IAEA-SM-365/38

Controlled release from polyDMAEMA gels prepared by Gamma rdiation

Liu Ning and Yi Min

Department of Technical physics, Peking University Beijing, 100871 China

Abstract

In recent years, the research and development of intelligent drug delivery systems (DDS) have been very active, so synthesized all kinds of hydrogels and behavior studying were widely investigated^[1~5]. The polyDMAEMA hydrogels synthesized by γ -irradiation technology showed a combined temperature and pH-sensitivity and electric responsive behaviors. The hydrogels were transparent and elastic and displayed good swelling behavior in water, so they can be used as a kind of carrying material in drug delivery systems.

In this work, using the polyDMAEMA hydrogels which were prepared by γ -rays from ⁶⁰Co source in controlling release was studied.

1. The characteristic of polyDMAEMA hydrogels

The polyDMAEMA hydrogels synthesized by γ -rays from ⁶⁰Co source at room temperature showed good mechanical property and high swelling capacity in water. The equilibrium degree of swelling was nearly 900. They also displayed a temperature and pH-sensitivity at a temperature range of 38~40°C and pH=2.5. To electric responsive behaviors, they can be observed at a field voltage of approximately 3.0, although it was not clear.

2. Release studies

For the release studies, Methylene Blue (MB) solution ($\sim 1g/l$) was prepared first. Then the polyDMAEMA hydrogels were put in it. The release studies would begin after they got equilibrium swelling.

2.1 MB release at different pH values

MB release experiments were performed in deionized water with ph=1.24 and 10.56 at room temperature. The release rate of MB in pH=1.24 was faster than that in pH=10.56. The release rate of MB in pH=1.24 leveled off after about 13 h while in 10.56 it did after about 60 h.

Fig.1. MB release at different pH

2.2 MB release at different temperature

Since the polyDMAEMA hydrogel showed a temperature sensitivity at a range of 38~40°C, the release experiments were conducted at 20°C and 52°C, respectively. It was found that the release rate at 52°C was faster than at 20°C, which attributed to quicker rate of the MB molecular movement at high temperature and the shrinking of the gel.

2.3 MB release in electric field

The release rate at a field voltage of 5.0 was much faster than that of no electric field. For example, it took the release rate 3h to reach equilibrium at a field voltage of 5.0, while 13h without the electric field. Fig. 2 showed the release result under the on-off switching of electric field in distilled water at alternative voltages 0 and 5.0.

Fig.2 Pulsatile electric field as the function of MB release

Reference

- 1.Nikolaos A. Peppas and Jill E. Scott, 1992, Controlled release from poly(vinyl alcohol) gels prepared by freezing-thawing processes, 18,95
- 2.Zhai Maolin, Liu Ning, Li Jun et al. 2000, Radiation preparation of PVA-g-NIPAAm in a homogeneous system and its application in controlled release, Radiation Physics and Chemistry, 57,481.
- 3. Hoffman A.S., 1987, Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics, J. Controlled Release 6, 297.
- 4.Bae Y. Okano T, Hsu R. and Kim S. W., 1987, Themo-sensitive polymers as on-off switches for drug release, Makromol Chem. Rapid. Commun 8, 481.
- 5.Ha Hongfei, 1994, An overview on study of immobilization of bioactive species and DDS by means of radiation technology in China, J. Controlled Release, 29, 195.