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Abstract. - We study the stability of a rotating repulsive-atom Bose-Einstein condensate in
a toroidal trap. The resulting macroscopic angular-momentum states with integer vorticity I
spread radially, lowering rotational energies. These states are robust against vorticity-lowering
decays, with estimated metastability barriers capable of sustaining large angular momenta
(I < 10) for typical parameters. We identify the centrifugally squashed ^-dependent density
profile as a possible signature of condensate rotation and superfluidity.

Bose-Einstein condensates (BEC) of atoms in magnetic/optical traps have been the focus
of intense recent activity [1-12]. The macroscopic phase-coherence of the BEC wave function
was demonstrated by the observation of interference fringes in the overlap region of two freely
spreading condensates [2], after the confining traps were switched off. However, the superfluid
character of the interacting BEC is most clearly tested through the sustainability of super-
currents. Non-destructive tests of phase-coherence and superfluidity, through Josephson-like
effects have been proposed [6-9], including novel self-trapping phenomena and 7r-mode oscilla-
tions [7,8]. A direct test of superfluidity in bulk superfluids/superconductors is the observation
of quantized vortices [13,14] maintained by superflows. In multiply connected geometries (e.g.,
thick superconducting cylinders [15] or superfluids in narrow rings), metastable superflows
with azimuthally symmetric wave functions [16-18] maintain rotational states having integer
vorticity I. Such states have been considered [17,18] in the uniform-density limit, with the
BEC rigidly restricted to flat-potential regions by (narrow-ring) rigid walls. But one must go
beyond this "square-well container" limit, to capture the number-dependent spread of repulsive
BEC atoms in a polynomial trap. Vortices centered in (simply connected) harmonic traps have
been found by solving the Gross-Pitaevskii equation (GPE) [10,11], and in dynamic vortex
nucleation studies [19]. However, such vortices could be unstable to outward displacements [12].

Consequently, to test for the superfluidity of BEC, it is imperative to investigate non-
uniform rotating metastable states, in multiply connected toroidal traps.
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Fig. 1. - Schematic plot of quasi-2D "doughnut" toroid geometry with laser along the z-axis. The
trap potential rises sharply (dashed boundary) at \z\ = Lz/2. Here pc,pP, and pmauc are the effective
core radius, toroidal axis, and extent of the (shaded) BEC cloud, respectively.

In this letter we consider N condensate atoms at zero temperature, in an elliptical trap,
with an axial "hole" (or strong potential barrier) drilled by an intense off-resonant laser beam,
forming an effective 2D toroidal trap. We demonstrate the existence of Z 7̂  0 rotational states,
and examine related issues such as: i) the mixing of different /-states due to the nonlinear
interaction in the GPE; ii) the effects of off-center displacements of the toroidal hole; iii) the
existence of metastability barriers, and of decay channels limiting the accessible Z-values. A
central result is that the interaction-induced outward spread of the wave function reduces the
Z-state rotational energies, permitting relatively large /-values to be sustained by metastability
barriers. Three possible activated decay mechanisms are found to have similar characterisic
barriers: vorticity can boil off in all three lowest channels simultaneously, for Z > Zmax ~ iV1/4.

i) GPE and l-states: The macroscopic condensate wave function \&(p,9,z) — \/N${p,Q,z)
obeys the GPE, that in cylindrical coordinates reads

i2 1 d Id2 d2 \
2m

where Uo = Airf^a/m, a is the s-wave scattering length (taken to be positive a > 0), and fi
is the chemical potential. Vbrap(̂ ) is harmonic with a curvature wz up to \z\ ~ Lz/2, beyond
which it rises sharply, as in fig. 1, dashed line. Vtrap(p,0) is formed from the combination of
a harmonic potential, and a far-off-resonant Gaussian-profile laser barrier of high intensity Vc

and width 2a, giving an axially symmetric "doughnut" trap:

(2)

The interacting BEC cloud is blocked from expanding beyond \z\ < Lz/2, spreading only
radially with increasing AT. Then the BEC wave function is quasi-2D, i.e., uniform ~ \jyfhl
in the ^-direction, so that

(3)

where / is integer. We scale lengths (energies) in the harmonic trap length r^ =
(zero-point energy = fiw||/2), so p = p/r.\\,a = <r/r\\,p.i = fii/^tuvp and Vc = yc/ |- Then
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Fig. 2. - Trap potential (right vertical axis, dash-dotted line) Vuzpip) vs. cylindrical-coordinate
radius, p, (with bars denoting scaling in harmonic trap energy/length). pp is the effective toroidal
trap minimum. Scaled BEC density |#j(/5)|2 (left vertical axis) vs. p from analytic (solid line) and
numerical (dashed line) results. Parameters are as in text.

Fig. 3. - Schematic of a superposition of I, (I — 1) vortex states overlapping at an interface of thick-
ness ~ 2£.

eq. (1), in dimensionless form, is

with N denning a dimensionless expansion parameter,

1/2

2 \aNJ

(4)

(5)

As shown in fig. 2, the toroidal trap potential has a minimum around the toroidal axis at
p = pp, where pv — \/2a[lnVc/2d-2}1/2. A non-interacting BEC in such a minimum has
an approximately Gaussian shape with a 2D "volume" ~ r2. However, the interacting BEC

-I ley

spreads (as seen later) to pm a x oc iV1/4 ,» ry. The parameter N of eq. (5) is then essentially
the volume ratio of the non-interacting and interacting BEC, viz. 5 ~ r | /p^axi ^ 1 f°r large N.
This is the small expansion parameter in the problem.

We have solved eq. (4) numerically. However in the regime 8 <C 1, and for a sufficiently
low-width laser-hole, a <C 6~2/13, we can drop the derivatives ~ S in eq. (4) and analytically
calculate the wave function in the Thomas-Fermi approximation (TFA) [3-5]

*.(*)=£
V2

- 11/2 (6)

where £i = fj,l— JLJ0 is the difference between the 1^0 and 1 = 0 chemical potentials. The TFA
wave function drop to zero at two points $i(pm a x) = $i(pmin) = 0-

To describe the wave function near the center, where derivatives contribute, we have
matched the TFA wave function to a polynomial (up to p / + 4) solution $f inside an effective
"core" pc > pmin.



The chemical potentials are determined by normalization condition:

(Pm* dpp\h(p)\2 + f 'dpp\$f(p)\2 = 1 • ' (7)
J pc Jo

With the first integral dominating, we have

ft ~ 2N1/2 + X12N~1/2. (8)

In eq. (8), A = ln(pmax/pc), where pc ~ CT[ln(yc//i0)]
1/2, so the results are only very weakly

dependent (A ~ lnpc) on the toroidal core region and how it is modeled. The interaction indeed
pushes the BEC of eq. (6). Far beyond the toroidal axis, and with pm = pmgx(l = 0) = (42V) ?,
we have

pmax(l)~pm(l + (\-l/2)l2/4N). (9)

Centrifugal energy contributions in eq. (8) {Si cc /2/Pm ~ I2 JN ) are lowered due to this
interaction-driven spread, so larger Z-values are sustainable by given metastability barriers.

The local density difference due to centrifugal effects is

\h{p)? - \$i=o(p)\2 * X12N'3/2{1 - (P2
m/2\p2)], (10)

with $i(p) peaking at p — ppeak « pp + (2a2/pp)l2. Figure 2 shows |#j(p)|2 vs. p, for / = 0
and 10, for parameters as given later. The analytic approximation (solid line) closely matches
the (dashed line) numerical solution of eq. (4). The centrifugal reduction (~ 10% for I = 10),
with outward shift, of the density peak, is a rotation signature, possibly detectable by phase
contrast imaging [20]. The super-current density is j ~ h/(imp)^*^g^! = N\$i(p)\2vs$, where
the azimuthal velocity vsg = (hl/mp), and j vanishes at the origin as j ~ p2l+z. The laser
hole "pins" the azimuthal velocity of average angular momentum (<i!i\(h/i)d/dO^i) = Nlh,
suppressing displacement instabilities [12,18]. We stress here that since our configuration uses
a physically reasonable Gaussian-profile toroidal laser barrier (instead of an infinite core), the
wave functions are smooth, and vanish only at the origin. Consequently the energies remain
positive in the entire region and instability-generating negative energy core states [10,12] do
not arise.

In practice, the toroidal "hole" of fig. 1 could be drilled off the trap axis, or the laser
could fluctuate in profile and position. With such a relative displacement p = {po,8) of the
trap is Vtrap(p) -*• Hrap + Po ~ 2p0pcos9, modifying the TFA solution of eq. (6). The BEC

1/2

cloud becomes anisotropic, extending to pm — p0 cos# 4- p0
J . However, global averages of the

energy/angular momentum and barrier heights are unaffected, to order ~ Po/pm ~ N ^ *•
ii) Metastability barriers to direct I —> (I— 1) transitions: We first consider / states jumping

uniformly into I — 1 states. The non-linear term in the GPE disfavors the overlap of ^-states
and induces barriers against direct I —> (I — l)-decays: interatomic collisions disfavor the
transition-state slowing-down of a minority fraction (< 1/2) of the rotating flow. A GPE
trial function for full superposition is $(p,0) = [Ct$i{p,6) + C/_i#j_i(yO, &)], with variational
constants, \Ci\2 + |Cj_i|2 = 1. The free energy functional F(#) is then

£ (|CP|2-2)!Cp|%,p + 4|C!|
2|a_1|2/z,_1) (11)

where 7;̂ / = îV Ĵ °° dpp\$l(p)\2\$i,(p)\2 is the overlap integral. The/-state (CJ,CJ_I) = (1,0)
is separated from the (J-l)-state (0, 1) by a transition state (1/2,1/2). This "full-overlap"
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F/N barrier relative to the (1,0) state is £BO » A>/2 ~ N , and larger than the splitting,
A£i ~ £l - £/-i = (2/ - 1)X/VW. The Estate is preserved by metastability barriers for
Si = Px/VN < 8BO up to a maximum value / < Zmax0 ~ N

Lower barriers are expected, for the (more physical) nucleation of "critical droplets". Fig-
ure 3 shows such non-uniform ^-states normalized in fractional volumes vi, I/J_I. These overlap
only at an interface of thickness 2£ and overlap fraction / = (I>J + i/j_i — 1) > 0, thus reducing
the I, (/ — I) interspecies scattering [21]. We take <&p(p) -> <&p(p)gp(p) where the step-function
9i-i{p) (9I(P)) is unity for vi-ip^ > p2 > ?c (for p2

m > f > (1 - u{)p2
m) and zero otherwise.

Repeating the previous argument with these wave functions, we find that confinement to a
reduced volume, vpp

2
m < p\, increases the intra-species scattering: Ipp(vp) = Ipp{v — l)/up.

The (reduced) inter-species scattering gives J;]j_1(i/i) ~ (f lvivi-\)Iij-\(v = 1). The lowest
interface-overlap barrier £BI , or "critical droplet" energy, is obtained for approximately equal
volume fractions vx — I/J_I > 1/2, giving an annularoverlap volume of radius pmj\f2 and thick-
ness ~ 2£, so the fractional overlap is then / = 2\/2£/pm. BBI is this fraction of the full-overlap
barrier, BBI ~ ^V2(^/pm)£Bo (gradient contributions omitted in TFA would be comparable).
Here £ ~ l/[iVj*i(^p)|2]1/'2 ~ l/P^J2 i s a "healing length", so (scaled) barriers are of order
of unity, BBI = V% ~ 0(1) < SBO- The /-states are "robust" against decays for SB/£I ^ 1,
i.e., for I < lmaxi — (y/2jX)l/2N . Note that it is the interaction-induced lowering of Si
that enables allows lm3x to be large. The estimates hold also for other "droplet" geometries:
wedge-shaped regions of (/ — 1) states, expanding azimuthally, would have ~ (2£/pm)£Bo

' —1 /4

interface costs, and similar, Zmaxi ~ N scaling.
An external angular velocity, fi = fi(|w||), produced by an imposed rotation will cause an

I — 1 to I = 0 transition, only above critical values, |fi| > fic; = EBX- This estimate exceeds
an €lci ~ \ASi\ estimate [4] based on the splitting alone.

iii) Metastability barriers to mediated I -> (I — 1) transitions: An i-state could also decay,
mediated by excitations. Nucleation of (rectangular) unit-vortex loops, with straight segments
of vorticity Jz = — 1 would reduce core vorticity by I —*• (I — 1). This core repels the Jz — 1
loop-segment outwards by an interaction ~ — (I — l)lnp [22]. (As vsep ~ hl/m is a constant,
there is no additional loop-expanding current-drive force [14].) The atomic density near
the core is |$(pc)j

2 ~ a (independent of N), yielding a vortex-segment nucleation cost of
£B2 ~ I N\<ki(pc)\

2 ~ a. For metastability, £\ = XI2/vN < £32 and the states are robust up
to I < lmax2 ~ V&NllA /VX.

Finally, another possible mediated-decay channel is a successive reduction N -> N — 2 of
BEC Z-state atoms, producing surface pairs of dissipative quasiparticles [11] of Bogoliubov
excitation energy 2A, and total angular momentum 21 [17,18], that damps to zero. A detailed
analysis [16] for toroidal traps is beyond the scope of this paper; however, for £i < A, the
quasiparticle channel is not accessed for I < imax3 = VAJV . (In other contexts [23], damping
due to quasiparticles [10,12] is small.) Thus we find that i-states are robust to droplet/vortex-

i

loop/quasiparticle decay channels, up to maximum values all scaling in the same way, ~ N *.
Since the channels are activated over free-energy barriers NSB , low temperatures exponentially
favour rotational stability.

iv) Numerical estimates: Parameters chosen are wy = 132rads~1 ~ lnK,rj| = 4.6/im, Lz —
25/im,2cr = 12/jm,a = 50A,Vc = 63nK, and m = 3.84 x 10~26kg (sodium). Then pp =
18.4//m, and for N = 106, we have 5 — l/wN — 0.03. Physical magnitudes are then /MJ —
32nK,A = 2,£i = 0.031Z2nK,pm = 50fim,£ - Q.8/J,m,vse{p) < v$e{pc) =
30 Hz, yielding, for example, Zmaxi ~ 10.



Finally, we present a JV-scaling argument, extending our results to a'general anharmonic
(f-dimensional toroidal trap. Consider a trap potential that, for distances f well away from the
toroidal core, is Vtrap ~ fwtra, where f = r/rt and rt = (H/mwt)^2. For a = 2 the trap is
harmonic; for a -»• oo, a square-well container results. We define JV = (NUo/Judtrf ),<&(?) =
$(r)rt/2,Pi =fj,i/htot. The TFA wave function, l>, is almost flat, \$i{r)\ - l$o| « (/2O/JV)1/2,
and the BEC spreads until r ~ rm, when the confining potential rises to the chemical potential,
fa ~ f%. With the normalization integral ~ |#o|2^l = 1, we obtain fTO = jf^a+d\ Then
the I 7̂  0 excitation energies are ti ~ l2/?^, and the healing length is £ /7

JV . We est imate the metastabil i ty barriers t o decays via full-overlaps, interfaces, and
/ ( d ) ( ) / ( ) ( ) / )nucleated vortices to_be £ B 0 ~ JV , f B i ~ JV' ' , and ^ B 2 ~ JV ,

respectively. (Since JV ~ NUQ, the barriers vanish in the ideal-gas limit, UQ -> 0.) The
( ) / ( ) ( ) / ( )corresponding robustness bounds are (maxo ~ JV , Zmaxi ~ JV , /m a x2

JV , respectively. For the a = 2 harmonic t r a p in 2D, we recover our results: Zmaxo

JV , and the robustness bounds are similar for different decays, lm&xi ~ /m a x2 ~ JV~, y , m& m a x 2
For a -> oo, fm = 1, we recover the familiar He II healing length £ ~ (NUo)"1/2, with

energies £% ~ JV + /2 , and barriers £ B O ~ JV, £BI ~ JV , £B2 ~ 0 ( 1 ) . Narrow-ring
square-well containers [17] would suppress vortex loops and make phase-slips [18,24] the lowest
decay thresholds. By contrast, two-dimensional harmonic t r aps have several (high) robustness
thresholds of the same order of magni tude.

Experimental preparat ion of these vortex states could be through st i r r ing normal s tates
by a laser "paddle-wheel" [1] and cooling below transi t ion; or by rota t ing t h e t r ap [25] with
Q > Ctci, below Tc; or by coherent transfer of angular momen tum from laser beams using
Raman transit ions [26]. Experimental detection might be through t h e I ^ 0 density profiles,
or the Sagnac effect [18,27]. An investigation of other t r a p geometries [28], and of at t ract ive
atoms, Uo < 0 [29], might be of interest.

In conclusion, we find tha t macroscopic angular-momentum states of a weakly interacting N-
atoms BEC, can exist in a toroidal t r ap . The self-interaction creates high metastabil i ty barriers
~ iV1/4 against various decay channels, leading to sustainable large-Z vortex states, t ha t are
insensitive to small toroidal hole displacements. The centrifugal force depresses the peak local
density, providing a detectable signature of BEC rotat ion. We recover these quasi-2D results,
as well as a square-well container limit, from a more general d-dimensional, anharmonic- trap
scaling analysis. The observation of these rotat ional s tates would be clear evidence for the
macroscopic phase coherence and superfluidity of t rapped Bose-Einstein condensates.
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