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Abstract

Generalized Magnetic Coordinates (GMC) are curvilinear coordinates (^,r|,Q, in which the magnetic field is

expressed in the form

B = VF(£ 77,0 x Vf + / / f ( £ 77)V£ x V77.

The coordinates are expanded in Fourier series in the toroidal direction and the B-spline function in other two

dimensions to treat the aperiodic model magnetic field. The coordinates are well constructed, but are influenced by the

boundary condition in the B-spline expansion.
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Abstract

In the paper a method for numerical computation of Lyapunov exponents of attractors in
free boundary problems is presented. For one-dimensional free boudary problems it facilitate
the derivation of ODE systems which are very useful in the concrete analysis. It is applied
to a free boundary problem with some parameters. Various attractors are found numerically
and their Lyapunov exponents are computed.

Key Words : free boundary, chaos, attractor, spectral method, Lyapunov exponent

1 Introduction

Free boundary problems are boundary value problems defined on domains whose bound-
aries are unknown and must be determined as the solution. Due to nonlinearity they easily
involve chaotic phenomena. Free boundary problems are very important from the practical
view point, so investigation of chaotic phenomena is very important.

The investigation is carried out via analysis of bifurcation and attractors. Bifurca-
tion phenomena in a free boundary problem related to natural convection were analyzed
numerically[9]. Attractors in free boundary porblems were analyzed theoretically[1]. Such
attractors are considered in the infinite-dimensional space. It is very difficult to carry out
their concrete analysis.

*This work is partially supported by Grant-in-Aid for Scientific Research(Nos. 09440080 and 10354001).
This work is also a collaboration with CCSE of Japan Atomic Energy Research Institute.
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Attractors of the ODE system is very important. This is because it is useful for concrete
analysis[7]. Numerical computation of Lyapunov exponents is easily carried out. If there
exist positive Lyapunov exponents, chaotic phenomena exist. However, it is very difficult
to derive the ODE system which approximates the PDE system describing a free boundary
problem with chaotic phenomena.

In the paper a method for numerical computation of attractors in free boundary problems
and their Lyapunov exponents is presented. To see the procedure of the method it is applied
to a free boundary problem with some parameters which is of the type of a two-phase Stefan
problem. The method consists of SCM( Spectral Collocation Method) and the fixed domain
method. For one-dimensional free boudary problems it facilitate the derivation of ODE
systems.

2 Test problem

We consider the following one-dimensional free boundary problem with some parameters.

Problem 1. For parameters la*!, |/3|, |so| < 1, 0 < r < 1, q and a;*, find w±(x,i) and
s(t) such that

u f ( x , t ) = v £ x ( x , t ) + g ± ( x , t ) , 0 < t , 0 < x < s ( t ) ,

u ± ( T l , t ) = ft±(i) , 0<t,

M±(s(t),t) = 0, 0 < t,

u+(x,0) = u+(x), - 1 < x < s0,

u~(x,0) — u~(x), s0 < x < 1,

-s{t) = -k+(t)u+{s{t),t) + k-{t)u-{s(t),t), 0 < t,

s{0) = s0

where

^(t) = r + 1 - r) l—r /?cost,
w v ; 2 i l + aisinf

^(t) = ±l + a±sin(u±t),

o (x, t) = q < ±— —(x — (3sin ̂ , _̂ .
y v ' ' y \ ( l± /?s in i ) 2 v H ' l± /?s in ;

u+(x) = a(x — So)2 + «(SQ + l ) (x — SQ)
so

u~(x) = b{x - s0)2 + 6(s0 - l)(x - s0)
2 i / ^ . \ / \ ^

So — 1
Parameters a, b should be determined such that u+{x) > 0, u~(x) < 0.

Remark. For a — b = so = r = 0, a** = 1 and 9 = 1, there are exact solutions as follows:

s(t) = sp(t) = ftsmt,

i±sp(ty
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3 Our method

In analysis of chaotic phenomena attractor plays an very important role. Attractors
in free boundary porblems were analyzed theoretically[l]. Such attactors are considered in
the infinite-dimensional space. It is very difficult to carry out concrete analysis to such
attractors.

Attractors of the ODE system is very useful for concrete analysis. However, it is very
difficult to derive the ODE system which approximates the PDE system describing a free
boundary problem with chaotic phenomena.

In this section a method is presented. It consists of the fixed domain method and the
spectral (collocation) method. To see its procedure it is applied to Problem 1.

3.1 Spectral collocation method
The spectral methods are superior in accuracy[3]. In particular, SCM (Spectral Colloca-

tion Method) is preferable to nonlinear problems.
In the paper, SCM using Chebyshev Polynomials and Chebyshev-Gauss-Lobatto case's

collocation points is used. A function u(x) in [—1,1] is approximated by the N the order
Chebyshev Polynomials as follows:

Tk(x) — cos (fc arccosx).

2 " 1
uic = > —i

There is an

where

u(x) --
N

= ^ « J i Tk{x)
fc=0

inversion formula

Uj =

~r I 2 '
Cj = 1,

N

-- J^UkTkixj),
ifc=0

othewise '
i l ? _ o 1 ... N

\ N' J ~ ' ' '

{XJ} is called Chebyshev-Gauss-Lobatto case's collocation points. Derivatives at the collo-
cation points are easily computed from {UJ}. These mean that it is easy to increase the
order of the approximatin by increasing the number of collocation points. This feature is
quite remarkable and different from other discretization mthods. By using this feature we
developed IPNS( Infinite-Precision Numerical Simulation )[5, 6]. The application of SCM is
similar to that of FDM. So, it is easily applied to the nonliear system.

3.2 Fixed domain method
SCM can not be applied directly to free boundary problems due to the unknown shape

of the domain. To avoid this difficulty, we use the fixed domain method[4, 8, 9]. Mapping
functions are introduced for mapping the unknown domain to the fixed rectangular domain.

We use the following variable transformation : (x,t) —> (£,i) such that

t = t(i) =i, 0 < t,

- l ) + l, 0<t,
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Using these mapping functions, we define
~s(t) = s(t(t)), u+(Z,i) = u+(x(£,t),t(t)), u~(H,t) = u-(x

Then, Problem 1 is transformed in the following fixed boundary problem.

Problem 2. Find ^(£,1) and s{t) such that

\S(T) + 1)

1 + /3sint J

l + a+sin{uj+t), 0<t,

0, 0 < i,

, t)

+

cosb
(1 — o;~ sini)3cost 1

= 0, 0 < i,

= -l + a~sin(u}~i), 0 < i,

5(0) = s0-

3.3 ODE system
Numerical computation of attractors can be carried out by the applicaiton of SCM

in space and time[4] to Problem 2. However, this procedure is not proper for numerical

- 2 4 -



computation of Lyapunov exponents. The derivation of the ODE system is necessary. The
ODE system is very important not only in numerical computation of Lyapunov exponents
but also in theoretical analysis. For its derivation SCM not in time but in space is applied.

In the paper the order of the approximation in space Nx is fixed to be 2. Of course,
it is very easy to increase Nx. This means original attractors of the PDE system can be
approximated arbitrarily by the method. So, the method is very important from the theo-
retical view point. After the application of SCM in space with Nx = 2 the ODE system for
parameters <? = 0, r = 1, a ± = /3 = O.5is derived as follows.

Problem 3. Find ^(t) and s(t) such that

JtU+{t) = -8(s(0 + l)
2 ) (S l n (W+*) + 2 )

{s{t)+l) +(*) - S l n (W+*) - 2 ) ' * > 0 '

Jtu'{t) = ~8(s(i)*-i) (8u+( t ) " s i n {co+t) ~ 2) (sin (w~f) ~ 2)Jt ( ( )

~ s i n

- sin

+ 2 ) (s in ( w ~ ^ ~

2) , « > 0,

2 )

«+(0) = i*o, u~(0) = UQ, S (0 ) = so-

Here it+(i) and u (t) represent u+(s"'2 * ,t) and u (—|^-, t), respectively. For the other
parameters the derivation of the ODE syste is same.

3.4 Transformation into the autonomous system

The ODE system in Problem 3 is not autonomous. So, transformation into the au-
tonomous system is necessary for numerical computation of Lyapunov exponents. It can be
done by introducing a new parameter 6[2]. Then, Problem 3 is transformed into the following
problem.

Problem 4. Find i r^t) , s(t) and 0(t) such that

+(t) ~ sin+ 1) 6(t)) - 2) (sin (u+9(t)) + 2)

y _ 1} (8iT(t) - sin (u-9(t)) + 2) (sin (u+6(t)) + 2)

- 2 5 -



2) , t > 0,

I--")

d

sin
- 2) (sin (""'(*)) - 2)

(8ti-(«) - sin (uT0(i)) 4- 2) (sin (u-0(t)) - 2)

2) ' ' > °'- s i n

- s i n 2 ) '

-r9(t) = 1

0(0) = 0.

U +(0) = l4, U"(O) = UQ, S(O) = S0-

4 Numerical results

In this section, numerical results are shown.
Fig. 1 shows numerical results for q = 1, r = 0, a^ = fi = 0.5, a = b = 0, CJ* = 1.

For So = 0 exact solutions are known as in Remark and they are periodic. Fig.l (a) shows
numerical solutions are very satisfactory in accuracy. Unfortunately, Fig.l (b) shows these
solutions are not attractors.

(a) so = O (b) s0 = 0.1

Fig.l. Numerical results in the (s, s) plane for q = 1, r = 0, a^ = (3 = 0.5,

- 2 6 -



Fig.2 shows attractors in the (s, s) plane for q = 1, r = 1, w± = 1. In these cases there
are no exact solutions. Numerical solutions converge to the attractors. Fig.2 (a) shows in
this case the attractor is a closed curve. This means periodic solutions are stable. Fig.2 (b)
shows in this case the attractor is a fixed point. This means the steady state is stable.

(a) <** = /? = 0.5, a = 6 = 0 (b) a* = (3 = 0

Fig.2. Attractors in the (s,s) plane for q — 1, r = 1, a;± = 1.

Fig.3 shows the attractors in the solution space (u+, u , s). Fig.3 (a) shows the same
attractor in Fig.2 (a). Fig.3 (b) shows in this case the attractor is a torus.

-0 1
-0.2
-0.3
-04
-0.5

u

(a) q=\, (b) q = 0, u+ = 1, u)~ = 10\/2

Fig.3. Attractors in the solution space for r = 1, a ± = (5 = 0.5, a = b = 0.

Figs. 4 and 5 shows attractors and Lyapunov exponents. Attractors are computed from
Problem 3. The exponents are computed from both Problem 4 and its linearized problem.
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0.2

U

Fig.4. Attractor in the solution space for q = 0, r = 1, a* = /? - 0.5, a - b - 0 w
Lyapunov exponents : A! = -1.360, A2 = -6.712, A3 = -19.13, A4 = 0.000
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u

Fig.5. Attractor in the solution space for q = 0, r = 1, a* - /? - 0.5, a -
u+ = 1, u~ = \ /2. Lyapunov exponents : Ai = -1.289, A2 = -7.228,

- 0,

A3 = -15.75, A4 = 0.000

A4 = 0.000 is due to the artificial parameter 9 which is introduced in the transformation into

the autonomous system.
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5 Conclusion

In the paper a method for numerical computation of attractors in free boundary prob-
lems and their Lyapunov exponents is presented. The method consists of SCM( Spectral
Collocation Method) and the fixed domain method. To see the procedure of the method it is
applied to a free boundary problem with some parameters which is of the type of a two-phase
Stefan problem. Various attractors are found numerically and their Lyapunov exponents are
computed.

For one-dimensional free boudary problems the method facilitate the derivation of ODE
systems which approximate PDE system describing free boundary problems. SCM is used
in the methos, so original attractors of the PDE system can be approximated arbitrarily.
This means the method plays a very important role in theoretical analysis.
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