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BERNOULLI NUMBERS AND POLYNOMIALS FROM A MORE GENERAL POINT OF
VIEW

Riassunto
Si applica il metodo della funzione generatrice per introdurre nuove forme di numeri e
polinomi di Bernoulli che vengono utilizzati per sviluppare e per calcolare somme parziali
che coinvolgono polinomi a piu indici ed a piu variabili. Si sviluppano considerazioni
analoghe per i polinomi ed i numeri di Eulero.

BERNOULLI NUMBERS AND POLYNOMIALS FROM A MORE GENERAL POINT OF
VIEW

Abstract
We apply the method of generating function, to introduce new forms of Bernoulli numbers
and polynomials, which are exploited to derive further classes of partial sums involving
generalized many index many variable polynomials. Analogous considerations are develo-
ped for the Euler numbers and polynomials.

Key words: numeri di Bernoulli, polinomi di Bernoulli, polinomi di Hermite, polinomi di
AppEl, somme parziali
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BERNOULLI NUMBERS AND POLYNOMIALS FROM

A MORE GENERAL POINT OF VIEW

1 - INTRODUCTION

In a previous paper [1] we have derived partial sums involving Hermite, Laguerre and Appell
polynomials in terms of generalized Bernoulli polynomials. The new and interesting
possibilities offered by this class of polynomials are better illustrated by an example relevant
to the derivations of a partial sum involving two-index Hermite polynomials.

To this aim we remind that:

N-l

n=0
(1)

where Bn(x) are Bernoulli polynomials defined by the generating function:

TBnOO (2)

or in terms of Bernoulli numbers Bn as:

Hermite polynomials with two variables and one parameter can be defined by means of the
operational identity [2]:

(4)



and the h m n(x,y|x) are defined by the double sum:

min(m,n) s m-s n-s

hm n(x,y|x) = m!n! У — l

m ' stj s!(m-s)!(n-s)!
(5)

The identity (4) can be used to state that:

(6)

and to introduce the following two variable one parameter Bernoulli polynomials:

hB r, s(x,y|x)= JBr-qBs-khq,k(x,y|x) . (7)

It is easy to note that from Eq. (4) we get:

e Э х ЭУ{В г(х)В 5(у)}= ьВГ ) 8(х,у|х). (8)

This new class of Bernoulli polynomials can be used to derive the following partial sum:
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which is a consequence of Eqs. (1,6,7,8). The generating function of this last class of

Bernoulli polynomials can be shown to be provided by:

u v e

ux+vy+xuv о» m n
(10)

This introductory examples shows that a wealth of implications is offered by the use of

generalized forms of Bernoulli polynomials. In the forthcoming sections we will develop a



more systematic analysis which yields a deeper insight into the effectiveness of this type of

generalizations.

2 - FINITE SUMS AND NEW CLASSES OF BERNOULLI NUMBERS

In Ref. [1] we have touched on the following new class of numbers:

'".f 2 1 n!B n _ 2 s B s

which are recognized as an Hermite convolution of Bernoulli numbsers on themselves. The

generating functions of the H B n is provided by:

15 - z . - V H - n ; (12)

•1)(е1 - :

which suggests the following generalization

t? ~
( e a t - l ) ( e b t 2 - l ) n=0x i :

with:

"
1

B"(a,b) = —
n b

У
ab ^ s!(n-2s)!

S—\J

3 xt+yt2

It is also evident that the generating function:

t n / .
—(нВп(а,Ь|х,у)) (15)( e at _ 1 ) ( e b t 2 _ 1 } "

can be exploited to define the polynomials:

HB*n(a,b|x,y)= ip( H B;_ s (a,b)H s ( X ) y)) (16)

as also results from Eqs. (13) and (15) which are also expressed as:
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* П
цВп(а,Ь х,у) = —н nv i ,yj a b

n ! [ n ^ 2 ] n ! a n - 2 s b s

% s!(n-2s)!
S—KJ

(17)

yielding:

H B n ( a , b | 0 , 0 ) = H B n ( a , b )

,s.,n-2s

(18)

Гп / 9 1 V X

where Hn(x,y) = п ! 1 ^ = 0 g!(n-2s)! a r e t h e K a m P ^ d e Feriet polynomials. The use of

polynomials (16) is suggested by partial sums of the type:

M-lN-l

m=0n=0

1

(r + l)(r + 2)(r + 3)

~H Br+3 (У'w I x ' z + N w ) + H B r+3 (У'W I X 'H B r + 3 r+3

A further application of polynomials H B n (a,b |x,y) is relevant to the multiplication

theorems. We find indeed:

HB n(mx, 2 N mn~2 V V Y „•
m v l = - X X н в

h 1

m TIT n r
(20)

m m ^

and

and:

m-lm —1,
т,-1 u i ak bh

H B n a ,b |x + — ,y + -j
k=l h=l

p-1 q - 1 ,

— 1 V 1 '% 1

k=0 h=C

m

к h
pq

(21)

(22)

can be proved by exploiting the procedure outlined in Appendix.
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3 - EULER POLYNOMIALS

The examples we have provided yields an idea of the implications offered by this type of

generalization.

It is also evident that the considerations we have developed for Bernoulli polynomials can be

extended to Euler polynomials [3]:

In analogy of Ref. [1] and the results of previous sections, we introduce the following classes

of Euler polynomials:

2 xt+yt2 ~ tn

Х М Е ^ » (24)

and:

m n

It is easily realized that:

y S E 2 ( X ) (26)
s=0 s!(n-2s)!

and:

m n /'щЛ/'^Л

hE'm>nvA>.yi t/ ~ Zu 2-Л cm-s l : : 'n-r I 1s,rvA>.y I l/ \А1)

s=o r =o^ s A r y

where En(x) are the ordinary Euler polynomials and that the following theorems hold:

_ s . . . . . . , : s ^ Z ' w ) ( 2 8 >

and (see appendix):
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m-1 / / , \\

HEn(mx,py) = mn X (~l)kl H E n ^ + - > ^ T J J • (29)

As to the polynomials hEm^C^yl't) w a c a n a l s o s t a t e that:

E m _ s n _ r (x ,y | t ) )z s w r (30)

and:

Ц
pq

x

k=Oh=O

4 - CONCLUDING REMARKS

The introduction of the Hermite-Euler polynomials given by Eq. (24) offers the possibility of

speculating about alternative definitions as e.g. (t < л/тг):

(32)
(е 1+1)(е г +1) n=0n-

The polynomials Е„ (х,у) are defined as:

- 2 s ( X ) (33)

s=o s ! ( n - 2 s > ! -

and are shown to satisfy the following differential equation:

| - E (

n

2 ) ( x , y ) = ^ T E (

n

2 ) ( x , y ) (34)
Эу Эх

and the multiplication theorem:

m-lm -1 ( f л и \Л

Р 2 "]Г J ( - 1 ) ^ ^ ( 2 ) ^ 1 ^ ^ ( 3 5 )
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The more general theorem relevant to Е„ '(mx,py) requires the introduction of a class of

Euler polynomials analogous to those provided by Eq. (13) for the Bernoulli case.

Before concluding this paper we want to emphasize that most of the identities holding for the

ordinary Bernoulli or Euler polynomials can be extended to the generalized case. For example

the identity [4]:

Bn(x + 1)-B n (x) = nx n - 1 (36)

can be generalized as:

H B n ( x + l ,y)- H B n (x,y) = nHn_1(x,y) (37)

which is a consequence of:

y
e 3 x 2

B n ( x ) = H B n ( x , y ) . (38)

For analogous reasons, we find:

hB m , n (x + l,y + l | T ) - h B m > n ( x , y + l | T ) - h B m > n ( x + l,y|T)

(39)

+hBm,n<Xy IT) = mnhm_1>n_1(x,y I T)

and:

H B * (a,b | x + а,у + b) - H B^(a,b | x,y) = n(n - l)(n - 2)Hn_3(x,y) (40)

and

H E (

n

2 ) (x + l,y)+HE (

n

2 )(x,y) = 2Hn(x,y). (41)

We can also define the further generalized form:

thus getting (n>N):
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( { } | { j ) ( { } | { } ) ^ J ( { } ) (43)

with:

^ ( { } ) e 2 : i = i X i t . ( 4 4 )

n=0 П '

The results if this paper show that the combination of operational rules and the properties of

ordinary and generalized polynomials offer a wealth of possibilities to introduce new familes

of Euler and Bernoulli polynomials which provides a powerful tool in applications.
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APPENDIX

The multiplication theorems are easily stated by exploiting the method of the generating

functions and suitable manipulations. We note indeed that:

m n
(h-^m,n(Px'qy|'r) = • (A.I)

m=Un=O m " П ' ( e ~*№ -1)

The r.h.s. of the above relation can be more conveniently rewritten as:

( e u - l ) ( e v - l ) pq (euP -

by nothing that:

up , p-l

e - 1 r=0

we can rearrange (A.2) as:

uveuPx+vqy+Tuv P-l Я-1 } ~ - ( u p ) m ( v q ) n

(A.4)

P̂

X

pq

which once confronted with (A.I) yields Eq. (22). A symilar procedure can be exploited to

prove the multiplication theorems relevant to the Euler's generalized forms.

We note indeed:

0 0 t n \ 2 e m x t + p y t 2

X ~7 (н E n ( m x ' РУ))= 1 ( A - 5 )

n = 0 n ! e + 1

and handling the r.h.s. of the above equations, we find:



n=0

By noting that:

we obtain:

16

mt

yLL/
h

r~ (n-2r)!r! I

and using the (26) we finally state the theorem (29)

n=0 n=0
(A.8)
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