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Abstract

Hydrogen atom - hydrogen atom scattering is a prototype for many of the
fundamental principles of atomic collisions. In this work we present the formalism
and the predictions of a time-dependent self-consistent-field description of the H+H
system for scattering in the intermediate energy regime of 1 to 100 keV. Because of
the unrestricted nature of the numerical orbital description, this method includes the
effects of an unlimited basis set within each orbital. Electron exchange and a limited
amount of electron correlation are included as well. We numerically solve coupled
3D Schroedinger equations for the two electron orbitals in singlet and triplet
symmetries. Excitation and ionization cross sections are computed and compared to
other theory and experiment. The results capture many features of the problem but
illustrate a need for more quantitative experimental information about the H+H system
in this energy range.
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I. Introduction
The collision of two hydrogen atoms is a basic problem in atomic physics that

deserves attention in order to quantify the dynamics. Not only is it difficult to do
experimental studies of neutral atomic collisions in the energy region of interest, the
theoretical description is complicated by many features that are still being explored,
not only for the H+H problem, but for atomic collisions in general. Within the
framework of the impact parameter approximation, which is an adequate description
of the nuclear motion is this energy range, H+H scattering is complicated by many of
the more difficult aspects of quantum scattering. Among these are inelastic excitation,
electron exchange symmetry, multichannel rearrangement of particles, channel-state
translation factors, transitions to the continuum (ionization), electron correlation, and
varying degrees of adiabatic behavior of the electrons.

In this work we solve a self-consistent-field (SCF) description of the H+H
system for scattering in the intermediate energy regime of 1 to 100 keV where most of
the inelastic processes occur. This energy range corresponds to a relative velocity
range of 0.2 to 2 atomic units. In our theoretical description, basis-set limitations are
not an issue for the representation of the electron orbitals. By solving the
Schroedinger equation in space and time our calculation allows the electrons to
undergo excitation and ionization without the constraints of an atom-centered atomic
or molecular basis set. The limitation is of course the time-dependent SCF
approximation for the two electrons. In general we will compare our study with what
we regard as the most accurate of the available experimental and theoretical data.
Notable among the existing theoretical studies of H+H are the recent calculations of
Hansen and Dubois (1998) and Wang, Hansen, and Dubois (2000). These studies use
a large atomic basis set to obtain nearly convergent results for excitation and charge
transfer.

Unfortunately the state of the experimental data is such that some discrepancies
between our SCF approximation and other accurate theory cannot be appraised. In
some cases, there would appear to be the necessity of additional experiments in order
to resolve excitation cross sections.

II. Theoretical Approach
The time dependent Schroedinger equation (TDSE) for the scattering of H on

H in the impact parameter approximation is written in Hartree atomic units as:
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We use the circumflex to denote a quantity containing a differential operator.
Electron coordinates are denoted by f[ or 1 for example. The nuclear coordinates are

prescribed functions of time, which are assumed to be simple rectilinear motion
specified by an impact parameter b and the relative velocity. The time variable is
implicit in the wave function. The partial derivative with respect to time is taken at
fixed electron coordinates in a coordinate system whose reference frame is the nuclear
geometric center. The position of this reference system is immaterial for the solution,
since a change in reference frame produces only a global phase change in the total
wave function (Riley, 1973). The Pauli principle must be imposed on the solution,
which requires y/~ (1,2) = ±y/~ (2,1) for the singlet or triplet symmetry. Singlet and

triplet solutions must be combined to simulate collisional events.
Our approximation for the solution is to invoke a symmetrized product form for

the wave function:

W± (1,2) - <p? (1) 0* (2) ± <pi (1) <pf (2) , (2)

where the individual orbitals (pf are completely unrestricted in space and time

dependence. Our justification for making this approximation is to move from a six-
dimensional coordinate space for the two electrons to two three-dimensional spaces.
One notes that this form allows an exact incorporation of electron exchange symmetry
and electron correlation in the sense of bonding. Some obvious consequences of this
approximation are that we cannot reliably predict double excitation events or atomic
correlation of electrons. This trial form could be systematically generalized by
including additional product terms. An alternative approach for some systems such as
H on H is to use the unsymmetrized trial substitution,

(3)



and to use linear superposition with another independent solution of the same form to
generate singlet and triplet symmetry. This is permissible since the exchange operator
commutes with the Hamiltonian. The equations of motion (EOM) for the latter
method are significantly simpler than those derived from the first ansatz. The
solutions are not identical because the EOM for the individual electron orbitals, (j)L,

are highly nonlinear due to the self-consistent fields. The first symmetrized ansatz is
of superior quality. Consider the united-atom states of ground singlet and triplet
symmetry resulting from a slow adiabatic collision. These two states would be
generated from the same orbitals if one uses the unsymmetrized trial product. This is
a gross approximation at lower energies.

The notational time dependence of the wave functions and orbitals will be
suppressed, as will be the ± label on all quantities except where necessary. The EOM
for the electrons is found by requiring the TDSE solution to be stationary with respect
to arbitrary variations of this trial form. This is equivalent to a one-electron projection
of each of the two orbitals onto equation (1). It is convenient to introduce a 2 by 2
matrix representation based on the one-electron orbitals. This has the properties:

(2) + ^ 2 ( l ) f t ( 2 ) E E O T ( l ) P ± O ( 2 ) ,

T • - W

Superscript T denotes the matrix transpose, and vectors and matrices are written in
boldface. This form of the product wave function is just as general as the form in
which the matrix P± is any time-dependent matrix with transpose symmetry. The 2 by

2 overlap, derivative, and Hamiltonian matrices of the orbitals are defined as follows,
where the bracket notation denotes a one-electron integration:

S= D = , H(r) =
(5)

H(r) = H° + S H° (r) + V1 (r).

These are all time dependent, of course. The resulting coupled EOM that are derived
from projection with the two orbitals may be written compactly as

(6)



or, if we define the matrices with the symmetrization explicitly included within the

coupling matrices:

+ + + ,

" (7)
M±=P/MP± , M = S,D,orH.

These coupled non-linear time-dependent partial differential equations (PDE) are the
EOM for solving the scattering problem. The dependent variables are the two 3D
orbitals. The EOM are essentially ready to use except that part of the time derivative
of the orbitals is still buried under the space integration within the D matrix. This is a
practical difficulty for the use of a numerical propagation scheme for integrating the
PDE's. We will show how to solve for the D matrices algebraically and eliminate the
problem.

The normalization of the wave function is:

N = {y/\Vs) = 2(SnS22±Sl2S21) . (8)

From a further projection of the orbitals on the EOM in equations (6) and (7), we can
deduce the algebraic relation, for both the singlet and triplet,

•^11 ^22 + ^11 ^ 2 2 — ™12 ^21 — ̂ 12 ̂ 2 1 = ~~ * ("12,21 — "12 ,12) '

HijM =jd3r2<f)i\2)\d3rl(f)j\l)H<pk(l) ^ (2 ) .

The following symmetry relations hold for the Htjkl elements:

Hij,kk~Hji,kk ' (10)

For the singlet, there are two additional relations to be derived by one-electron orbital
projection onto the EOM as written in (6) or (7):
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which will be used later to solve for the D matrix. Note that we have an undetermined
set of algebraic equations for the D^ at the moment (3 equations and 4 unknowns).

It is important to know the conditions for invariance of the EOM to linear time-
dependent transformations. If we carry out a linear time-dependent transformation
L(f) among the orbitals,

<E>=L(f)X (12)

then it can be shown using equation (4) that \jf and the EOM for the new orbitals X

are identical to \j/ and the EOM for the old orbitals <E> if

L r P ± L = P± , (13)

which will be true if and only if det(L) = 1 for the singlet and triplet, and if L is
diagonal (or off-diagonal) for the singlet. Thus the triplet EOM is invariant to any

time-dependent unitary transformation, but the singlet is not.
We can completely eliminate D from the triplet EOM as follows: let a unitary L

solve:

L = D j L (14)

where the D ^ notation indicates that the derivative matrix defined in equation (4) is

evaluated in the old basis. This may be shown to allow us to set, in the new or

transformed basis X:

S x = l , D x = 0 (15)

The EOM in the new basis are written:

i X = H + X , (16)



which is simple in form once the Hamiltonian matrix is decomposed into the kinetic
and potential terms as written above. One notes that this is the same as requiring the
basis orbitals to be orthogonal and having a zero D matrix. We must now solve for
the singlet D relations, which is done by finding a new permissible relation among the
elements afforded by the freedom in the singlet linear transformation.

We need one more equation in singlet symmetry involving the elements of D in
order to be able to solve for them directly. In fact it is not difficult to show that we
can introduce a diagonal phase matrix for an orbital transform defined as in equation
(12) L(?) that enables us to set:

Ddd=Dn=D22 (17)

which from the differential identity, S = D + D1", shows that we can set, for all time:

The three algebraic equations for the D elements are collected from equations (9) and
(11) with equations (17) and (18) incorporated:

S2iDdd+ SddD2l =-iH22ai, (19)

Sntyd + $dd A 2 = ~~z'̂ 11,21 •

If we eliminate Ddd from equation (19) we can solve for Dl2 and D2l from the

resulting two simultaneous equations. Define:

D = A ,

(20)
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so that the solution is given by:



A B)Du)=
 E

c D){D21) IF)'
Dn=(DE-BF)/A, (21)

D2l = (AF-CE)/A,

A = AD- BC = 4S2
dd(S

2
dd -SnS21).

Ddd can now be found from the first equation in the set above:

Ddd = ~ (i(ffi?I2i + #12,12) + S2lDu + Sl2 D2l) I 2Sdd . (22)

This completes the determination of D from the other matrices and affords the
integration of the singlet coupled PDE's as an explicit set of EOM. The triplet EOM
are already in convenient form once we take advantage of the invariance to an
arbitrary unitary transformation.

The initial condition for the electrons is that of Is orbitals on the two identical
nuclei. In this case, we could make use of inversion symmetry in the Hamiltonian. In
fact the wave function must preserve the inversion symmetry of the initial state which
implies for our approximation (equation (2)):

if the coordinates are measured from the geometric center of the nuclei. We will not
make use of this, however, as the generality of the formalism is lost.

The cross sections are evaluated in the usual way from the probabilities as a
function of impact parameter b. The probabilities are evaluated by projection onto the
channel states, including translation factors as appropriate, after the time-dependent
collision is completed:

Pf(b)=(tf

7 (24)
<jf=2n)bdbPf(b) .



However the ionization cross section is evaluated from the loss of normalization of the
wave function during the collision:

af=2njbdb(l-N(b)) . (25)

This loss is due to the absorption by the optical potential, which can contain
absorption from highly excited bound states of the reaction products.

The form of the channel states is that of atomic excitations including
translation factors and exchange symmetrization. We do not include the H' state as it
is not bound in our approximation. In terms of the H atomic orbitals (pt, a channel

state is given by:

(26)

where the (f)i contain the translation factor appropriate for center C:

0f(f) = exp(ivc • r) <pf(r) (27)

Only the space-dependent part is given above. The amplitudes and probabilities are
obtained by projection of the total wave function onto the channel states.

III. The ISOP Method for Numerical Propagation
The numerical method we use is based on an implicit split operator procedure

(ISOP), (Ritchie, et al 1997) for solving the three-dimensional TDSE using fast
Fourier transforms (FFT). This has been applied to alpha particle scattering on H
(Riley and Ritchie, 1999 Phys. Rev. A) and a one-electron approximation to H on H
scattering (Riley and Ritchie, 1999 J. Phys. B). The advantages of a fully numerical
procedure are that no subjective basis restrictions are built into the solution and that
translation factors are not needed except in channel state analysis. The disadvantages
are that the computational zone (the "box") must be large to contain excited
coulombic states and that absorptive boundary conditions must be imposed to allow
for a proper treatment of ionization. We develop this quickly for a coupled pair of
TDSE of the form developed in the previous section for the SCF problem. We rewrite
the EOM in 2 by 2 matrix notation:



An explicit propagation procedure could be implemented as this stands. The EOM for
the triplet spin state can be written without the S and D matrices and the singlet will
utilize the algebraic solution for the D matrix. However experience has taught us that
an implicit method is much better to propagate the Schroedinger solution, and that is
given by the ISOP. We begin by writing down the second-order-accurate, time-
symmetric form of the finite difference advance of the matrix EOM for equation (7),
analogous to the Crank-Nicolson procedure:

The procedure is correct through order {dt) . What is desired is to split the space and

momentum parts of the Hamiltonian (Feit, et al, 1982) to enable the use of the fast

Fourier transform (FFT) as in the scalar ISOP. We regroup the terms in the

coefficients of the orbitals:

(30)

This is factored approximately:

'l-UTdA
-ril dt j { I + -T1I at.)
4 / V 4 JV

Mtop=S±-±idtN, Mbot=S±+±idtN, (31)
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The outside kinetic energy operators are diagonal in momentum space as well as in the
2 by 2 orbital representation. The time in the central factor, which contains all the
space dependent operators, is taken to be at the midpoint of the interval rather than the

present and advanced times. The 2 by 2 inverse must be computed at each space point
in the central factor. The order of the M.top and Mbot factors can be shown to be

immaterial.

The advantage of this factorization is that the operator is now a product of
momentum and coordinate dependencies which allows the FFT procedure to be used
with only 2 by 2 operators applied to the very large solution vector, which typically is
many millions of words in length. This is a simple process. Beginning with the wave
function in the coordinate representation, one Fourier transforms to momentum space,
multiplies by the above Cayley fraction containing the kinetic energy operator, reverse
transforms, multiplies by the matrix fraction containing the potential, forward
transforms to momentum space again, and applies the kinetic energy fraction again.
The sequence is repeated until the end of the time evolution. This is the implicit split
operator procedure (ISOP).

The calculations presented here typically use a representation of 80x80x240
grid points for (pt in a box of dimension 24x24x72 in Bohr atomic units for the singlet

symmetry. For the triplet symmetry, we use 96x96x320 grid points in a box of
30x30x100 atomic units. The reason for the difference will be explained shortly. The
interior walls of the box were "coated" with an absorptive optical potential (Kulander,
1987) whose profile was a half-Gaussian 0.9 Bohr in thickness with a strength
coefficient of 2.0. The box size must be large enough that significant absorption does
not occur for any channel states of interest. The optical potential must be strong
enough and smooth enough not to allow significant reflection. The time increment
was typically 0.05 or 0.1 atomic unit. The collision length in z, the coordinate parallel
to the relative velocity vector, must be chosen to achieve channel decoupling. In the
coordinate frame located at the geometric center, the starting and stopping points in z
were typically -15 to 25 and 15 to -25 Bohr for the two nuclei. All these numerical
conditions were developed from exploratory calculations. In pursuing a numerical
solution of the TDSE in partial differential equation form by purely numerical means,
one must realize that we are trading the numerically precise, basis-defined, accuracy
of an expansion method for the more loosely defined numerical accuracy and stability
of the finite difference methods.

n



III. Cross Sections for 2s and 2p Excitation and Ionization - Comparison with
Experimental Data

Excitation of the 2s and 2p atomic states has a long history of investigation
beginning with the Born calculations of Bates and Griffing (1954). In Figure 1 we
compare our results for the excitation cross section of the projectile to the 2s state with
experiment and recent theory. The two sets of experimental measurements do not
agree well at less than 10 keV so we do not have a benchmark there. The recent
calculations of Hansen and Dubois (1998) are those which include "total excitation"
(te) of the other center. The Hansen and Dubois calculations agree best with the
Morgan, Stone, and Mayo (1980) data. We do not show the 22 state per center
calculations of Shingal, Bransden, and Flower (1989), which, with the Born correction
at higher energy, tend to overestimate the experimental data. A comparison with that
work is shown in the Hansen and Dubois study. Our calculation agrees best with the
Hill, Geddes, and Gilbody (1979) measurements over the whole energy range, but we
are slightly low on the higher energy side.

The experimental measurements of Morgan, Geddes, and Gilbody (1974) and
the most recent of the theoretical predictions for excitation of the 2p level are shown
in Figure 2. The agreement is not especially good. Our results are in fair agreement
with the experimental data above 4 keV, but the overall shape is not satisfactory. The
Hansen and Dubois results are high up to 15 keV. The Hansen and Dubois results as
well as those of ours would seem to be capable of describing the low energy region
accurately, and, if so, indicate that the experimental results may be in error there. The
shape of the experimental data shows a decrease in cross section in the 4 to 10 keV
region that is not shown by either of the theories. The study of Borondo, Martin, and
Yanez (1970) using a molecular basis with common translation factor also predicts a
large 2p cross section at 1 keV. Because of the lack of determination of a parameter
in the translation factor, however, their results are indeterminate by a factor of two.

Our ionization cross sections are computed by evaluating the total loss of
probability of the two-electron wave function during the collision. This loss is due to
absorption of the electrons in the optical potential that coats the inner walls of the
computational box. One should note that the cross sections are historically both
measured and computed for the production of an ionized projectile H. Otherwise the
cross sections would (by symmetry arguments) be doubled for the total single-
ionization cross section. In Figure 3 we compare our results with the experimental
measurements of Gealy and Van Zyl (1987) and of McClure (1968). The lower

12



energy predictions (4 keV and less) of Krstic et al (1996) and Bent et al (1998) agree
extremely well with the data at low energy, all the way down to 0.1 keV. The recent
calculation of Shingal et al (1989) of the ionization cross section includes electron
symmetry with a 22 state per center atomic basis with translation factors but without
double excitation channels. Their results with the "Born correction" are the best of
the theories, except that their results show an oscillatory feature in the 2 to 3 keV
region not seen in the experiments or other theories. Our predictions of ionization
have error bars attached to represent the fact that we were unable to predict ionization
accurately when the probability of electron loss was less than about 1%. Nevertheless,
our fully numerical SCF method agrees qualitatively with the best theory and the
McClure measurements at higher energy. It is interesting to note that our SCF method
is not in as good agreement with ionization experiments at all energies as our earlier
frozen atom approximation. This limitation lies in the numerical accuracy with which
we can compute the loss of normalization at the percent level. It is not believed to be
any argument against the SCF method for ionization.

IV. Discussion of Theoretical Cross Sections Including Exchange
To better interpret the results of this work, we present some of the major

theoretical cross sections that have been computed which explicitly include electron
exchange symmetry. It is difficult to make a precise comparison of exchange and
non-exchange calculations because of other subsidiary differences in the relevant
studies. For example, our previous work on H+H (Riley and Ritchie, 1999) did not
include exchange, but used a "frozen atom" model in order to solve for the electronic
excitation. This is not the same as omitting exchange from the present theory. That
would lead to an unsymmetrized Hartree approximation for the electrons, a calculation
that has not been done to our knowledge.

In Figure 4 we show the 2s excitation by this work, by Hanson and Dubois
(1998), by Ritchie (1971), and by Bottcher and Flannery (1970). Remember that
Hanson and Dubois have no basic restrictions as to accuracy except the size of the
two-electron basis. Our results are limited by the SCF approximation. Ritchie did a
two-state atomic-basis study including exchange and translation factors, and Bottcher
and Flannery did a molecular state calculation with exchange and no translation
factors. Above 10 keV, the Hanson-Dubois results and ours agree to about 40%.
Below 10 keV, our results are lower than theirs by almost a factor of three. The
experimental measurements disagree among themselves by nearly the same amount.
Part of the disagreement of our results with Hanson and Dubois at higher energy is

13



due to the limited ability of our SCF approximation to incorporate their "total
excitation." This latter process would require a degree of electron correlation that our
SCF method cannot reproduce. The early two state atomic calculation of Ritchie
appears reasonable above 10 keV, but has an apparently erroneous behavior at lower
energy. In that calculation, approximations made to the exchange term containing
translation factors may have caused this difference. The molecular Bottcher and
Flannery calculation is systematically lower than other theory (and all experiments)
and has greatly exaggerated the effect of exchange.

Predictions of 2p excitation with exchange are shown in Figure 5. These
include Hanson and Dubois, our results including spin decomposition, and the
Bottcher and Flannery study. The latter results are small, and also disagree with
experiment at all energies. The striking feature in this comparison is the large low-
energy cross section, which in our case at least, is seen to be due to the triplet process.
We find that our cross sections are large because of the triplet promotion effect at
close encounter, where the correlation of two ground state H atoms in triplet symmetry
leads to the nearly degenerate Is2s and Is2p triplet manifold. Strong coupling among
those nearly degenerate levels leads to excitation as well as ionization. This has been
exploited by Bent, et al (1998) and Krstic et al (1996) as a means of calculating
ionization in H+H scattering.

The triplet united-atom limit at close encounters is difficult for us to solve by
the purely numerical methods because of the great difference in size (a factor of eight)
of an inner electron that sees a nuclear charge of two, and the outer excited electron
that sees charge one. The size of the cross section in our computations was somewhat
dependent on the box size and grid resolution with which we could solve the TDSE.
The important question is how well we can resolve the coupling among the nearly
degenerate molecular states that dominate the wave function at low energy. We found
it necessary to use a larger box and grid for the triplet to help with this issue.
However, in spite of the fact that we obtain a cross section some 50% smaller than
Hanson and Dubois at low energy, we never saw any dramatic change in shape of the
triplet cross section. Again, no experiments exist at less than 4 keV, although those
around 10 keV agree somewhat better with our calculations. Above that energy, the
experiments cross over the theories as seen in Figure 2.

In Figure 6 we show the decomposition of our 2p excitation cross section into
angular and exchange components. To be noted is the large minimum in the 2pO
triplet at 16 keV, which is large enough to show up in the total 2p cross section. Also

14



of interest is the marked difference in low energy behavior of the singlet and triplet

cross sections, due to the promotion effect as discussed below.

V. Discussion
In the middle of a moderately slow H+H collision event, an electron tends to

delocalize from its initial atomic orbital center to the other center. This process is
greatly different for the singlet and triplet. In the singlet symmetry, this occurs in the
presence of the second electron creating a favorable binding situation near the united
atom or molecular limit. This is related to the favored Hartree-Fock form of the
molecular two-electron ground state near the united atom limit as compared to the
valence-bond form preferred at larger separation. As the nuclei separate, a part of the
electron orbital on the center with the other electron is non-adiabatically "lifted" to the
continuum as the heavy particles separate with two electrons localized on the same
center. Since our description does not allow the H bound state, all parts of a singlet
or triplet electron orbital that are transiently trapped on the other center are ionized in
our theory. In triplet symmetry, the delocalization occurs, but with the most important
effect being the promotion of the excited orbital towards the continuum as one moves
from the molecular binding region toward the united atom limit. There the time
dependence causes a large amount of coupling to excited states. The net effect is the
triplet cross sections dominating the lower-energy cross sections for excitation and
ionization.

Theoretical studies of H+H collisions have advanced in several aspects, mainly
due to the computing power that can now be applied to the problem. In fact, theory is
now at the point where the predictions should be quantitative. It is obvious that more
experimental work is needed to resolve the differences that appear in the prior work as
well as the theory. The inclusion of exchange is crucial to describe the low energy
scattering because of promotional excitation and ionization within the triplet system.
This work provides two contributions to the atomic scattering area. First, it shows that
a time-dependent, self-consistent field description of the fully symmetrized two-
electron problem is possible, and, secondly, that the method is capable of reasonable
predictions of the event without the elaboration of the large basis expansion methods.
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Figure 1. Excitation cross sections to the projectile 2s state for H on H. MSM
denotes the Morgan, Stone, and Mayo experimental data, HGG denotes the Hill,
Geddes, and Gilbody measurements, RR denotes the present results, and WHD & HD
denotes the Wang, Hansen, and Dubois predictions combined with the higher energy
predictions of Hansen and Dubois at higher energy. Elab denotes the laboratory
kinetic energy of the incident H atom in keV, here and in all figures.
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Figure 2. Excitation cross sections to the projectile 2p level for H on H. MGG
denotes the Morgan, Geddes, and Gilbody experimental data, RR denotes the present
results, and HD (te) denotes the Hansen and Dubois predictions with excitation of the
target.
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Figure 3. Ionization cross section to the projectile continuum for H on H. GVZ
denotes the Gealy and Van Zyl experimental data, McC denotes the McClure
measurements, RR denotes the present results, KBS denotes the Krstic, Bent, and
Schultz predictions, and SBF(xB) denotes the Shingal, Bransden, and Flower
calculations with the Born correction.
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Figure 4. Theoretical excitation cross sections to the projectile 2s state for H on H.
RR denotes the present results, R denotes the predictions of Ritchie, BF denotes the
predictions of Bottcher and Flannery, and HD (te) denotes the Hansen and Dubois
results including excitation of the target.
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Figure 5. Theoretical excitation cross sections to the projectile 2p level for H on H.
RR denotes the present results including the singlet and triplet components, BF
denotes the Bottcher and Flannery predictions, and HD (te) denotes the Hansen and
Dubois predictions with excitation of the target.
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Figure 6. The decomposition of our 2p excitation cross section into singlet, triplet, and

angular components.
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