

Extended Spectroscopy in the Superdeformed Well of ^{148,149}Gd Nuclei

Th. Byrski¹, O. Stezowski¹, K. Zuber, D. Appelbe², C. W. Beausang^{2,3}, F.A. Beck¹, A. Bouguettoucha¹, D. Curien¹, G. de France¹, G. Duchene¹, S. Ertürk², C. Finck¹, B. Gall¹, B. Haas¹, A.Z. Kiss⁴, N. Khadiri^{1,5}, B. Kharraja^{5,6}, A. Nourreddine⁵, D. Prevost¹, H. Savajols¹, M. Smith², P. Twin², and J.P. Vivien¹

¹ Institut de Recherches Subatomiques et Universite Louis Pasteur, Strasbourg, France; ² University of Liverpool, Liverpool, United Kingdom; ³ Vright Nuclear Structure Laboratory, Physics Department, Yale University, New-Haven, USA; ⁴ Institute of Nuclear Research, Debrecen, Hungary; ⁵ Department of Physics, University Chouaib Doukkali, El-Jadida, Morocco; ⁶ University of Notre Dame, Department of Physics, Notre Dame, IN, USA

Superdeformed (SD) bands in ^{118,149}Gd nuclei were investigated using EUROGAM II array following the 124 Sn + 30 Si fusion-evaporation reaction at a beam energy of 158 MeV. A high statistics experiment was performed and resulted in the discovery of twelve new SD bands. Three of them have been assigned to ¹⁴⁸Gd and seven to ¹⁴⁹Gd giving a total of thirteen SD bands now known in this nucleus. Six bands were previously observed respectively in ¹⁴⁸Gd¹⁾ and ¹⁴⁹Gd²⁾. The yrast SD bands of the ¹⁴⁵⁻¹⁴⁹Gd chain of isotopes are all considered to have the same $\pi 6^2$ (i 13/2) $v7^1$ (j15/2) intruder configuration with the neutron orbitals [651]1/2 and $[642]5/2 \alpha = \pm 1/2$ lying just below the N = 86 neutron SD shell gap, completely filled in the ¹⁴⁹Gd case. Concerning the three new excited SD bands (7, 8 and 9) in ¹⁴⁸Gd, two of them (7, 8) are signature partners and their dynamical moments of inertia $J^{(2)}$ display a well-pronounced bump at the same critical frequency as for 145 Gd(2)³⁾, 146 Gd(1)⁴⁾ and 147 Gd(1)⁵⁾ bands. This strong interaction crossing is explained as due to the interaction between the v[651]1/2 and v[642]5/2 α = - 1/2 orbitals when the blocking effect is removed. Between the two irregularities observed respectively at low and high rotational frequencies, the moment $J^{(2)}$ of the third band is very similar to that of ¹⁵²Dy(l) suggesting the same intruder configuration ($\pi 6^4 \nu 7^2$). Up to now, in the A ~ 150 mass region, the $J^{(2)}$ moment of many bands based on this configuration and involving natural parity particle-hole excitations with insignificant alignment, present one or two small discontinuities, the first one located at low rotational frequencies ($\hbar\omega \sim 0.4 - 0.5$ MeV) and the second one at higher ones ($\hbar\omega \sim 0.6$ -0.7 MeV). The new 149 Gd(7) band with a $J^{(2)}$ moment similar to those of all bands having the high-N intruder $\pi 6^3 \sqrt{7^1}$ configuration is based on a proton excitation involving the unfavored [301]1/2 $\alpha = +1/2$ orbital; a small discontinuity at $\hbar\omega \sim 0.5$ MeV disturbs the transition energies relationship between this band and 150 Tb(1)⁶⁾ band. The $J^{(2)}$ moment of 149 Gd(8) shows a smooth rise with a pronounced increase at very high rotational frequency; its behaviour suggest the $\pi 6^4$ {[301]1/2}⁻² v7¹ configuration. The ¹⁴⁹Gd(9,10,11,13) bands have $J^{(2)}$ moments very close to each other and similar to that of ¹⁴⁸Gd(l) band; these data indicate single neutron excitations from the ¹⁴⁹Gd core into orbitals with no significant alignments. The $J^{(2)}$ moment of ¹⁴⁹Gd(12) based on a two neutron excitation displays a similar bump as those above-mentioned. It is noteworthy, that all these bumps are similar and located at the same rotational frequencies, suggesting that changes in mass, deformation and/or alignment are weak or act in a compensatory manner.

References:

- 1. G. de Angelis et al., Phys. Rev. C53 (1996) 679;
- 2. S. Flibotte et al., Nucl. Phys. A584 (1995) 373;
- 3. T. Rząca-Urban et al., Phys. Lett. B356 (1995) 456;
- 4. K. Zuber et al., Phys. Lett. B254 (1991) 308;
- 5. Ch. Theisen et at., Phys. Rev. C54 (1996) 2910;
- 6. P. Fallon et al., Phys. Rev. C52 (1995) 93.