JAERI-Conf 2000-001

AP-08

Interaction of hydrated electron with dietary flavonoids and phenolic acids

Rate constants and transient spectra studied by pulse radiolysis

Zhongli Cai, Xifeng Li and Yosuke Katsumura

Nuclear Engineering Research Laboratory
The Graduate School of Engineering, the University of Tokyo

Abstract: The reaction rate constants and transient spectra of 11 flavonoids and 4 phenolic acids reacting with e_{aq} at neutral pH were measured. The results suggest that C_4 keto group is the active site for e_{aq} to attack on flavonoids and phenolic acids, while the o-dihydroxy structure in B-ring, the $C_{2,3}$ double bond, the C_3 -OH group and glucosylation have little effects on the e_{aq} scavenging activities.

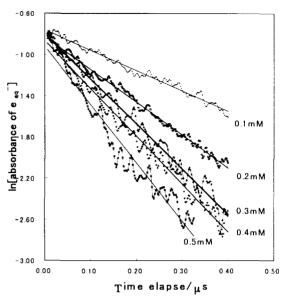
Keywords: hydrated electron, flavonoids, rate constants, pulse radiolysis.

Introduction

The antioxidant activities of flavonoids and simple phenolic acids have been extensively studied^[1-7] and their beneficial activities as antioxidants are highly recognized. No matter whether flavonoids and phenolic acids act as antioxidants or pro-oxidants, both activities originate from their reducing activities. On the other hand, Cai *et. al.*^[8,9] reported that baicalin, a compound of flavone, scavenged reducing radicals such as 'H and α -hydroxyethyl radicals. The results demonstrate the oxidizing abilities of flavonoids and phenolic acids, which should also be involved in their physiological activities.

This work studied the interaction of e_{aq} with a series of flavonoids and phenolic acids, by pulse radiolysis and aimed to derive the structure-oxidizing activity relationship.

Materials and Methods


A 28MeV electron beam with a pulse duration of 10ns was utilized for pulse radiolysis experiment. The absorbed dose per pulse was 20-75Gy, measured with N_2 O-saturated 10mM KSCN solutions. Samples were dissolved in water containing 0.1M t-BuOH, 1mM Na_2 HPO₄ + 1mM KH_2 PO₄ (pH 6.9). For measurement of the transient spectra, a flow cell system was used with the cell length of 2.0cm, and the solutions were bubbled with Ar for 20min before and during the measurement. The decay of e_{aq} was followed to derive the pseudo-first-order rate constants and further derive the second order rate constants. Samples were all sealed for irradiation after being bubbled with Ar for 30 min.

Results

Fig. 1 showed the decay of e_{aq} in O_2 -free baicalin solution after electron. The decay of e_{aq} was assumed to obey pseudo-first-order kinetics. From the slopes the pseudo-first-order rate

constants were obtained at various concentrations of baicalin. The second order rate constant for the reaction of baicalin with e_{aq} was derived to be $(1.3\pm0.1)x10^{10}M^{-1}s^{-1}$ by the slope of plotting the pseudo-first-order rate constants versus concentrations of baicalin.

With the same method described above, the rate constants for the reactions of e_{aq} with other flavonoids and phenolic acids at pH 6.9 were also determined and listed in Table 1. The compounds, with either a benzoyl or styryl keto group, but without a bulky group neighbor to the keto group, were the most reactive toward e_{aq} . These results suggests that a benzoyl or a styryl

Fig.1 Decay of e_{aq} in baicalin solution containing 0.1M t-BuOH, pH 6.9.

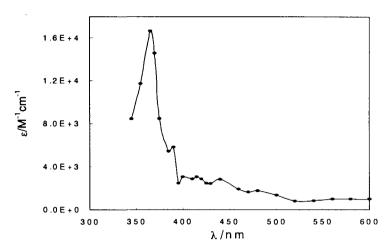

keto group was important for flavonoids and phenolic acids to scavenge e_{aq} and the keto group might be the site on which e_{aq} attacked, as supported by Simic and Hoffman^[10].

Table 1 Rate constants and spectra of the transients for the reactions of e_{aq} with flavonoids and phenolic acids at pH 6.9 and room temperature

compound	rate constants* /M ⁻¹ s ⁻¹	λ_{max} / nm	ε/M ⁻¹ cm ⁻¹
(+)catechin	(1.2 ± 0.1) x 10^8	<320	$> 7 \times 10^3$
4-chromanol	(4.4 ± 0.4) x 10^8	<320	$> 5 \times 10^3$
genistein	$(6.2 \pm 0.4) \times 10^9$	<350, 430	$> 2 \times 10^3, 5 \times 10^2$
genistin	$(8 \pm 1) \times 10^9$	<350, 460	$> 2 \times 10^3$, 8×10^2
rutin	$(7.6 \pm 0.4) \times 10^9$	<400	$> 2 \times 10^3$
caffeic acid	(8.3 ± 0.5) x 10^9	360	1.4 x 10 ⁴
trans-cinnamic acid	(1.1 ± 0.1) x 10^{10}	370, 490	$1.8 \times 10^4, 2.5 \times 10^3$
p-coumaric acid	(1.1 ± 0.1) x 10^{10}	365, 470	$1.7 \times 10^4, 2 \times 10^3$
2,4,6-trihydroxyl-benzoic acid	$(1.1 \pm 0.1) \times 10^{10}$	<350, 500	$> 5 \times 10^3, 1 \times 10^3$
baicalein	$(1.1 \pm 0.5) \times 10^{10}$	<400, 460	$> 2 \times 10^3$, 1×10^3
baicalin	(1.3 ± 0.1) x 10^{10}	365	1.7 x 10 ⁴
naringenin	(1.2 ± 0.1) x 10^{10}	<370, 480	$> 2 \times 10^3, \ 1.5 \times 10^3$
naringin	(1.0 ± 0.1) x 10^{10}	<370, 480	$> 2 \times 10^3, 1.5 \times 10^3$
quecertin	$(1.3 \pm 0.5) \times 10^{10}$	<400, 540	$> 2 \times 10^3, 1 \times 10^3$
gossypin	(1.2 ± 0.1) x 10^{10}	<400, 560	$> 6 \times 10^3, 1.5 \times 10^3$

^{*±}SD, by 5 experiments.

The transient spectra of flavonoids and phenolic acids reacting with e_{aq} and H were also recorded, as summarized in Table 1. Competitive reaction calculation clearly shows that both reducing species, H and e_{aq} , contributed to the obtained spectrum. All of the transients showed tendency of sharp rise of absorbance below 400nm and a minor peak at wavelength of 460-560nm. A sample transient spectra is shown in Fig.2. These

Fig. 2 Transient spectra of e_{sq} reacting with baicalin, obtained in pulse radiolysis of O_2 -free 0.1mM baicalin+0.1M t-BuOH +1mM phosphate buffer(pH 6.9).

characteristics of transient spectra were in accord with that of ketyl radical of flavone, which had a main absorption peak at 350nm and a small peak at 500nm.^[11]

We assumed that e_{aq} first attacks the keto group of flavonoids and phenolic acids and forms a ketyl radical ion. The ketyl radical ion is unstable and quickly protonize into the same transient as that of H-adduct, which might exist in several resonance states. For example, the reaction of baicalin e_{aq} may follow the scheme below:

References

[1] Deng, W.G.; Fang, X.W.; Wu, J. L. Flavonoids function as antioxidants: By scavenging

- reactive oxygen species or by chelating iron? Radiat. Phys. Chem. 50:271 276; 1997.
- [2] Cai, Z. L.; Wu, J. L.; He, Y. K.; Jing, H. F.; Yuan, R. Y. Radiolysis mechanism of Baicalin aqueous solution saturated with N₂O. *Acta Chimica Sinica*. 55:334 340; 1997.
- [3] Rice-Evans, C.A.; Miller, N. J.; Paganga, G.; Structure-antioxidant activity relationships of flavonoids and phenolic acids. *Free Radical Biology & Medicine* **20**:933 956; 1996.
- [4] Jovanovic, S.V.; Steenken, S.; Hara, Y.; Simic, M.G.; Reduction potentials of flavonoid and model phenoxyl radicals. Which ring in flavonoids is responsible for antioxidant activity? *J. Chem. Soc. Perkin Trans.* 2:2497 2504; 1996.
- [5] Cai, Z. L.; He, Y. K.; Wu, J. L. Study of baicalin scavenging hydroxyethyl peroxyl radicals by radiolysis of aerated ethanol-baicalin system. *Radiat. Phys. Chem.* 47:869 871; 1996.
- [6] Jovanovic, S.V.; Steenken, S.; Tosic, M.; Marjanovic, B.; Simic, M.G. Flavonoids as Antioxidants. J. Am. Chem. Soc. 116:4846 4851; 1994.
- [7] Bors, W.; Michel, C.; Saran, M. Flavonoid antioxidants: Rate constants for reactions with oxygen radicals. *Methods in Enzymology*. **234**:420 429; 1994.
- [8] Cai, Z. L.; He Y. K.; Wu, J. L. Hydroxylethylation of baicalin by γ-ray irradiation of baicalin in ethanol. *Radiat. Phys. Chem.* 47:213 215; 1996.
- [9] Cai, Z. L.; Zhang, X. J.; Wu, J. L. Reactions and kinetics of baicalin with reducing species, 'H, e_{solv} and and α-hydroxyethyl radical in deaerated ethanol solution under γ-irradiation. *Radiat. Phys. Chem.* **45**:217 222; 1995.
- [10] Simic, M.; Hoffman, M.Z. Acid-base properties of the radicals produced in the pulse radiolysis of aqueous solutions of benzoic acid. J. Phys. Chem. 76:1398 1404;1972.
- [11] Bhattacharyya, K.; Ramaiah, D.; Das, P.K.; George, M.V. A laser flash photolysis study of 2,6-Dimethyl-3,5-diphenyl-4-pyrone and related chromones. Evidence for triplet state structural relaxation from quenching. *J. Phys. Chem.* **90**:5984 5989; 1986.