 1.544 40 0.015 0.015 0.020 0.019 1.000 1.000 1.628 1.544 41 0.810 0.955 3.647 3.903 1.000 1.000 1.571 1.566 43 0.014 0.015 0.077 1.000 1.000 1.571 1.566 44 0.022 0.023 0.107 0.100 1.000 1.734 1.653 46 0.417 0.499 1.970 2.164 1.000 1.000 1.734 1.653 47 0.417 0.499 1.970 2.164 1.000 1.000 1.281 1.277 50 0.008 0.008 20.424 1.980 1.000 1.000 1.481 1.433 49 0.022 0.023		37	0.301	0.374	1.178	1.394	1.000	1.000	1.433	1.410
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		38	0.479	0.591	2.009	2.321	1.000	1.000	1.508	1.468
40 0.015 0.020 0.019 1.000 1.000 1.108 1.103 41 0.810 0.955 3.647 3.903 1.000 1.000 1.568 1.464 42 0.479 0.591 2.009 2.321 1.000 1.000 1.571 1.566 44 0.022 0.023 0.107 0.000 1.000 1.281 1.277 45 0.264 0.323 1.041 1.208 1.000 1.000 1.734 1.653 47 0.417 0.499 1.970 2.164 1.000 1.000 1.734 1.653 47 0.417 0.499 1.970 2.164 1.000 1.000 1.281 1.277 48 0.264 0.323 0.107 0.105 1.000 1.000 1.281 1.277 50 0.008 0.022 0.023 0.107 0.108 1.000 1.000 1.401 1.400 51 0.026		39	0.810	0.955	3.647	3.903	1.000	1.000	1.626	1.540
41 0.810 0.955 3.847 3.903 1.000 1.000 1.526 1.844 42 0.479 0.591 2.002 3.0177 1.000 1.000 1.556 1.464 43 0.014 0.015 0.073 0.007 1.000 1.000 1.281 1.273 45 0.224 0.323 1.041 1.208 1.000 1.000 1.481 1.433 46 0.417 0.499 1.970 2.164 1.000 1.000 1.734 1.653 47 0.417 0.499 1.970 2.164 1.000 1.000 1.461 1.433 49 0.022 0.023 0.107 0.105 1.000 1.000 1.268 1.274 50 0.008 0.027 45.850 44.438 1.000 1.000 1.281 1.274 51 0.026 0.027 45.850 44.438 1.000 1.000 1.280 1.571 51	4	40	0.015	0.015	0.020	0.019	1.000	1.000	1.108	1.105
43 0.014 0.007 1.000 1.000 1.571 1.566 44 0.022 0.023 0.107 0.100 1.000 1.281 1.273 45 0.264 0.323 1.041 1.208 1.000 1.000 1.461 1.433 46 0.417 0.499 1.970 2.164 1.000 1.000 1.734 1.655 47 0.417 0.499 1.970 2.164 1.000 1.000 1.734 1.655 47 0.417 0.499 1.970 2.164 1.000 1.000 1.461 1.433 49 0.022 0.023 0.107 0.105 1.000 1.000 1.461 1.433 50 0.008 0.008 20.424 19.980 1.000 1.000 1.410 1.440 51 0.026 0.027 45.850 44.438 1.000 1.000 1.410 1.440 54 0.019 0.919 0.998		41	0.810	0.955	2 009	2 321	1.000	1.000	1.626	1.540
44 0.022 0.023 0.107 0.105 1.000 1.281 1.273 45 0.264 0.323 1.041 1.208 1.000 1.000 1.461 1.433 46 0.417 0.499 1.970 2.164 1.000 1.000 1.734 1.653 47 0.417 0.499 1.970 2.164 1.000 1.000 1.734 1.653 48 0.264 0.323 1.041 1.208 1.000 1.000 1.461 1.433 49 0.022 0.023 0.107 0.105 1.000 1.000 1.281 1.273 50 0.008 2.0424 1.980 1.000 1.000 1.461 1.433 52 0.017 0.018 0.090 0.087 1.000 1.000 1.410 1.400 53 0.017 0.018 0.090 0.087 1.000 1.000 1.336 1.333 55 0.019 0.019		43	0.014	0.015	0.079	0.077	1.000	1.000	1.571	1.566
45 0.264 0.323 1.041 1.208 1.000 1.000 1.734 1.633 47 0.417 0.499 1.970 2.164 1.000 1.000 1.734 1.653 47 0.417 0.499 1.970 2.164 1.000 1.000 1.734 1.653 48 0.264 0.323 1.041 1.208 1.000 1.000 1.461 1.433 49 0.022 0.023 0.107 0.105 1.000 1.000 1.281 1.277 50 0.008 0.008 20.424 19.880 1.000 1.000 1.281 1.277 51 0.026 0.027 45.850 44.438 1.000 1.000 1.410 1.400 52 0.013 0.013 0.070 0.068 1.000 1.000 1.336 1.333 55 0.017 0.18 0.990 0.087 1.000 1.000 1.278 1.277 56		44	0.022	0.023	0.107	0.105	1.000	1.000	1.281	1.279
46 0.417 0.499 1.970 2.164 1.000 1.000 1.734 1.653 47 0.417 0.499 1.970 2.164 1.000 1.000 1.734 1.653 48 0.264 0.323 0.107 0.105 1.000 1.000 1.734 1.653 49 0.022 0.023 0.107 0.105 1.000 1.000 1.281 1.273 50 0.026 0.027 45.850 44.438 1.000 1.000 1.281 1.273 51 0.026 0.027 45.850 44.438 1.000 1.000 1.580 1.577 53 0.017 0.018 0.090 0.087 1.000 1.000 1.410 1.400 54 0.019 0.019 0.088 1.000 1.000 1.410 1.400 56 0.017 0.018 0.090 0.087 1.000 1.000 1.410 1.400 58 0.001		45	0.264	0,323	1.041	1.208	1.000	1.000	1.461	1.433
47 0.417 0.499 1.970 2.184 1.000 1.000 1.734 1.833 48 0.264 0.323 0.107 0.105 1.000 1.000 1.744 1.833 50 0.022 0.023 0.107 0.105 1.000 1.000 1.790 18.053 51 0.026 0.027 45.850 44.438 1.000 1.000 1.410 1.400 52 0.013 0.013 0.070 0.068 1.000 1.000 1.410 1.400 54 0.019 0.018 0.090 0.087 1.000 1.000 1.410 1.400 56 0.017 0.018 0.090 0.087 1.000 1.000 1.580 1.577 57 0.026 0.027 45.850 44.438 1.000 1.000 1.635 1.627 60 0.013 0.016 31.933 30.744 1.000 1.000 1.635 1.627 59		46	0.417	0.499	1.970	2.164	1.000	1.000	1.734	1.659
49 0.022 0.023 0.107 0.105 1.000 1.000 1.281 1.273 50 0.008 0.008 20.424 19.980 1.000 1.000 1.281 1.273 50 0.026 0.027 45.850 44.438 1.000 1.000 24.380 24.344 52 0.013 0.013 0.070 0.068 1.000 1.000 1.410 1.400 53 0.017 0.018 0.090 0.087 1.000 1.410 1.400 54 0.019 0.019 0.090 0.087 1.000 1.000 1.410 1.400 56 0.017 0.018 0.090 0.087 1.000 1.000 1.430 1.573 57 0.266 0.027 45.850 44.438 1.000 1.000 1.278 1.273 59 0.019 0.019 0.211 0.204 1.000 1.000 1.278 1.273 59 0.019	le l	48	0.417	0.499	1.041	1.208	1.000	1.000	1.734	1.659
50 0.008 0.008 20.424 19.980 1.000 17.900 18.054 51 0.026 0.027 45.850 44.438 1.000 1.000 24.380 24.344 52 0.013 0.013 0.070 0.068 1.000 1.000 1.800 1.577 53 0.017 0.018 0.090 0.087 1.000 1.000 1.410 1.400 54 0.019 0.018 0.090 0.087 1.000 1.000 1.410 1.400 55 0.017 0.018 0.090 0.087 1.000 1.000 1.880 1.577 57 0.026 0.027 45.850 44.438 1.000 1.000 1.278 1.277 59 0.019 0.019 0.211 0.204 1.000 1.000 1.635 1.623 61 0.015 0.016 31.933 30.744 1.000 1.000 22.686 22.556 62 0.020		49	0.022	0.023	0.107	0.105	1.000	1.000	1.281	1.279
51 0.026 0.027 45.850 44.438 1.000 1.000 24.380 24.344 52 0.013 0.013 0.070 0.068 1.000 1.000 1.580 1.574 53 0.017 0.018 0.090 0.087 1.000 1.000 1.410 1.400 54 0.019 0.098 0.094 1.000 1.000 1.336 1.333 55 0.017 0.018 0.990 0.087 1.000 1.000 1.410 1.400 56 0.013 0.013 0.070 0.068 1.000 1.000 1.580 1.573 57 0.026 0.027 45.850 44.438 1.000 1.000 1.635 1.623 59 0.019 0.011 0.006 0.005 1.000 1.000 1.635 1.623 60 0.007 18.302 17.802 1.000 1.000 27.32 23.493 61 0.015 0.016		50	0.008	0.008	20.424	19.980	1.000	1.000	17.900	18.059
52 0.013 0.013 0.070 0.068 1.000 1.580 1.574 53 0.017 0.018 0.090 0.087 1.000 1.000 1.410 1.400 54 0.017 0.018 0.090 0.087 1.000 1.000 1.410 1.400 55 0.017 0.018 0.090 0.087 1.000 1.000 1.410 1.400 56 0.013 0.013 0.070 0.068 1.000 1.000 1.410 1.400 56 0.013 0.013 0.070 0.068 1.000 1.000 1.580 1.573 57 0.026 0.027 45.850 44.438 1.000 1.000 1.278 1.273 59 0.019 0.211 0.204 1.000 1.000 1.635 1.622 60 0.007 0.020 37.698 36.064 1.000 1.000 23.732 23.493 61 0.015 0.016		51	0.026	0.027	45.850	44.438	1.000	1.000	24.380	24.349
54 0.017 0.018 0.098 0.094 1.000 1.410 1.410 54 0.017 0.018 0.090 0.087 1.000 1.000 1.336 1.333 55 0.017 0.018 0.090 0.087 1.000 1.000 1.410 1.400 56 0.013 0.013 0.070 0.068 1.000 1.000 1.580 1.573 57 0.026 0.027 45.850 44.438 1.000 1.000 1.278 1.277 59 0.019 0.211 0.204 1.000 1.000 1.635 1.629 60 0.007 0.007 18.302 17.802 1.000 1.000 22.686 22.550 61 0.015 0.016 31.933 30.744 1.000 1.000 23.732 23.492 63 0.020 0.020 37.698 36.064 1.000 1.000 22.686 22.550 65 0.015 0.016	L. L.	52	0.013	0.013	0.070	0.068	1.000	1.000	1.580	1.575
55 0.017 0.018 0.090 0.087 1.000 1.410 1.400 56 0.013 0.013 0.070 0.068 1.000 1.000 1.580 1.579 57 0.026 0.027 45.850 44.438 1.000 1.000 24.380 24.344 58 0.001 0.006 0.005 1.000 1.000 1.278 1.277 59 0.019 0.211 0.204 1.000 1.000 1.635 1.622 60 0.007 0.007 18.302 17.802 1.000 1.000 22.686 22.556 62 0.020 0.020 37.698 36.064 1.000 1.000 23.732 23.492 63 0.020 0.020 37.698 36.064 1.000 1.000 22.686 22.556 64 0.015 0.016 31.933 30.744 1.000 1.000 23.732 23.492 64 0.015 0.016 <th< th=""><th>E E</th><th>54</th><th>0.017</th><th>0.018</th><th>0.090</th><th>0.087</th><th>1.000</th><th>1.000</th><th>1.336</th><th>1.333</th></th<>	E E	54	0.017	0.018	0.090	0.087	1.000	1.000	1.336	1.333
56 0.013 0.013 0.070 0.068 1.000 1.580 1.574 57 0.026 0.027 45.850 44.438 1.000 1.000 24.380 24.344 58 0.001 0.006 0.005 1.000 1.000 1.278 1.277 59 0.019 0.211 0.204 1.000 1.000 1.635 1.622 60 0.007 0.007 18.302 17.802 1.000 1.000 1.635 1.623 61 0.015 0.016 31.933 30.744 1.000 1.000 22.686 22.556 62 0.020 0.020 37.698 36.064 1.000 1.000 23.732 23.492 63 0.020 0.020 37.698 36.064 1.000 1.000 22.686 22.556 65 0.016 31.933 30.744 1.000 1.000 23.732 23.492 64 0.015 0.016 31.933	1	55	0.017	0.018	0.090	0.087	1.000	1.000	1.410	1.404
57 0.026 0.027 45.850 44.438 1.000 1.000 24.380 24.344 58 0.001 0.006 0.005 1.000 1.000 1.278 1.278 59 0.019 0.211 0.204 1.000 1.000 1.635 1.629 60 0.007 0.007 18.302 17.802 1.000 1.000 17.861 17.930 61 0.015 0.016 31.933 30.744 1.000 1.000 23.732 23.493 62 0.020 0.020 37.698 36.064 1.000 1.000 22.686 22.556 63 0.020 0.020 37.698 36.064 1.000 1.000 23.732 23.493 64 0.015 0.016 31.933 30.744 1.000 1.000 22.686 22.556 65 0.007 0.007 18.302 17.802 1.000 1.635 1.622 64 0.015 0.016		56	0.013	0.013	0.070	0.068	1.000	1.000	1.580	1.575
58 0.001 0.001 0.006 0.005 1.000 1.278 1.27 59 0.019 0.019 0.211 0.204 1.000 1.000 1.635 1.627 60 0.007 0.007 18.302 17.802 1.000 1.000 17.661 17.930 61 0.015 0.016 31.933 30.744 1.000 1.000 22.686 22.550 62 0.020 0.020 37.698 36.064 1.000 1.000 23.732 23.493 63 0.020 0.020 37.698 36.064 1.000 1.000 22.686 22.550 64 0.015 0.016 31.933 30.744 1.000 1.000 23.732 23.493 64 0.015 0.016 31.933 30.744 1.000 1.000 22.686 22.550 65 0.019 0.019 0.211 0.204 1.000 1.000 1.635 1.622 66		57	0.026	0.027	45.850	44.438	1.000	1.000	24.380	24.349
60 0.007 0.007 18.302 17.803 1.000 17.861 17.934 61 0.015 0.016 31.933 30.744 1.000 10.00 22.686 22.554 62 0.020 0.020 37.698 36.064 1.000 1.000 23.732 23.493 63 0.020 0.020 37.698 36.064 1.000 1.000 22.686 22.554 64 0.015 0.016 31.933 30.744 1.000 1.000 23.732 23.493 64 0.015 0.016 31.933 30.744 1.000 1.000 22.686 22.556 65 0.017 0.016 31.933 30.744 1.000 1.000 22.686 22.556 65 0.019 0.019 0.211 0.204 1.000 1.000 1.635 1.622 66 0.019 0.019 0.211 0.202 1.000 1.000 1.635 1.622 67		59	0.001	0.001	0.005	0.005	1.000	1.000	1.278	1.277
61 0.015 0.016 31.933 30.744 1.000 1.000 22.686 22.556 62 0.020 0.020 37.698 36.064 1.000 1.000 23.732 23.493 63 0.020 0.020 37.698 36.064 1.000 1.000 23.732 23.493 64 0.015 0.016 31.933 30.744 1.000 1.000 23.732 23.493 64 0.015 0.016 31.933 30.744 1.000 1.000 22.686 22.556 65 0.017 0.016 31.933 30.744 1.000 1.000 22.686 22.556 65 0.019 0.019 0.211 0.202 1.000 1.000 22.686 22.557 66 0.019 0.019 0.211 0.204 1.000 1.000 1.635 1.622 67 0.000 0.001 0.005 0.004 1.000 1.000 1.635 1.625		60	0.007	0.007	18.302	17.802	1.000	1.000	17.861	17.930
62 0.020 0.020 37.698 36.064 1.000 1.000 23.732 23.493 63 0.020 0.020 37.698 36.064 1.000 1.000 23.732 23.493 64 0.015 0.016 31.933 30.744 1.000 1.000 22.686 22.554 65 0.017 0.016 31.933 30.744 1.000 1.000 17.861 17.934 66 0.019 0.019 0.211 0.204 1.000 1.000 1.635 1.622 67 0.000 0.001 0.005 0.004 1.000 1.000 1.635 1.622 67 0.001 0.005 0.004 1.000 1.000 1.659 1.657 68 0.001 0.001 0.005 0.005 1.000 1.000 1.644 70 0.047 0.049 0.456 0.852 1.000 1.000 1.644 71 0.021 0.022 0.8		61	0.015	0.016	31.933	30.744	1.000	1.000	22.686	22.558
63 0.020 0.020 37.698 36.664 1.000 1.000 23.732 23.493 64 0.015 0.016 31.933 30.744 1.000 1.000 22.686 22.553 65 0.017 0.018 21.7802 1.000 1.000 17.861 17.934 66 0.019 0.019 0.211 0.204 1.000 1.000 1.635 1.622 67 0.000 0.001 0.005 0.004 1.000 1.000 1.635 1.622 67 0.001 0.005 0.004 1.000 1.000 1.659 1.657 68 0.001 0.001 0.005 0.005 1.000 1.000 1.659 1.657 69 0.001 0.001 0.000 0.000 1.000 1.000 1.84 1.84 70 0.47 0.422 0.885 0.852 1.000 1.000 3.381 3.344 72 0.009 0.010		62	0.020	0.020	37.698	36.064	1.000	1.000	23.732	23.493
64 0.015 0.016 31.933 30.144 1.000 1.000 22.586	•	63	0.020	0.020	37.698	36.064	1.000	1.000	23.732	23.493
66 0.019 0.211 0.202 1.000 1.000 1.635 1.622 67 0.000 0.000 0.005 0.004 1.000 1.000 1.635 1.622 68 0.001 0.001 0.005 0.004 1.000 1.000 1.635 1.622 68 0.001 0.001 0.005 0.005 1.000 1.000 1.659 1.657 69 0.001 0.001 0.000 0.000 1.000 1.000 1.645 1.657 70 0.047 0.049 0.456 0.485 1.000 1.000 1.964 1.944 71 0.021 0.022 0.885 0.852 1.000 1.000 3.381 3.344 72 0.009 0.010 0.159 0.154 1.000 1.000 3.381 3.344 73 0.021 0.022 0.885 0.852 1.000 3.381 3.344		65	0.015	0.016	18 302	30.744 17 802	1.000	1,000	22.080	17 930
67 0.000 0.005 0.004 1.000 1.000 2.675 2.67 68 0.001 0.001 0.005 0.005 1.000 1.000 1.659 1.657 69 0.001 0.001 0.000 0.000 1.000 1.000 1.659 1.657 70 0.047 0.049 0.456 0.438 1.000 1.000 1.964 1.944 71 0.021 0.022 0.885 0.852 1.000 1.000 3.381 3.344 72 0.009 0.010 0.159 0.154 1.000 1.000 3.381 3.344	e	66	0.019	0.019	0.211	0.204	1.000	1.000	1.635	1.629
68 0.001 0.005 0.005 1.000 1.659 1.657 69 0.001 0.001 0.000 0.000 1.000 1.000 1.844 1.187 70 0.047 0.049 0.456 0.438 1.000 1.000 1.964 1.944 71 0.021 0.022 0.885 0.852 1.000 1.000 1.509 1.500 73 0.021 0.022 0.885 0.852 1.000 1.000 3.381 3.342		67	0.000	0.000	0.005	0.004	1.000	1.000	2.675	2.671
69 0.001 0.001 0.000 0.000 1.000 1.000 1.184 1.18 70 0.047 0.049 0.456 0.438 1.000 1.000 1.964 1.944 71 0.021 0.022 0.885 0.852 1.000 1.000 3.381 3.344 72 0.009 0.010 0.159 0.154 1.000 1.000 1.509 1.500 73 0.021 0.022 0.885 0.852 1.000 3.381 3.342		68	0.001	0.001	0.005	0.005	1.000	1.000	1.659	1.657
70 0.047 0.049 0.435 0.435 1.000 1.954 1.944 71 0.021 0.885 0.852 1.000 1.000 3.381 3.344 72 0.009 0.010 0.159 0.154 1.000 1.600 1.509 1.500 73 0.021 0.022 0.885 0.852 1.000 1.000 3.381 3.343	<u>e</u>	69 70	0.001	0.001	0.000	0.000	1.000	1.000	1.184	1.182
72 0.009 0.010 0.159 0.154 1.000 1.000 1.509 1.509 73 0.021 0.022 0.885 0.852 1.000 1.000 3.381 3.342	H	71	0.047	0.049	0.885	0.438	1.000	1.000	3 381	3 342
73 0.021 0.022 0.885 0.852 1.000 1.000 3.381 3.34		72	0.009	0.010	0.159	0.154	1.000	1.000	1,509	1.505
		73	0.021	0.022	0.885	0.852	1.000	1.000	3.381	3.342
74 0.047 0.049 0.456 0.438 1.000 1.000 1.964 1.94		74	0.047	0.049	0.456	0.438	1.000	1.000	1.964	1.940
		75	0.001	0.001	0.000	0.000	1.000	1.000	1.184	1.182
		#	0.001	0.001	0.005	0.005	1.000	1.000	1.659	1.657
78 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000	H	78	0.000	0.000	0.000	0.000	1.000	1.000	0.000	0.000
79 0.000 0.000 0.004 0.004 1.000 1.000 2.731 2.724		79	0.000	0.000	0.004	0.004	1.000	1.000	2.731	2.728

표 6. 출력계산 결과 입력자료

제 4 장 계산모델 및 방법

4.1 사이클별 출력계산

핵계산에서 오는 출력값은 평형노심의 시작(BOEC)과 끝(EOEC)에 대한 값이므 로, 이것을 각 사이클의 시작(BOC)과 끝(EOC)의 값으로 변환시킨 후에 그 가운 데서 가장 큰 출력값을 선택하여 그 출력을 담당할 수 있도록 유량을 흘려보내 주어야 한다. 먼저 핵계산 결과로부터 구하는 값은 최대 선출력 연료봉의 값 (kW/ft)과 그에 대한 Batch Factor (BF) 이다. 이 두 값으로부터 각 사이클의 시 작과 끝의 값을 각각 선형 내삽과 외삽으로 구한다.

먼저 4사이클의 경우를 보면, 그림 5에서와 같이 첫 번째 사이클의 시작 (BOC1) 은 BOEC x Batch Factor (BOL) 가 되고, 이 값과 BOEC의 값을 선형으 로 내삽과 외삽하면 각 사이클의 시작값을 구할 수 있다. 이와 마찬가지로 마지 막 사이클의 끝 (EOC4) 은 EOEC x Batch Factor (EOL) 가 되고, 이 값과 EOEC 의 값을 내삽과 외삽하면 각 사이클의 시작값과 끝값을 구할 수 있다. 본 보고 서에서 사용한 데이터는 KALIMER 증식특성 노심설계를 위한 계산값이며, KALIMER 증식특성 노심 계산에서는 Batch Factor를 집합체별로 사용하지 않고 전체 노심에 대하여 하나의 값을 사용하므로 이 부분의 값은 모두 1로 사용하였 다. 그러나, 예시를 위하여 핵연료는 4사이클이고 블랑켙은 5 사이클인 노심에

그림 5. 핵연료주기당 집합체 출력계산 그림

사이클	BOC1	EOC1	BOC2	EOC2	BOC3
1	BOEC	EOEC			
2	BOEC*BFB	EOEC*(2-BFE)	BOEC*(2-BFB)	EOEC*BFE	
3	BOEC*BFB	EOEC*(2-BFE)	BOEC	EOEC	BOEC*(2-BFB)
4	BOEC*BFB	EOEC*(2-BFE)	BOEC*((1/3)*(BFB-1)+1)	EOEC*(1+(1/3)*(1-BFE))	BOEC*(1-(1/3)*(BFB-1))
5	BOEC*BFB	EOEC*(2-BFE)	BOEC*(1+(BFB-1)/2)	EOEC*(1+(1-BFE)/2)	BOEC

Ŧ	7.	핵연료주기당	집합체	출력계산	수식
---	----	--------	-----	------	----

EOC3	BOC4	EOC4	BOC5	EOC5	
······································					
EOEC*BFE					
EOEC*(1-(1/3)*(1-BFE))	BOEC*(2-BFB)	EOEC*BFE			
EOEC	BOEC*(1-(BFB-1)/2)	EOEC*(1-(1-BFE)/2)	BOEC*(2-BFB)	EOEC*BFE	

4.2 집합체별 최대출력과 유랑분배 집합체 선정

각각의 집합체에 대하여 모든 BOC와 모든 EOC 중에서 가장 큰 출력값을 찾 은 후, 이를 유량분배시 고려해야 할 집합체와 고려하지 않아도 될 집합체로 분 류한다. 이 때 유량분배시 고려하지 않아도 될 집합체들의 출력값을 전체 출력 값에서 제외한 비율에, 덕트와 덕트 사이를 흐르는 바이패스 유량 약 1.5%를 합 한 값을 영역 구분계산에서 제외하게 된다. 계산 모듈에서 이를 위하여 사용되 는 부분을 표 8에 나타내었다.

4.3 집합체별 필요유량 계산

집합체내에서 모든 부수로의 온도증가가 최고 온도값을 갖는 부수로의 온도증 가와 같다고 가정하여, 위에서 구한 값들을 가지고 필요유량을 계산한다. 먼저 각각의 집합체에 대하여 모든 사이클 중에서 가장 높은 연료봉의 선출력값을 찾 은 후, 여기에 연료봉의 개수와 앞에서 보았던 유량분배 인자, 기하학적 인자, 출 력 최고치 인자 및 HCF 값 등을 곱하면, 각각의 집합체에서 필요로 하는 선출력 값을 구할 수 있다. 이 값을 노심 전체의 분배 유량 중에서 해당 집합체의 연료 봉 하나가 차지하는 비율로 환산한 후, 해당 집합체의 연료봉 개수로 곱하면 각 각의 집합체에서 필요로 하는 유량을 계산할 수 있다. 표 9에 이 과정을 계산하 는 부분을 나타내었다.

4.4 집합체 필요유량 정렬

이렇게 하여 계산된 집합체의 필요유량을, 집합체 번호, Ring, Row, 집합체의 종류, Sort Group, 집합체 개수와 함께 정렬한다. 이 때 Sort Group을 오름차순 으로 하고, 집합체 필요유량을 내림차순으로 하여 정렬한다. 집합체 필요유량 정렬 결과 부분을 표 10에 나타내었다.

4.5 유량영역 구분

위에서 구한 집합체 필요유량과 이에 해당되는 집합체 개수를 곱하면, 전체 노 심에 대하여 해당 집합체의 유량을 구할 수 있다. 이 유량을 기준으로 하여 각 집합체 그룹 내에서의 유량이 일정 비율 내에 드는 집합체 끼기 묶어서 이것을 하나의 유량그룹으로 정하게 된다. 일반적으로 이것은 5~10% 값이 많이 사용된 다. 본 보고서에서는 이 값을 5%로 하여 계산하였다. 이렇게 하여 계산된 유량 영역과 그에 따른 유량을 표 11에 나타내었다. 표 8. 최대출력 집합체에 따른 유량분배

	AN	AO	AP	AQ	AR	AS	
17	Assy Group	MWth ssvs	Omittee	1 Assvs	Modeled Assvs		
			June				
	l						
18							
H	вос	EOC	BOC	EOC	BOC	EOC	
19							
20							
21	0.092	0.094	0	0	0.091857	0.094408	
22	12.115	17.772	0	0	12.11535	17.77241	
23	44.708	41.621	0	0	44.70802	41.62115	
24	44.635	41.876	0	0	44.63469	41.87581	
26	12.321	16.740	0	0 0	12.32097	16.74031	
27	12.321	16.740	0	0	12.32097	16.74031	
28	34.290	31.666	0	0	34.28986	31.66602	
29	38.713	35.371	0	0	38.71338	35,37127	
31	38.713	35.371	0 0	0	38,71338	35.37127	
32	5.334	6.399	ő	Ő	5.333968	6.399216	
33	8.667	10.070	0	0	8.667355	10.07	
34	31.280	28.823	0	0	31.28039	28.82255	
35	8.667	28.823	. 0	U 0	31.28039 8.667355	20.82255	
37	1.805	2.246	ő	ő	1.805228	2.24632	
38	2.876	3.545	0	0	2.876266	3.545195	
39	4.860	5.733	0	0	4.85994	5.732836	
40	0.093 4 860	0.093	0.092707	0.092816	U 4 85004	0 5 732836	
42	2.876	3.545	0	0	2.876266	3.545195	
43	0.086	0.089	0.086498	0.088729	0	0	
44	0.133	0.136	0.132555	0.135578	0	0	
45	2 504	1.938	0	0	1.581439	1.938207	
47	2.504	2.992	ő	ő	2.503853	2.991974	
48	1.581	1.938	Ó	0	1.581439	1.938207	
49	0.133	0.136	0.132555	0.135578	0	0	
51	0.048	0.050	0.154747	0.162378	0	U 0	
52	0.077	0.079	0,077334	0.079016	Ō	0	
53	0.103	0.105	0.10344	0.10507	0	0	
54	0.116	0.117	0.115543	0.116911	0	0	
56	0.077	0.079	0.077334	0.079016	0	0	
57	0.155	0.162	0.154747	0.162378	Ō	Ō	
58	0.008	0.008	0.007676	0.007802	0	0	
59	0.111	0.114	0.111324	0.113541	0	0	
61	0.093	0.097	0.092962	0.096713	0	0	
62	0.117	0.121	0.117373	0.121179	Ō	0	
63	0.117	0.121	0.117373	0.121179	0	0	
64	0.093	0.097	0.092962	0.096713	0	0	
66	0.111	0.114	0.111324	0.113541	0	0	
67	0.002	0.002	0.002124	0.002159	0	Ō	
68	0.004	0.004	0.004371	0.004444	0	0	
69	0.006	0.006	0.0058	0.005891	0	0	
71	0.129	0.133	0.128676	0,133381	0	0	
72	0.056	0.058	0.056481	0.057864	ō	ō	
73	0.129	0.133	0.128676	0.133381	0	0	
74	0.281	0.291	0.281232	0.291212	0	0	
76	0.006	0.006	0.0058	0.005891	0	0	
77	0.000	0.000	0	0	ō	Ő	
78	0.000	0.000	0	0	0	0	
79	0.002	0.002	0.001911	0.001943	0	0	

.

.

<u> </u>	AT	AU	AV	WA	AX	AY	AZ	BA	BB
17	Flow Distrit	oution Based	On Pk Subo	channel Coo	lant Temp Ris	e Equalizatio	n		
	Max Cycle	Pin Count	Bundle	Bundle	Sodium	Power	Scaled Power	Ideal Pin	Ideal
1	Pin kW/ft		Flow Split	Geometry	Subchannel	Shape		Flow	Assembly
			Factor	factor	TempRise	Factor (F1)			Flow
					HCF				
18					1101				
<u> </u>	4		4 .	60	HCERR			lbm/br	lbm/br
10			10	ig	погла		E III KAANG	1011/11	1011/11
20	!						· · · · · · · · · · · · · · · · · · ·	-	
20		_							
21	0.041	61	1.00000	1.00000	1.00000	1.00000	2.529	3.3	199.9
22	8.922	762	1.03200	1.17375	1.40000	0.88000	10145.393	1052.2	133627.1
23	9.105	1626	1.00285	1.09978	1.21300	1.00000	19805.969	962.6	260868.7
24	9.099	1626	1 00285	1 09978	1,21300	1.00000	19793 217	962.0	260700.7
25	0.088	366	1.00000	1.00000	1.00000	1.00000	32.298	7.0	425.4
26	8 225	762	1 03200	1.17375	1.40000	0.88000	9353 167	970.0	123192.6
27	8.225	762	1.03200	1.17375	1.40000	0.88000	9353.167	970.0	123192.6
28	8 174	1626	1 00285	1 09978	1 21300	1.00000	17781 594	864.2	234205.2
29	8.275	1626	1 00285	1.09978	1,21300	1.00000	17999.798	874.8	237079.2
30	8,222	1626	1.00285	1.09978	1,21300	1.00000	17885.870	869.3	235578.6
31	8 275	1626	1 00285	1 09978	1 21300	1 00000	17999 798	874 8	237079 2
32	4 501	762	1 03200	1 17375	1 20000	0 88000	4387 091	455.0	57783.2
32	6 2 20	760	1 03200	1 17975	1 20000	0.88000	6160 105	630.9	81254 6
24	7 690	1606	1.03200	1 00070	1 21200	1 00000	16705 534	905.0 911 0	220022 4
35	7 680	1620	1.00205	1 00079	1 21300	1 00000	16705 534	811.0	220032.1
36	000.1	760	1.00200	1 17375	1 20000	0.88000	6160 105	630.0	81254 6
37	1 394	762	1.03200	1 17375	1 20000	0.88000	1358 612	140 0	17894.6
100	2 3 2 1	762	1.03200	1 17375	1.20000	0.00000	2262.061	224 6	20704.4
30	2.521	762	1.03200	1 17375	1.20000	0.88000	2202.001	204.0	297 94.1
40	0.000	102	1.03200	1 00000	1.20000	1 00000	0 000	0.0	50108.9
41	3,003	760	1.00000	1 17275	1.00000	0.99000	3904 427	304 6	50109.0
42	2 3 2 1	762	1.03200	1 17375	1.20000	0.88000	2262.061	234.6	20704 1
42	2.021	702	1.03200	1.17375	1.20000	1.00000	2202.001	254.0	237 54.1
43	0.000	366	1.00000	1.00000	1.00000	1.00000	0.000	0.0	0.0
44	1 208	762	1.00000	1 17375	1.00000	0.88000	1177 814	122.2	15513.2
45	2 164	762	1.03200	1 17975	1.20000	0.88000	2109.071	122.2	27770 0
40	2.104	762	1.03200	1 17375	1.20000	0.88000	2109.071	210.7	27779.0
48	1 208	762	1.03200	1 17375	1.20000	0.88000	1177 814	122.2	15513.0
40	0.000	366	1.00200	1 00000	1.20000	1 00000	0.000	122.2	10010.2
50	0.000	42	1.00000	1 00000	1.00000	1.00000	0.000	0.0	0.0
51	0.000	42	1.00000	1.00000	1.00000	1.00000	0.000	0.0	0.0
52	0.000	366	1.00000	1 00000	1.00000	1.00000	0.000	0.0	0.0
53	0.000	366	1.00000	1 00000	1 00000	1.00000	0.000	0.0	0.0
54	0.000	366	1 00000	1 00000	1 00000	1 00000	0.000	0.0	0.0
55	0.000	366	1.00000	1.00000	1.00000	1 00000	0.000	0.0	0.0
56	0.000	366	1 00000	1 00000	1 00000	1 00000	0.000	0.0	0.0
57	0.000	42	1 00000	1 00000	1 00000	1 00000	0.000	0.0	0.0
58	0.000	366	1 00000	1.00000	1.00000	1.00000	0.000	0.0	0.0
59	0.000	1626	1.00000	1.00000	1,00000	1.00000	0.000	0.0	0.0
60	0.000	42	1.00000	1.00000	1,00000	1.00000	0.000	0.0	0.0
61	0.000	42	1.00000	1.00000	1.00000	1.00000	0.000	0.0	0.0
62	0.000	42	1.00000	1.00000	1,00000	1,00000	0.000	0.0	0.0
63	0.000	42	1.00000	1.00000	1.00000	1,00000	0.000	0.0	0.0
64	0.000	42	1,00000	1.00000	1,00000	1.00000	0.000	0.0	0.0
65	0.000	42	1.00000	1.00000	1.00000	1.00000	0.000	0.0	0.0
66	0.000	1626	1,00000	1.00000	1,00000	1.00000	0.000	0.0	0.0
67	0.000	366	1.00000	1.00000	1.00000	1.00000	0.000	0.0	0.0
68	0.000	366	1.00000	1.00000	1,00000	1.00000	0.000	0.0	0.0
69	0.000	1626	1.00000	1.00000	1.00000	1.00000	0.000	0.0	0.0
70	0.000	1626	1,00000	1,00000	1,00000	1.00000	0.000	0.0	0.0
71	0.000	1626	1.00000	1.00000	1,00000	1.00000	0.000	0.0	0.0
72	0.000	1626	1.00000	1.00000	1,00000	1.00000	0.000	0.0	0.0
73	0.000	1626	1.00000	1.00000	1,00000	1.00000	0.000	0.0	0.0
74	0.000	1626	1.00000	1.00000	1,00000	1.00000	0.000	0.0	0.0
75	0.000	1626	1 00000	1 00000	1 00000	1 00000	0.000	0.0	0.0
76	0.000	366	1 00000	1.00000	1 00000	1.00000	0.000	0.0	0.0
77	0.000	366	1.00000	1.00000	1 00000	1.00000	0.000	0.0	0.0
78	0.000	366	1.00000	1.00000	1.00000	1.00000	0.000	. 0.0	0.0
79	0.000	366	1.00000	1.00000	1,00000	1.00000	0.000	0.0	0.0
	- 0.000			1.00000	1.00000	1.00000	0.000	0.0	v.v

표 9. 부수로 냉각재 최고온도에 따른 집합체별 필요유량 계산

47	BC Cont Tabl	BD	BE	BF	BG	ВН	BI
17	Son Iabl	e (Reca Rina	IC Before	Type	Sort	Accur	veaA leabl
	Number	King	ROW	Type	Group	Count	Flow
	Number				Cicup	Count	1101
18							
							lbm/hr
19							
20							
21	3	3	1	E1	1	6	260868.7
22	4	3	2	E1	1	- 6	260700 7
22		5	-	E 1		- -	237079.2
23		5	2	F 1	2	0	237079.2
24	10	5	4	F I	1	6	231019.2
26	8	5	1	F1	1	6	234205.2
27	14	ě	3	F1	1	6	220032.1
28	15	6	4	F1	1	6	220032.1
29	2	2	1	B	3	6	133627.1
30	6	4	2	IB	3	6	123192.6
31	7	4	3	18	3	6	123192.6
32	13	6	2	RB	4	6	81254.6
33	16	6	5	RB	4	6	81254.6
34	12	6	1	RB	4	6	57783.2
35	19	7	3	RB	4	6	50108.9
36	21	7	. 5	RB	4	6	50108.9
31	0	7	2	KD DD	4	6	29794.1
30	22	/ 8	4	KD DB	4	6	29794.1
40	20	0 8		RB R	4	0 A	27779.0
41	17	7	1	RB	4	6	17894.6
42	25	. 8	3	RB	4	6	15513.2
43	28	8	6	RB	4	6	15513.2
44	30	9	1	BS	5	6	0.0
45	31	9	2	BS	5	6	0.0
46	37	9	8	BS	5	6	0.0
47	40	10	3	BS	5	6	0.0
48	41	10	4	85	5	6	0.0
49	42	10	5	82	5	6	0.0
51	43	10	7	85	5	0 A	0.0
52	45	10	8	BS	5	6	0.0
53	38	10	1	RS	6	6	0.0
54	47	11	1	RS	6	6	0.0
55	48	11	2	RS	6	6	0.0
56	56	11	10	RS	6	6	0.0
57	59	12	3	RS	6	6	0.0
58	60	12	4	RS	6	6	0.0
59	61	12	5	K9 NG	5	6	0.0
61	63	12	5	RS	a a	9	0.0
62	64	12	8	RS	a	a	0.0
63	65	12	9	RS	6	6	0.0
64	66	12	10	RS	6	6	0.0
65	5	4	1	CTL	7	6	425.4
66	j 1	1	1	USS	8	1	199.9
67	39	10	2	IVS	9	6	0.0
68	46	10	9	IVS	9	6	0.0
69	49	11	3	IVS	9	6	0.0
70	50	11	4	IVS	9	6	0.0
71	51	11	5	IVS	9	6	0.0
72	52	11	6	IVS	9	6	0.0
74	53	11	1	142	о Э	0	0.0
75	54	11	ہ	IVS	9	0 A	0.0
76	20	7	9 A	GFM	10	6	0.0
77	23	8	1	RF	11	a	0.0
78	24	8	2	RF	11	6	0.0
70	29	8	7	RF	11	6	0.0

표 10. 집합체 필요유량 정렬

- 25 -

	BJ	BK	BL	BM	BN	BO	BP	BQ	
17	FLOW GRO	UP WORK T	ABLE						
	Assy Group	Flow	Flow	Orifice	Flow	Orifice	Assy Ct.	Orifice	
	Flow	Fraction Of	Fraction Of	Group	Fraction	Group		Group Avg	
		Core Max	Prior Assy		Within	Flow Total		Assy Flow	
1					Orifice				
18					Group				
	lbm/hr								
19									
20									
21	1565212.0	1.0000		1	1.0000	3129416	12	260785	
22	1564204.3	0.9994	0.9994	1	0.9994				
23	1422475.2	0.9088	0.9094	2	1.0000	5663653	24	235986	
24	1422475.2	0.9088	1.0000	2	1.0000				
25	1413471.7	0.9031	0.9937	2	0.9937				
26	1405231.1	0,8978	0.9942	2	0.9879				
27	1320192.8	0,8435	0.9395	3	1.0000	2640386	12	220032	
28	1320192.8	0.8435	1.0000	3	1.0000				
29	801762.9	0.5122	0.6073	4	1.0000	801763	6	133627	
30	739155.4	0.4722	0.9219	5	1.0000	14/8311	12	123193	
31	/39155.4	0.4722	1.0000	5	1.0000	075055	40	04055	
32	40/52/.6	0.3115	1 0000	6	1.0000	910000	12	81255	
34	346600 4	0.3115	0.7111	7	1 0000	346600	6	57793	
35	300653.5	0.2213	0.8672	8	1 0000	601307	12	50109	
36	300653.5	0.1921	1.0000	. 8	1.0000		14		
37	178764.6	0.1142	0.5946	9	1.0000	357529	12	29794	
38	178764.6	0.1142	1.0000	9	1.0000				
39	166674.2	0.1065	0.9324	10	1.0000	333348	12	27779	
40	166674.2	0.1065	1.0000	10	1.0000				
41	107367.4	0.0686	0.6442	11	1.0000	107367	6	5 17895 2 15513	
42	93079.4	0.0595	0.8669	12	1.0000	186159	12		
43	93079.4	0.0595	1.0000	12	1.0000				
44	0.0	0.0000	0.0000	99	0.0000				
45	0.0	0.0000	#DIV/01	99	0.0000				
40	0.0	0.0000	#D1V/01	99	0.0000				
48	0.0	0.0000	#DIV/01	99	0.0000				
49	0.0	0.0000	#DIV/01	99	0.0000				
50	0.0	0.0000	#DIV/01	99	0.0000				
51	0.0	0.0000	#DIV/0!	99	0.0000				
52	0.0	0.0000	#DIV/0!	99	0.0000				
53	0.0	0.0000	#DIV/0!	99	0.0000				
54	0.0	0.0000	#DIV/0!	99	0.0000				
55	0.0	0.0000	#UIV/0!	99	0.0000				
57	0.0	0.0000	#DIV/01	99	0.0000				
58	0.0	0.0000	#DIV/01	99	0.0000				
59	0.0	0.0000	#DIV/01	99	0.0000				
60	0.0	0.0000	#DIV/0!	99	0.0000				
61	0.0	0.0000	#DIV/0!	99	0.0000				
62	0.0	0.0000	#DIV/0!	99	0.0000				
63	0.0	0.0000	#DIV/0!	99	0.0000				
64	0.0	0.0000	#DIV/0!	99	0.0000				
65	2552.4	0.0016	#DIV/0!	99	0.0016				
67	199.9	0.0008	0.4698	20	0.0008				
68	0.0	0.0000	0.0000 #DN//01	99	0.0000				
69	0.0	0.0000	#DIV/0	23	0.0000				
70	0.0	0.0000	#DIV/0	99	0.0000				
71	0.0	0.0000	#DIV/0!	99	0.0000				
72	0.0	0.0000	#DIV/0!	99	0.0000				
73	0.0	0.0000	#DIV/0!	99	0.0000				
74	0.0	0.0000	#DIV/0!	99	0.0000				
75	0.0	0.0000	#DIV/0!	99	0.0000				
76	0.0	0.0000	#DIV/01	99	0.0000				
77	0.0	0.0000	#DIV/0!	99	0.0000				
/8	0.0	0.0000	#DIV/0!	99	0.0000				
791	U.U	0.0000	#UIV/0!	1 99	U,UUUU				

•

표 11. 유량영역 구분 계산 결과

제 5 장 출력자료

5.1 유량분배 결과

•

표 12는 유량분배 계산결과를 각 노심 영역에서의 유량 비율과 함께 나타낸 것이며, 표에서 보는 것과 같이 유량그룹은 12개로 계산되었다. 이 계산에서는 필요 유량이 대략 10%이내의 값을 갖는 집합체를 같은 유량그룹으로 묶어서 계 산한 결과를 나타낸 것이다.

	1				
Orifice	Assembly	Assembly	Assembly Flow		
Group	Type	Count	[kg/s]		
r	-78-				
1	Driver Fuel	12	39.80		
2	Driver Fuel	24	34.70		
3	Driver Fuel	12	27.00		
4	Internal Blanket	6	12.15		
5	Internal Blanket	12	12.50		
6	Radial Blanket	12	8.70		
7	Radial Blanket	6	5.30		
8	Radial Blanket	12	4.80		
9	Radial Blanket	12	2.90		
10	Radial Blanket	12	2.45		
11	Radial Blanket	6	1.80		
12	Radial Blanket	12	1.55		
Total Prima	ary Loop Flow [kg/s]		2143		
Bypass Flo	w Fraction [%]		2.26		
Orificed Fl	ow [kg/s]		2094		

표 12. 유량분배 계산결과 요약

그림 6은 위와 같은 계산결과를 1/6 노심 배치도와 함께 나타낸 것이다. 그림 에는 각 집합체의 위치별로 집합체 번호, 유량그룹, 집합체 출력, 온도 등을 표시 하였다.

그림 6. 유량분배 계산결과 (1/6노심)

위와 같이 하여 분배된 유량으로 온도계산을 수행하게 되며, 이 때 표 13에서 보는 것처럼 각각의 집합체가 해당되는 유량 분배 그룹이 온도계산을 위한 입력 으로 필요하게 된다. 여기에서 유량그룹으로 표시된 99는 유량 분배에 사용하지 않는 집합체를 나타내기 위하여 쓰인 것이다.

T .	Ξ	집역들	त ना	Ľ
	(BR	BT	
		Assy Num	Orifice	
			Group	
	18			
	10			
	20			
	21	1	99	
1	22	2	4	
	23	3	1	
	24	4	1	
	26	6	5	
	27	7	5	
	28	9	2	
	30	10	2	
	31	11	2	
	32	12	7	
	34	14	3	
,	35	15	3	
	36	16	6 11	
	38	18	9	
	39	19	8	
	40	20	99 8	
	42	22	9	
	43	23	99	
	44	24	99 12	
	46	26	10	
	47	27	10	
	48 49	28	12 99	
	50	30	99	
ĺ	51	31	99	
	52	32	99	
	54	34	99	
	55	35	99	
	57	37	99	
	58	38	99	
	59 60	39 40	99	
	61	41	99	
	62	42	99	
	64	43	99	
	65	45	99	
	66	46	99	
	67	4/	99	
- (69	49	99	
	70	50	99	
1	72	52	99 29	
	73	53	99	
	74	54	99	
	76	56	99 99	
	77	57	99	
	78	58 50	99	
	80	60	99	

표 13. 온도계산 모듈 입력을	위한	집합체별	유량그룹
-------------------	----	------	------

제 6 장 결론 및 토의

소듐을 냉각재로 사용하는 액체금속로의 핵연료집합체는 6각형 덕트내에 3각 형 격자구조로 핵연료봉을 밀집 배열하고, 각 덕트는 막힌 유로를 갖고 있어 덕 트에서 덕트로의 유량이 없기 때문에, 각각의 집합체 덕트에 공급되는 유량을 집 합체의 출력에 따라 노심의 입구에서 미리 분배해 주어, 유량의 경제성을 높이고 노심 출구에서의 온도를 평탄화시킬 수가 있다. 이 유량분배는 각각의 핵연료 피복관의 누적 손상률이 동일하게 되어 핵연료봉의 신뢰성을 확보할 수 있도록 해 주어야 하며, 이를 위하여 노심 입구에 노심 유량 분배장치를 설치하여 사용 하게 된다.

원자로심에서의 유량의 흐름과 열전달은 매우 복잡한 현상을 수반한다. 상호 연계된 부수로간의 열 및 질량의 전달에 관한 현상은 정확하게 알려져 있지 않 으며, 원자로심의 복잡한 기하학적 구조와 큰 폭의 운전조건으로 인하여 실험적 으로 해석한다는 것은 매우 어렵다. 따라서 컴퓨터 코드에 의한 계산모델을 이 용한 해석법과 이의 개량에도 많은 연구가 수행되고 있다.

본 보고서에서는 이와 같은 액체금속로의 노심에 대한 열수력학적 특성에 대 하여 설명하고, 노심 열수력 개념설계를 위한 전반적인 작업의 흐름도를 살펴본 후, 이의 해석체제를 확립하기 위하여 구축된 노심의 유량 영역구분을 위한 계산 모듈에 대하여 기술하였다. 이를 바탕으로 하여 노심의 온도분포 계산모듈, 정 상상태 노심열수력 설계코드 및 부수로 해석코드를 이용한 노심 열수력의 상세 한 계산이 가능할 것이다.

지금까지 개발된 컴퓨터 코드는 경수로형 원자로를 해석하기 위한 것들이 대 부분이며, 액체금속로용으로 개발된 몇몇의 코드들은 그나마 입수하기가 매우 어려운 실정이다. 유로의 하류(downstream) 부분에서 최소의 교란이 발생하는 상태에 국한된 초기조건 문제로는 부분적인 유로폐쇄 문제와 같은 액체금속로의 경우를 정확하게 해석할 수 없으며, 경계조건 문제로서 액체금속로를 해석해야 할 것으로 보인다.

따라서 대표적인 부수로해석용 전산코드인 COBRA코드를 개량 검증하여 액체 금속로의 다집합체 열수력 해석에 사용할 수 있도록 하기 위하여 MATRA-LMR 코드를 개발 중이다. 현재는 단일 집합체 해석만이 가능하지만 이를 여러 집합 체를 동시에 모사할 수 있도록 개량하고 있다. 이는 앞으로 계속 보완하고 검증 한 후 노심 열수력 해석을 위한 코드로 활용할 것이다.

참고문헌

- [1] Hahn D. H. et al., KAERI Concept Study, GE, 1995
- [2] Park C. K. et al., KALIMER Design Concept Report, KAERI/TR-888/97, 1997
- [3] Waltar A. E. and Reynolds A. B., Fast Breeder Reactors, Pergamon Press, New York, 1981
- [4] Tang Y. S. et al., Thermal Analysis of Liquid-Metal Fast Breeder Reactors, ANS, 1978
- [5] Kim Y. G. et al., "Methodology for Thermal Hydraulic Conceptual Design and Performance Analysis of KALIMER Core." IAEA Technical Committee Meeting, Obninsk, Russia, July 27-31, 1998
- [6] Novendstern E. H., "Turbulent Flow Pressure Drop Model for Fuel Rod Assemblies Utilizing a Helical Wire-Wrap Spacer System", Nucl. Eng. and Des., 22, 19, 1972
- [7] Chiu C. et al., "Flow Split Model for LMFBR Wire Wrapped Assemblies", COO-2245-56TR, MIT, Cambridge, 1978
- [8] Cheng S. K. and Todreas N. E., "Hydrodynamic Models and Correlations for Bare and Wire-Wrapped Hexagonal Rod Bundles - Bundle Friction Factors, Subchannel Friction Factors and Mixing Parameters", Nucl. Eng. and Des., 92, 227, 1986
- [9] Yang W. S., "An LMR Core Thermal Hydraulics Code Based on the ENERGY Model", Journal of KNS, Vol. 29, pp.406-416, 1997
- [10] Wheeler C. L. et al., "COBRA IV-I : An Interim Version of COBRA for Thermal-Hydraulic Analysis of Rod Bundle Nuclear Fuel Elements and Cores", BNWL-1662, March 1976
- [11] George T. L. et al., "COBRA-WC : A Version of COBRA for Single-Phase Multiassembly Thermal-Hydraulic Transient Analysis", PNL-3259, July 1980
- [12] Kim W. S. et al., "MATRA-LMR Code for Thermal-Hydraulic Subchannel

Analysis of LMR", Proceedings of NTHAS98(First Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety), pp. 227-234, Pusan Korea, October 21-24, 1998

[13] Kim W. S. et al., "Development of MATRA-LMR Code for LMR Core Subchannel Analysis", KAERI/TR-1050/98, KAERI, 1998

		서	 지		보	양	 식			
수행기관」	위탁7	위탁기관보고서번호			표준보고서번호			INIS 주제코드		
KAERI/TR										
제목 /				1						
액체금속로 노심 유량분배 계산모듈 개발										
연구책임지 (AR,TR 등의	· 및 부서명 경우 주저자)	김영	김 영 균 (KALIMER 기술개발팀)							
연구자	및 부 서 명	김원	김 원 석, 김 영 일 (KALIMER 기술개발팀)							
출 판 지	대전	발행기	기관	र्	한국원	자력연]구소	발	행년	2000. 6
페이지	p. 41	도	斑	· 있음	(V)	, ଧୁ	치음()	ੜ	7]	26 cm.
참고사항				200)0 중	장기 コ	다. 사제			
비밀여부	공개(V), 대 급비	V), 대외비(), 급비밀		보고서종류		기술보고서			
연구위탁기관						계	약번호			
초록 (15-	20줄내외)									

소듐을 냉각재로 사용하는 액체금속로 노심은 덕트라는 특수한 구조로 된 집합체들로 구성되어 있으며, 각 덕트는 막힌 유로를 갖고 있어 덕트에서 덕트로의 유량이 없기 때 문에, 각각의 집합체를 흐르는 유량을 그 집합체의 출력에 맞도록 노심의 입구에서 미 리 분배해 주어야 한다. 이 유량분배는 각각의 핵연료 피복관의 누적 손상률이 동일하 게 되어 핵연료봉의 신뢰성을 확보할 수 있도록 하기 위해 필요한 것이며, 이를 위하여 Orifice라는 노심 유량 분배장치를 사용하게 된다.

본 보고서에서는 이와 같이 소듐을 냉각재로 사용하는 액체금속로의 노심에 대한 열 수력학적 특성을 이해하고, 노심 열수력 개념설계를 위한 전반적인 작업의 흐름도를 살 펴본 후, 이의 해석체제를 확립하기 위하여 구축된 노심의 유량 영역구분을 위한 계산 모듈에 대하여 기술하였다.

본 보고서에서 계산모듈의 설명을 위해 사용된 데이터는 KALIMER 중식특성 노심설 계의 출력 및 유량분배 계산 데이터이며, 본 모듈의 계산은 MSOffice 2000의 Microsoft Excel 2000을 이용하여 시행된 것이다.

주제명키워드 (10단어내외)

액체금속로, 노심설계, 출력분포, 유량분배, 부수로 해석

	BIBLIOGRAPHIC INFORMATION SHEET									
Performin Report	g Org. No.	Sponsoring Or Report No.	rg.	Standard Report No	. INIS Subject Code					
KAERI/TR-	-1596/2000									
Title / S	ubtitle			L						
		Development of	Flow	Grouping Module fo	ran LMR Co	ore				
Project Manager and Department (or Main Author)		Kim Young-Gyun (KALIMER Technology Development Team)								
Researche	er and	Kim Won-Seok,	Kim	Young-II						
Departr	nent	(KALIMER Tec	hnolog	gy Development Tean	n)					
			,	<u></u>		. .				
Publication Place	Taejon	Publisher		KAERI	Publication Date	2000. 6				
Page	p. 41	III. & Tab.	· Ye	es(V), No()	Size	26 cm.				
Note	2000 Mi	d-Long Term Pro	oject							
Classified	Open(V	7), Restricted(Class Document),	Report Type	Technica	Report				
Sponsoring	Org.		Contract No.							
Abstract (15-	20 Lines)									
Abstract (15-20 Lines) Sodium cooled LMR core is comprised of many duct assemblies which have no flow exchanges between them. So, the required flow to each assembly corresponding to its power has to be allocated in thermal hydraulic design. Flow allocation facility, which is called orifice, is used for this purpose in an LMR core. In this context, flow grouping module for an LMR core has been developed. This report describes the modeling and method of this module, and explains the calculation procedure and the sample calculation results. Firstly, LMR core thermal hydraulic conceptual design and analysis procedure was explained in chapter 1. Chapter 2 overviews this flow grouping module, and in chapter 3 core design and configuration data with power distributions were given. The calculation modeling and method of this module were explained in chapter 4, and chapter 5 shows calculation procedure and sample calculation results. KALIMER breeder core design data, e.g., inlet and outlet temperatures, power distributions and core flow, were used in this report to explain how this module works. And this module works in the environment of Microsoft Excel 2000 of MSOffice 2000. Subject Keywords LMR. Core Design, Power Distribution, Elow Grouping										
(About 10	words)	Subchannel Ar	nalysis	5						
Sodium co flow exchar correspondin allocation fa In this con report desc calculation p Firstly, LN explained in chapter 3 co The calculat and chapter KALIMER distributions works. An MSOffice 200 Subject Ko	Abstract (15-20 Lines) Sodium cooled LMR core is comprised of many duct assemblies which have no flow exchanges between them. So, the required flow to each assembly corresponding to its power has to be allocated in thermal hydraulic design. Flow allocation facility, which is called orifice, is used for this purpose in an LMR core. In this context, flow grouping module for an LMR core has been developed. This report describes the modeling and method of this module, and explains the calculation procedure and the sample calculation results. Firstly, LMR core thermal hydraulic conceptual design and analysis procedure was explained in chapter 1. Chapter 2 overviews this flow grouping module, and in chapter 3 core design and configuration data with power distributions were given. The calculation modeling and method of this module were explained in chapter 4, and chapter 5 shows calculation procedure and sample calculation results. KALIMER breeder core design data, e.g., inlet and outlet temperatures, power distributions and core flow, were used in this report to explain how this module works. And this module works in the environment of Microsoft Excel 2000 of MSOffice 2000. Subject Keywords LMR, Core Design, Power Distribution, Flow Grouping, (About 10 words)									

•