THE SYNTHESIS OF SUPERHEAVY NUCLEI IN THE ⁴⁸Ca + ²⁴⁴Pu REACTION: ²⁸⁸114

Yu. Ts. Oganessian, V. K. Utyonkov, <u>Yu. V. Lobanov</u>, F. Sh. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Yu. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, O. V. Ivanov, G. V. Buklanov, K. Subotic, M. G. Itkis

Joint Institute for Nuclear Research, 141980 Dubna, Russia K. J. Moody, J. F. Wild, N. J. Stoyer, M. A. Stoyer and R. W. Lougheed University of California, Lawrence Livermore National Laboratory, Livermore, California 94551, U S A

In the bombardment of a ²⁴⁴Pu target with ⁴⁸Ca ions, we observed two identical decay sequences of genetically linked events, each consisting of an implanted heavy atom, two subsequent a-decays, and terminated by a spontaneous fission. The measured a-energies and corresponding half-lives of the sequential chain members were: E_a =9.84 MeV ($T_{1/2}$ =1.9 s) and 9.17 MeV ($T_{1/2}$ =9.8 s); for the spontaneous fission ($T_{1/2}$ =7.5 s), the total energies deposited in the detector array were 213 and 221 MeV. The decay properties of the synthesized nuclei are consistent with the consecutive a-decays originating from the parent even-even nucleus ²⁸⁸114 and ²⁸⁴112 are the heaviest known a-decaying even-even nuclides, following the production of ²⁶⁰Sg and ²⁶⁶Sg (Z=106) and the observation of one a-decay of ²⁶⁴Hs (Z=108). The observed radioactive properties of ²⁸⁸114 and the daughter nuclides match the decay scenario predicted by the macroscopic-microscopic theory.

