

PL0002362

Quadrupole Moment of Superdeformed Bands in ¹⁵¹Tb

Ch. Finck¹, O. Stezowski¹, K. Zuber¹, F.A. Beck¹, D. Appelbe³, T. Byrski¹, S. Courtin¹, D. Cullen³,

D. Curien¹, G. de France¹, G. Duchene¹, S. Ertürk³, B. Gall¹, U. Garg², B. Haas¹, N. Khadiri¹, B. Kharraja^{2,4}, N. Kintz¹, A. Nourreddine^{1,4}, D. Prevost¹, C. Rigollet^{5,1}, H. Savajols¹,

 D_{1} The (a^{3}, b) is the b^{3} in the b^{3} is the b^{3}

P.J. Twin³, and J.P. Vivien¹

¹ Institut de Recherches Subatomiques et Universite Louis Pasteur, Strasbourg, France; ² University of Notre Dame, Notre Dame, IN, USA; ³ University of Liverpool, Liverpool, United Kingdom; ⁴ Departement of Physics, University Chouaib Doukkali, El Jadida, Morocco; ⁵ National Accelerator Center, Faure, South Africa

The quadrupole moments of the first two superdeformed (SD) bands (B1 and B2) in the ¹⁵¹Tb nucleus have been measured with the Doppler Shift Attenuation Method (DSAM) using the EUROGAM II γ -ray spectrometer. The first excited band (B2) is identical to the yrast SD band of ¹⁵²Dy in terms of dynamical moments of inertia and γ -ray energies. It was assigned to a proton excitation from the level π [301]- into the intruder orbital N = 6 leading to the same intruder configuration as for ¹⁵²Dy SD yrast. The experiment has been performed at the Vivitron accelerator at the Institut de Recherches Subatomiques in Strasbourg. Superdeformed states in ¹⁵¹Tb were populated through the ¹³⁰Te (²⁷Al, 6n) fusion-evaporation reaction at an incident beam energy of 152 MeV. The target consisted of 1 mg/cm² of ¹³⁰Te on a 15 mg/cm² of gold. To prevent sublimation of the target material under beam bombardment, a thin gold layer (60 µg/cm²) was evaporated on the tellurium. Furthermore, to avoid migration of tellurium material into the gold backing, an aluminium layer (36 µg/cm²) was evaporated between the target and the backing. Gamma-ray events in coincidence were recorded whenever at least 7 detectors (Compton unsuppressed) were fired. A total of 8 x 10⁸ events (M_{γ} \geq 3) have been collected for this DSAM lifetime measurement.

The deduced electric quadrupole moments for band BI and B2 are $Q_0 = 17.2 \pm 0.7 \ eb$ and $Q_0 \ 18.4 \pm 0.8 \ eb$ respectively. The quoted errors include the statistical uncertainties as well as the spread in the initial velocity of the recoiling ions due to neutron evaporation. Using results of the cranked Hartree-Fock calculations with the Skyrme parametrizations SkM^* and SkP [1], the electric quadrupole moments have been calculated using particle-hole excitations with respect to a ¹⁵²Dy core. The experimental relative values for bands B1 and B2: $\delta Q_0^{exp} = Q_0^{exp} (B2) - Q_0^{exp} (B1) = 1.2 \pm 0.9 \ eb$, free from the stopping power uncertainties, is well-reproduced by Hartree-Fock calculations Q_0^{cal} 1.13 eb [1]. At first we have assumed a constant value for Q_0 within the band B1. However a better χ^2 is obtained for band B1 if one allows a variation in Q_0 for the SD states involved in the deexcitation of the band. In this case the two last states of band B1 contributing to the decay-out have reduced experimental Q_0 values of $15 \pm 1 \ eb$ and $12 \pm 2 \ eb$ respectively. The sudden decay-out of SD bands could be explain by the admixture of normal deformed (IND >) and SD (ISD >) wave functions [2]. The admixture coefficient of ND wave function in the SD wave function of the last SD state, deduced from the lifetime value for band 1 (B1), is $\alpha^2_{ND} = 18 \pm 6\%$.

References:

- 1. W. Satuła et al., Phys. Rev. Lett. 77 (1996) 5182;
- 2. E. Vigezzi et al., Phys. Lett. B249 (1990) 163.