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Abstract:

With Wigner's SU(4) supermultiplet symmetry [and its generalization to pseudo-

SU(4)] as a starting point, a boson-model space is constructed that includes T = 0 as well as

T = 1 bosons (IBM-4). The boson Hamiltonian is derived microscopically from a realistic

shell-model interaction through a mapping that relies on the existence of approximate shell-

model symmetries. Applications are presented for odd-odd N = Z nuclei from HCii^g to

70

PACS Numbers : 21.60.Fw, 21.60.Cs, 21.60.Ev
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The Interacting Boson Model (IBM) of Arima and Iachello [1] has achieved an

impressive success in the phenomenological description of collective motion in the medium-

mass and heavy even-even nuclei at low excitation energies. Originally, this approach makes

use of a U(6) spectrum generating algebra to quantify the five-dimensional motion of a liquid

drop with vibrational and rotational excitations. The explicit realization involves two kinds of

bosons bjm carrying angular momentum j = 0,2, to which later a microscopic interpretation

was given in terms of correlated pairs of nucleons [2]. Away from stability, an extension of

the model, which would involve a limited number of parameters that can be derived from

nucleon degrees of freedom and which would be rich enough to be realistic, is of course

highly desirable. The purpose of this Letter is precisely to present a first step in this direction

concerning exotic nuclei with roughly equal numbers of neutrons and protons. These systems

are currently the object of intense experimental and theoretical study because of the

possibility that they might exhibit new collective behaviors induced by the neutron-proton

exchange symmetry. In particular, they are the only nuclei that might display some evidence

for an isoscalar superfluidity characterized by proton-neutron Cooper pairs with total spin

5 = 1. From a theoretical point of view, many frameworks have in fact already been

developed to investigate the structure of heavy N ~ Z nuclei. For example, variational

approximations (like BCS or HFB), have been extended to include both 7 = 1 and T = 0

pairing correlations [3]. However, schematic models seem to show that the validity of this

mean-field approach along the N = Z line is limited by the lack of particle-number projection

[4], Shell-model calculations have also been performed either by a direct diagonalization [5]

of the effective hamiltonian or by using Monte-Carlo techniques at non-zero temperature [6].

In the first case, however, it is not possible to deal with large numbers of nucleons in a big

space whereas non-negligible uncertainties are generated in the second method by the use of

an extrapolation procedure to avoid sign problems. Nevertheless, an alternative approach,
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called QMCD and proposed by Otsuka & al [7], seems to be in a position to obtain detailed

spectroscopy of all the N = Z nuclei of the 28-50 shell, even if applications to odd-odd

systems have not been done at present. The work reported here represents a first step towards

the use of the isospin invariant interacting boson model IBM-4 in a detailed spectroscopic

analysis of exotic N ~ Z nuclei in the pf5ng9ll space with the aim to develop an alternative

to shell model or mean-field approximations that is simpler and computationally less

intensive. Simultaneously, the microscopic foundation of a boson calculation in this mass

region is investigated by the derivation of the hamiltonian from a realistic shell model

interaction through a mapping that relies on the existence of appproximate fermionic

symmetries.

The IBM-4 [8], the most elaborate version of the interacting boson model, describes

each nucleus as a symmetric representation of the unitary spectrum generating algebra C/(36).

The bosons are labeled by an orbital angular momentum / = 0,2, and by an intrinsic spin s

and an isospin t for which only the combinations (s,t) = (0,1) and (s,t) = (1,0) are retained.

The rationale behind this choice is that for two nucleons in the same harmonic oscillator shell

interacting via a delta force and without spin-orbit coupling, the low-energy eigenstates will

be characterized by (L,S,T) quantum numbers identical to those of the IBM-4 bosons.

Another justification is provided by the existence of a classification of IBM-4 states which

contains an SU(4) algebra that can be connected to Wigner's supermultiplet algebra [9] that

is known to have physical significance in light nuclei. A crucial aspect of the IBM-4 is that it

does not require an exact or even an approximate validity of the fermionic (L,S) coupling

scheme : if the shell-model effective hamiltonian favours two-nucleon correlations in (/, T)

channels which are contained in IBM-4, one can use this boson approximation even if an

important spin-orbit coupling breaks the (L,S) labeling. In this case, the / and s quantum

numbers associated with a single boson should be thought of as effective labels in the shell
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model which acquire an exact significance only in the boson space. This, for example, occurs

just beyond 2gM2g where the active orbits are (py2^/5/2^1/2^89/2)- Using a realistic G-matrix

interaction for this valence space and after a phenomenological adjustment of the monopole

part [10], the two-nucleon states a,J,Mj,T,MT)F of table 1 can be found. The six first levels

have a total angular momentum J and an isospin T that correspond to those of the IBM-4

and so a connection between these two-fermion eigenstates and the bosons can be

established :

a,J,Mj,T,MT)F**\ lasaJ = J>mj =Mj,t=T,m, =MT)B , (1)

where la and sa are arbitrarily chosen among the values allowed in IBM-4 since the (L,S)

classification is badly broken by the strong spin-orbit term in the nuclear mean field.

With the mapping (1), the one-body boson hamiltonian can be determined with the

usual OAI procedure [11] which consists in the calculation of the matrix elements of the shell-

model hamiltonian between orthogonal fermionic images of the boson states. In the present

case, only diagonal values, identical to the energies of the collective pairs a,J,Mj,T,MT)F,

are obtained. The determination of the two-body part of the boson hamiltonian is considerably

more involved. It is nevertheless possible to adopt a simple solution using two-pair states with

good total JMj TMT quantum numbers. Such vectors | |a,7,^ ; (X2J2T2 ; JM} TMT)^ are in

fact non-orthogonal in the labels axJxTx ; oc2J2T2 because of Pauli effects induced by the

internal structure of the pairs. In contrast, the boson analogue vectors

lat
saj\ ?i ' la^aji h '•> ^J TMT\ form an orthonormal basis and so a correspondence can

only be established after having applied an orthonormalization operator O in the fermionic

space :

0 lla.7,7; ; a2J2T2 ; JM} TMT))p ** | l^sj, r, ; lUisaJ212 ; JM} TMT)g (2)
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As pointed out by Ginocchio and Johnson [12], the choice of this orthogonalization procedure

is crucial since it decides whether two-body interactions between the bosons provide an

adequate mapping or whether, instead, higher-order interactions are needed. In the case of the

j - j basis used here, there are so many possible ways to order the states that a Gram-Schmidt

method is not unambiguous and only the use of the overlap matrix eigensystem (a so-called

'democratic' mapping [13]) remains. Unfortunately, direct application of this algorithm gives

an IBM-4 hamiltonian whose spectroscopy is very poor compared to the fermionic results :

for example, the ground state of f{GaM is isoscalar whereas it is isovector in the experimental

spectra and in the pf5ng9i2 shell-model calculation [14].

To obtain a more valid mapping procedure, an elegant solution can be proposed using

the approximate pseudo- SU(4) shell-model symmetry which has been found to be relevant at

the beginning of the 28-50 shell [15]. In such an approach, shell-model states in the pf5l2g9ll

space only involve correlations between the three orbits {pii2,f5!2'P\ii) which are treated as a

pseudo-sd shell (^3/2^5/2,5"1/2). In addition, the pseudo-SU(A) classification implies a

labeling by the total pseudo-orbital angular momentum L, the total pseudo-spin S and by an

irreducible representation (A/xv) of the pseudo-spin isospin algebra SU{4) in direct analogy

with Wigner's supermultiplet model [9]. To illustrate the validity of this scheme in nuclei of

mass A ~ 60, some results of Ref [15] have been reported in table 1 concerning the pseudo-

SU{A) decomposition of the realistic wavefunctions \a,J,Mj,T,MT)F of two nucleons in the

space. It is seen that all lowest states have small g9n admixtures and that they carry

a large component in a subspace (AaJuava) La Sa with (AaJuava) s(010). Therefore, each of

them can be associated to a pseudo-SU(4) vector \a,JMj,TMT) = \(0l0)LaSa,JMj,TMT} in

such a way that its structure is as close as possible to the realistic state. The main advantage of

these new collective pairs is their aptitude to be coupled to good total [Xjiv)L S JM}TMT
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quantum numbers by diagonalizing a linear combination of Casimir operators

C2[Sf7Jr(4)j,Z?,52,72 in each uncoupled subspace spanned by all the vectors

^ with fixed LaLai values. The

basis thus obtained can be denoted as :

p £ ) LS ;JMj TM,)) (3)

and it has the nice property to be orthogonal in all labels except LaiLa,. In the present

application, it is important to specify that the construction of the basis (3) implies the use of a

set of pseudo- SU(4) pairs that is larger than those associated with the six first states that are

mapped to IBM-4. Since these realistic levels contains correlations in the La= 0,2,4

channels, we can only define the two-pair pseudo-517(4) basis (3) if we consider all the

allowed vectors (010)LaSa,JMj,TMT\ for which, in particular, (Sa»r) can have either the

values (0,1) or (1,0). In the boson space, a basis similar to (3) can be constructed through

known coupling coefficients, as those for SUST(4)=> SUS{2)® SUT(2) [16], immediately

leading to an orthonormal set:

~ , / ( 0 1 0 ) (010)

1 v 7 t • 1 Y 7 t • 1M TM ) (4)

where z = V2z + 1 . As a consequence, if we were dealing with bosons associated with the

perfect pseudo- SU(4) pairs, an efficient mapping algorithm would be established by the

correspondence between the boson basis (4) and its fermionic image (3) orthogonalized by an

operator O only in La Ltti :
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O ; JM, TMT ltti ltti; LS;JMj TMT (5)

with la> =Lai,la, = La^,(X/J.V) = (%nv\L = L and S = S. The mapping (5) exploits the

existence of shell-model symmetries to reduce the non-orthogonality problem of two-pair

states. However, the procedure should be modified to cope with realistic pairs where a

pseudo- SU(4) classification is only approximate and where the gg/2 orbit plays a role. This

can be achieved by rewriting the mapping (5) in jj coupling. Technically, it involves

inverting the relation (4) between LS and jj coupled bosons, applying the mapping (5), and

subsequently relating two-pair states in LS coupling with those in jj coupling. Note that

these jj coupled vectors are built from two pseudo- SU{4) pairs aJT and orthonormalized in

a democratic way from the overlap matrix leading to an orthonormalization operator OD. The

resulting mapping establishes a correspondence between jj coupled two-pair and two-boson

states and is exactly equivalent to (5) in case of pseudo- SU(4) symmetry. The generalization

to approximate pseudo-517(4) symmetry in the pf5ng9n space can now be readily achieved

by assuming that the matrix transformation between the jj boson basis and its fermionic

image remains valid when the IBM-4 bosons are associated with the realistic pairs. This

hypothesis then leads to the following mapping between two-boson and four-fermions states :

/ ? i t • l <; i t - TM T M \
t*i IX] J I 1 7 (X"i W T ' - — J 'ID

I 1 2 I g

•a La, L

Sai 5a, S

h h J
(Xfiv) LS \ Of, 1 0f2 J ST

JM, TMT\\ 01 O L S ;JMj TMT

; a4JJ4 ; JMS TMT (6)
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It is important to realize that the fermionic labels La Sa are not now necessarily identical to

the intrinsic quantum numbers lasa of the single bosons. For example, the IBM-4 boson

la = 2,sa = \,j = 3,t = 0 is associated with the two-nucleon level \a = 1,7 = 3,T = 0)F which

is in fact related to a pseudo- SU(4) pair with La = 4 and 5a = 1. To be complete, we have

again to specify the orthonormalization process O of the pseudo- SU(4) basis (3) in the labels

LOj La^. In the work reported here, a Gram-Schmidt procedure has been adopted with an order

dictated by seniority as in the OAI mapping [11] where the states are orthogonalized with

respect to those with a higher number of pairs characterized by La = 0. Moreover, if for a

given seniority several states exist, the remaining non-orthogonality is democratically

removed by a diagonalization of the overlap matrix. Once the correspondence (6) is

established, the two-boson matrix elements of the hamiltonian can be determined by the usual

procedure of equating them to their fermionic equivalent. After subtraction of the one-body

contribution, the two-body boson interaction is finally obtained.

If the orthogonalization ordering has been properly chosen, no higher-order boson

interactions are needed and one can then make predictions for systems with boson number

N > 2. Satisfactory results are obtained in this way but the density of levels generally is

somewhat low as compared with that in the shell model. This is a truncation effect and can, in

principle, be remedied by a renormalization of the hamiltonian due to non-bosonized pair

degrees of freedom. Instead of a fully microscopic renormalization, which in the case of IBM-

4 is exceedingly difficult, a simple scaling of the entire hamiltonian is adopted here which

reproduces the 0+ - 2+ splitting (as obtained in the shell model) in the two-boson nucleus

60Zn. To carry out these calculations, a computer code has been written [17] that diagonalizes

a general IBM-4 hamiltonian with one-boson energies and two-boson interactions.
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The first test of the IBM-4 Hamiltonian thus derived is the three-boson nucleus fxGa^.

Figure 1 shows the known experimental levels [14] together with the shell-model [14] and the

IBM-4 results. Both shell model and IBM-4 predict a 0+(I = 1) ground state and a i + ( I = 0)

first-excited state. Note that this represents an inversion with respect to the order in 2
5
9
8Cw29

(Table 1) which agrees with the data. Given that no free parameter is introduced in the IBM-4

calculation, the agreement for the isoscalar levels between shell-model and IBM-4 can be

called remarkable and a near one-to-one correspondence between levels can be established,

the exceptions being higher-spin (5+ to 7+) shell-model states which are absent from the

IBM-4 because it does not include high-spin T = 0 bosons. Note also a low-lying 0+ state in

the IBM-4 calculation which, since the shell-model counterpart is much higher in energy,

might have an important spurious component. Experimentally, excited states in 62Ga were

located for the first time very recently [14] in an experiment which populated the nucleus

through a fusion-evaporation reaction. However, this type of study of the N-Z nuclei in this

region is difficult, requiring high experimental sensitivity, and yields information only on the

yrast structure. The vast majority of T = 0 states predicted by the shell-model or IBM-4

calculations thus remain to be verified.

A similar situation applies to 66As although in this case, the experimental population

was via isomeric states [18]. Only a few states have been identified and without unique spin

assigments. Excited states have also been populated in 10Br [19], which are thought to be

built on the known 2.2 sec. isomer, rather than the ground state. However, the excitation

energy of the isomeric state is unknown. Thus, a meaningful comparison with the IBM-4

results of Figure 2 is not currently possible for these two nuclei.

Turning now to the T = 1 states, in fxGaM, one notes more levels in experiment and

the shell-model as compared to the IBM-4. This deviation grows in the heavier nuclei 66As

and 10Br where the T=l energies can be taken from the experimental level schemes of the
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isobaric analogues of 66Ge and 10Se. In particular, one notes the absence from IBM-4 of a

second 2+ level at the observed experimental energy (Ex ~2 MeV). In a corresponding IBM-

3 analysis (which is feasible for the 7 = 1 subspace of N = Z nuclei) this state is correctly

reproduced but only after allowing a microscopically dictated boson-number dependence of

the Hamiltonian. This deficiency of the current calculation for isovector states can thus

presumably be traced back to the constancy of the boson hamiltonian for all nuclei shown and

indicates the need to derive a boson-number dependence in IBM-4 also.

The present results illustrate the predictive power of the IBM-4. In particular, the

Q+(T = 1) - l+(r = 0) splitting is correctly reproduced in the known cases, HCu^ and ^Ga3l,

and is predicted to be about 1 MeV in 66As and 1.25 MeV in 70Br where it is not well

established experimentally and where a shell-model calculation is currently not possible.

Another result from the present formalism is that an idea of the pair structure of nuclear states

can be readily obtained by computing boson-number expectation values in the IBM-4

eigenstates. This is illustrated in Figure 3 where the proportion of isoscalar bosons in the total

number of bosons is plotted for various states in the three odd-odd N = Z nuclei discussed

above. The most noteworthy feature is the decrease of this proportion in the T = 0 states as

the number of bosons increases. Qualitatively, this decrease can be understood from the

corresponding fraction in a simple IBM-4 model with only s bosons where it is given by

(5N + 3)/SN in the SU(4) limit [20].

A much higher density of T = 0 states is predicted than observed experimentally in the

cases where data exists. As pointed out earlier, this does not represent a deficiency in the

calculation but rather a limitation of the experimental techniques currently used to access

nuclei on the N = Z line. Note that this limitation is two-fold. It stems not only from the high

sensitivity required but also from the nature of the reactions used to populate the nuclei of

interest, which yield information only on the yrast structure. To really probe the validity of the
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predicted 7 = 0 structure of these odd-odd nuclei will require the use of a variety of less

selective techniques which will only become feasible with the advent of radioactive beams

which permit reactions to be studied in inverse kinematics. The results presented here thus

pose a challenge for the coming generation of new radioactive beam facilities.
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Table 1

Shell-model analysis of the proton-neutron system in the pf5i2g<)n_ shell

Energy level

0

0.52971

0.60002

1.28587

1.44767

2.0335

2.20414

2.3487

2.47888

2.6003

2.77479

Labels a,J,T)F

a = \,J = \,T = 0

a = 1,7 = 0,7 = 1

a = 1,7 = 3,7 = 0

a = 2,7 = 1,7 = 0

a = l,7 = 2,7 = 0

a = l,7 = 2,7 = l

a = 2,7 = 3,7 = 0

a = 1,7 = 4,7 = 0

a = 1,7 = 5,7 = 0

a = 2,7 = 2,7 = 0

a = 1,7 = 4,7 = 1

Pseudo-labels

associated

(616)1 = 2,5=1

(616)1 = 0,5 = 1

(0T0)I = 4,5 = 1

(010)1 = 1,5=0

(0T0)I = 2,5=1

(016)1 = 2,5=0

(0T0)I = 2,5 = 1

(016)1 = 4,5 = 1

(616)1 = 4,5 = 1

(010)L = 2,5 = 1

(010)L = 4 , 5 = 0

Occupation of the
g9l2 orbit (%)

0.846

8.55

0.259

1.015

~0

1.232

0.161

~ 0

0.072

~o
0.5015
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Figure 2

Spectra of 66As and 70Br predicted in IBM-4
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Figure 3

Pair structure of N = Z odd-odd nuclei
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