

JAERI-Review 99-031

3.2 International β_{eff} Benchmark Experiments in FCA

T. Sakurai, S. Okajima, H. Sodeyama, M. Andoh and T. Osugi (*E-mail* : sakurai@tru.tokai.jaeri.go.jp)

Benchmark experiments of the effective delayed neutron fraction β_{eff} were performed at FCA between 1995 and 1998 to improve prediction accuracy of the $\beta_{eff}^{1,2)}$. The experiments were carried out in three cores which were built to provide a systematic change in ²³⁵U, ²³⁸U and ²³⁹Pu contributions to the β_{eff} : XIX-1 core(U fuel), XIX-2 core(Pu/U fuel) and XIX-3 core(Pu fuel). Table 3.2.1 summarizes main characteristics of these cores. Six organizations from five countries(CEA/France, IPPE/Russia, KAERI/Korea, LANL/USA, Nagoya-University/Japan and JAERI/Japan) participated in the experiments with their measurement methods and have reported their β_{eff} values so far.

The final value of experimental β_{eff} was derived by comparing the β_{eff} 's between the measurement methods to improve reliability of the final value. The analysis of experiments was made using the JENDL-3.2 nuclear data file³⁾ and JAERI's calculation system for fast reactor neutronics to check the prediction accuracy of $\beta_{eff}^{4)}$.

Core name	XIX-1	XIX-2	XIX-3
- Fuel	Enriched uranium	Plutonium /Natural uranium	Plutonium
- Fuel enrichment	93%	23%	(92% fissile Pu)
- Core dimensions Radius x Height(cm)	33.0 x 50.8	35.7 x 61.0	35.1 x 61.0
- β_{eff} (pcm)	742	364	251
- Nuclide contributions	to β_{eff}		
²³⁵ U ²³⁸ U ²³⁹ Pu ²⁴⁰ Pu, ²⁴¹ Pu, ²⁴¹ Am	94% 6% 	$10\% \\ 47\% \\ 41\% \\ 2\%$	9% 11% 77% 3%

Table 3.2.1 Main characteristics of FCA cores

Finalization of Experimental β_{eff}

Table 3.2.2 shows the β_{eff} 's that were measured by the individual method. The final value of β_{eff} in each core was obtained by taking the mean value of these individual β_{eff} 's. Correlations of β_{eff} 's between different methods were taken into account in this procedure because several common parameters such as fission rate were used to determine the β_{eff} in the different methods. The mean value m of the β_{eff} was determined by

$$\mathfrak{m} = (\mathfrak{u} \cdot \mathbf{C}^{-1} \cdot \mathfrak{u}^{\mathsf{T}})^{-1} \cdot \mathfrak{u} \cdot \mathbf{C}^{-1} \cdot \mathbf{p} . \qquad (3.2.1)$$

where p is a column vector whose elements are the β_{eff} 's by the individual method, C is a covariance matrix of β_{eff} 's, u is a row vector with all elements equal to unity and T means a

transpose of vector. The internal uncertainty δ_{int} of the m was estimated by the error propagation law :

$$\delta_{\text{int}} = \sqrt{(\mathbf{u} \cdot \mathbf{C}^{-1} \cdot \mathbf{u}^{\mathsf{T}})^{-1}}. \qquad (3.2.2)$$

The external uncertainty δ_{ext} was estimated by

$$\delta_{\text{ext}} = \sqrt{\chi^2/f} \cdot \delta_{\text{int}}$$
 (3.2.3)

where f is the degrees of freedom, χ^2 the statistical parameter calculated from the residuals of individual β_{eff} 's around the m. The δ_{ext} reflects the scattering of the individual data around the m. Table 3.2.3 presents the results for the m, δ_{int} and δ_{ext} . The δ_{ext} was larger than the δ_{int} in the XIX-1 and XIX-2 cores where the δ_{ext} was adopted as the uncertainty of the final value. The δ_{int} was adopted in the XIX-3 core. These results satisfied the target accuracy of 3% required for the experimental β_{eff}^{5} .

				Unit : pcm
	Core name	XIX-1	XIX-2	XIX-3
(1)	Covariance-to-mean method (JAERI)	724±13(2%)*		252±5(2%)
(2)	Modified Bennett method (Nagoya-University)	782±16(2%)	368±6(2%)	256±4(2%)
(3)	Noise method (CEA)	743±19(3%)		250±6(2%)
(4)	Rossi-α method (IPPE)	771±23(3%)		
(5)	Nclson-number method (LANL)	737±20(3%)		
(6)	Cf source method JAERI/KAERI IPPE Mean of two participants	735 ± 20 706 ± 30 $727\pm20(3\%)$	358 ± 10 351 ± 10 $355 \pm 10(3\%)$	249±7 244±7 247±7(3%)

Table 3.2.2 β_{eff} values obtained by different experimental methods

* Values in parentheses : relative uncertainty

Table 3.2.3 Final value and uncertainty of β_{eff}

			Unit : pcm
Core name	XIX-1	XIX-2	XIX-3
Mean value of $\beta_{eff}(m)$	742	364	251
δ_{int}	$\pm 11(2\%)$	$\pm7(2\%)$	$\pm 4(2\%)$
δ _{exi}	$\pm 24(3\%)$	$\pm 9(3\%)$	$\pm 4(2\%)$

Analysis of the measured β_{eff}

Cell calculations were made for each region in the reactor to prepare cell averaged effective cross sections in seventy energy groups. We used the SLAROM code⁶ which is based

on the collision probability method, a group constants set JFS3-J3.2 with a seventy energy group structure⁷) and a one-dimensional infinite slab model of the cell.

Core calculations were made by a diffusion theory code POPLARS⁸) in a threedimensional X-Y-Z model. The β_{eff} was calculated by using the delayed neutron(D.N.) yields and the D.N. spectra of the JENDL-3.2. The incident neutron energy dependence of D.N. yields was taken accout of in this calculation. To see the effect of changing the D.N. spectra on the β_{eff} calculation, the D.N. spectra of ENDF/B-VI⁹) were also used for the calculation with the D.N. yields of JENDL-3.2. A correction of about 1% for transport effect was applied to these results. This correction factor was estimated with a two-dimensional transport theory code TWOTRAN-II¹⁰.

Table 3.2.4 presents the ratios of calculation to experiment(C/E's) of the β_{eff} . The effect of changing the D.N. spectra on the β_{eff} calculation was found to be small(at most 0.6%). Good agreement was found in the XIX-1 and XIX-2 cores between experiment and calculation. On the other hand, the calculation underpredicted the β_{eff} of XIX-3 core by 2~3%. The present values of β_{eff} and the C/E's will be used in future for evaluation of the D.N. yields.

Cor	e name		XIX-1	XIX-2	XIX-3
	D.N. yield	D.N. spectra			
(a)	JENDL-3.2	JENDL-3.2	1.004	1.005	0.972
(b)	JENDL-3.2	ENDF/B-VI	1.003	1.009	0.978

Table 3.2.4 Ratios of calculation to experiment(C/E's) of β_{eff}

References

- 1) Sakurai, T., et al.: Proc. of International Conference on the Nuclear Science and Technology, Long Island, USA, 182 (1998).
- Sakurai, T. and Okajima, S.: Proc. of the Specialists' Meeting on Delayed Neutron Nuclear Data, JAERI-Conf, 99-007, 29 (1999).
- 3) Nakagawa, T., et al.: J. Nucl. Sci. Technol., <u>32</u>, 1259 (1995).
- 4) Sakurai, T. and Okajima, S.: Proc. of the Specialists' Meeting on Delayed Neutron Nuclear Data, JAERI-Conf, 99-007, 85 (1999).
- 5) Blachot, J., et al.: OECD Nuclear Energy Agency, Committee on Reactor Physics and Nuclear Data Committee., NEACRP-L-323, NEANDC-299"U" (1990).
- 6) Nakagawa, M. and Tsuchihashi, K.: JAERI 1294 (1984).
- 7) Takano, H., Akie, H. and Kaneko, K.: Proc. of International Conference on Nuclear Data for Science and Technology, Gatlinburg, USA, 809 (1994).
- 8) Iijima, S.: Private communication, Japan Atomic Energy Research Institute (1999).
- 9) Rose, P.F. (Ed.): BNL-NCS-17541, 4th Edition (1991).
- 10) Lathrop, K.D. and Brinkley, F.W.: LA-4848-MS (1973).