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ABSTRACT - The ESE (Evaluation of Steam Explosions) computer code has been developed to model the
interaction of molten core debris with water during the first premixing stage of a steam explosion. A steam
explosion is a physical event, which may occur during a severe reactor accident following core meltdown when
the molten fuel comes into contact with the coolant water.

In this paper the numerical treatment of probabilistic multiphase flow equations on which ESE is based is
described. ESE is a general two-dimensional compressible multiphase flow computer code. Each phase in the
multiphase flow - usually water, steam, melt and air - is represented by one flow field with its own local
concentration and temperature and is described with its own set of partial differential mass, momentum and
energy equations. These transport equations are solved on a staggered grid in a 2D rectangular or cylindrical
coordinate system using a high-resolution finite difference method. The pressure equation is solved using the
stabilized squared conjugate gradient method (CGSTAB), which converges fast also for high density ratios.

The numerical methods used in ESE were precisely tested on a number of carefully chosen cases where the
analytical solutions are known. All results are presented in form of graphs and they clearly show that the applied
high-resolution method most exactly reproduces the analytical behavior.
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1. Introduction

The paper describes the numerical treatment of the probabilistic multiphase flow equations on
which the computer code ESE (Evaluation of Steam Explosions) is based. ESE has been
developed to model the interaction of molten core debris with water during the first premixing
stage of a steam explosion [1]. A steam explosion is a physical event, which may occur during
a severe reactor accident following core meltdown when the molten fuel comes into contact
with the coolant water.

Many other premixing codes exist in the literature, e.g. CHYMES [2], IFCI [3], PM-
ALPHA [4], MC3D [5], IVA3 [6] and COMETA [7]. The common feature of these codes is
that they are based on first order accurate numerical methods, whereas ESE uses the second
order accurate high-resolution method. High-resolution methods combine first and second
order accurate numerical schemes in such a way that the weaknesses of both schemes, the
poor numerical accuracy and large amount of numerical dissipation of first order accurate
numerical schemes and the oscillations of second order accurate numerical schemes occurring
in the vicinity of non-smooth solutions, are suppressed and the method still remains second
order accurate [8].

2. Numerical Treatment of Multiphase Flow Equations

Each phase in the multiphase flow
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obtained by ensemble averaging [9]. The mass equation (1) is solved in conservative form to
achieve mass conservation, whereas the momentum (2) and energy equations (3) are solved in
nonconservative form since the numerical solution of the conservative form of the momentum
and energy equations did not give the correct results at non-smooth distributions of the phase
presence probability a occurring at phase interfaces.

The discretised multiphase flow equations (1-3) are solved in 2D cartesian or
cylindrical coordinate system on a staggered grid using a high-resolution finite difference
method. High-resolution methods assure second order accuracy and give well resolved,
nonoscillatory discontinuities. The applied high-resolution method is based on the first order
time and space accurate upwind scheme and the second order time and space accurate Lax-
Wendroff scheme. The total variation diminishing (TVD) condition for the convective terms
was satisfied by choosing the smooth van Leer flux-limiter function.

To allow also the treatment of shock waves, the discretisation of the convective term
in the nonconservative momentum equation (2) had to be carried out in a special way

[(v • V)v],. = max(v,_,, v,., v;+1) (4)

since otherwise the shock would not propagate if the velocity in front of the shock would be
zero. For better clarity the discretisation was presented only for positive velocities and in only
one dimension.
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The pressure equation for the assumed common pressure field p was derived from the
sum of the conservative form of the compressible flow continuity equation (1) over all phases
using the projection method

V 1 (p" -p"+])Ma
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PP

Ma'
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1 l

(5)

where

« + l =

(6)

and

Despite the similarity in appearance to the pressure equation for incompressible flows,
there are important differences. The incompressible pressure equation is a Poisson equation,
i.e. the coefficients in the discretised form represent an approximation to the Laplacian
operator. In the compressible case, there are contributions that represent the fact that the
equation for the pressure in a compressible flow contains beside diffusive terms also
convective and unsteady terms. At low Mach numbers, the Laplacian term dominates and we
recover the Poisson equation. On the other hand, at high Mach numbers, the convective term
dominates, reflecting the hyperbolic nature of the flow. Thus this compressible flow pressure
equation (5) automatically adjusts to the local nature of the flow and therefore can be applied
to all types of flow including also the treatment of temperature expansion.

The pressure equation is solved using the stabilized squared conjugate gradient
method (CGSTAB) [10], which was chosen since it converges fast also for high density
ratios. The convergence rate of the CGSTAB method was tested for different density ratios of
a two phase flow (rise of a big bubble) and was compared with other proposed pressure
equation solvers - the Alternate Direction Implicit solver (ADI) and the Stones Strongly
Implicit Procedure (SIP). As seen on Fig.l, it was found out that the used CGSTAB method
has the fastest convergence rate, which is nearly independent on the density ratio, whereas the
ADI and SIP methods become useless if the density ratio is greater than about 1000.
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Figure 1: Convergence rate of pressure equation solvers for different density ratios.
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3. Results of Basic Test Calculations

The numerical methods used in ESE were precisely tested on a number of carefully chosen
problematic basic cases where the analytical solutions are known. These test-cases include
phase presence probability shock propagation and velocity shock propagation in cylindrical
coordinate system in different directions regarding to the coordinate axes, jet free fall in a
vacuum in the absence of any pressure forces, phase generation, compression and expansion
under temperature and pressure changes, etc. For each calculation the conservation of mass
and momentum was checked and a convergence analysis was performed. The results were
compared with the known analytical solutions and the calculations, which were performed
using the first order accurate upwind method and the second order accurate Lax-Wendroff
method. All test calculations clearly show that the used high-resolution method most exactly
reproduces the analytical behavior. In the following we will present some of these results in
form of graphs.

3.1 Phase presence probability shock propagation

A phase presence probability shock in the form of a box with phase presence probability
a = 1 for ( r e [0.1,0.3]) A (Z e [0.1,0.3]) and a - 0 otherwise has been moved with constant
velocity v = 1 (movement of a big bubble) parallel (Fig.2, Fig.3) and diagonal (Fig.4) to the z
and r axis on a mesh 160x160 grid points. The Courant number was 0.5. The convergence
analysis, which was performed on meshes 20x20, 40x40, 80x80 and 160x160 grid points,
showed that the results obtained with the high-resolution method are approaching to the
analytical solution. As expected the upwind method had the highest numerical diffusion and
the Lax-Wendroff method produced spurious oscillations and gave unphysical results since
the phase presence probability was also negative. The mass has been conserved perfectly by
all three numerical methods.
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Figure 2: Phase presence probability shock convection in z direction calculated with
the upwind, Lax-Wendroff and high-resolution method for different times.

Figure 3: Phase presence probability shock convection in r direction calculated with the
upwind, Lax-Wendroff and high-resolution method for different times.
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Figure 4: Phase presence probability shock convection diagonal to the r and z axis
calculated with the upwind, Lax-Wendroff and high-resolution method.

3.2 Velocity shock propagation

The propagation of a ID velocity shock in the form of a step has been studied. This situation
appears in multiphase flow when for example a molten fuel jet of low phase presence
probability moves through resting air. Since the jet velocity is defined only in the jet it is
assumed that the jet velocity is equal to the air velocity v jel = vajr « 0 in the region where the

jet phase presence probability is zero: a = 0. The convergence analysis, which was
performed on meshes 20, 40, 80 and 160 grid points, showed that the results obtained do not
approach to the analytical solution. The velocity shock did not propagate with the jet speed
(Fig.5) despite the improvement (4) and therefore the jet phase presence probability achieved
very high unphysical values at the front (Fig.6) also for the high-resolution method. None of
the numerical methods conserved the jet momentum either (Fig.7).
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Figure 5: ID velocity shock propagation calculated with the upwind, Lax-Wendroff and high-
resolution method for different times. Courant number = 0.5. Mesh: 160 grid points.

Figure 6: Jet phase presence probability calculated with the upwind, Lax-Wendroff and high-
resolution method for different times. Courant number = 0.5. Mesh: 160 grid points.

Since these results are not satisfactory the numerical model was significantly improved with a
simple but physically correct prescription that the velocity at the mesh point next to the front
where the phase presence probability is zero and therefore the velocity is not defined is equal
to the front velocity. With this improvement the convergence analysis showed that the
velocity and phase presence probability correctly approach to the analytical solution (Fig.8)
and that the mass and momentum are conserved well.
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Figure 7: Jet momentum at calculations with the upwind, Lax-Wendroff and high-
resolution method. Courant number = 0.5. Mesh: 160 grid points.
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Figure 8: Jet phase presence probability calculated with the improved model for
different times. Courant number = 0.5. Mesh: 160 grid points.

3.3 Jet free fall

To check the numerical model on a problem with an ununiform velocity field occurring
together with a shock in the jet phase presence probability field and the velocity field, the jet
free fall (particles falling in a vacuum in the absence of any pressure forces) has been
simulated. The jet phase presence probability and the jet velocity at the inlet boundary were
a = 1 and v = 1. The convergence analysis, which was performed on meshes 20, 40, 80 and
160 grid points, showed that the results obtained using the upwind and high-resolution
method approach to the analytical solution (Fig.9), whereas the Lax-Wendroff method
produced highly oscillating and divergent results.
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Figure 9: Jet free fall phase presence probability for different times. Courant number = 0.5
Mesh: 160 grid points.

3.4 Phase generation

The correct numerical treatment of the vapor generation term F appearing in the mass (1) and
pressure (5) equations was established on the following combined artificial test case. An open
vessel was filled with two liquids - liquid A occupied the lower part of the vessel and the
other liquid B with equal density occupied the upper part. In the middle of the lower part of
the vessel liquid A was generated with the generation rate F^ = VresselpA /Isec. The
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calculation was performed on mesh sizes 10x15, 20x30, 40x60 and 80x120 grid points in the
cylindrical coordinate system. The results of the convergence analysis showed that the upwind
and high-resolution methods correctly predicted the phase volume, whereas the Lax-Wendroff
method underestimated the phase generation since the phase interface did not move with the
right velocity.
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Figure 10: Phase volume of liquid A and B during phase generation of A. Mesh: 10x15 grid points.

3.5 Pressure compression and temperature expansion

The ability of ESE to correctly consider the compressibility {dp/dp)h and the temperature

dependency of density p"+]n = p[h"+l ,p") was also proved. An open vessel was again filled

with two liquids - this time a compressible liquid A with^f = lbar"' and temperature

dilatation J3 — 0.005 K"1 occupied the lower part of the vessel and an incompressible liquid B

with % ~ 0 bar"' and /?=0K~' occupied the upper part. The following artificial test cases

were simulated:
the pressure was risen with a speed dp/dt = lbar/s (Fig.l 1) at constant temperature,
the temperature was risen with a speed dT/dt = 100 K/s (Fig. 12) at constant pressure,
the vessel was closed and the temperature was risen with a speed dT/dt = 100 K/s
(Fig.13).

Figure 11: Phase volume of liquid A and B during the pressure rise Mesh: 10x15 grid points.

Figure 12: Phase volume of phase A and B during the temperature rise. Mesh: 10x15 grid points.
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The convergence analysis which was performed
on meshes 10x15, 20x30, 40x60 and 80x120 grid
points showed that the results of all three
methods approach to the analytical solution. The
best results, however, were obtained with the
high-resolution method.

The results of the third -test case, the
temperature rise in the closed vessel, are
identical for all three methods, since there is no
convection. Here the time step of the calculation

was altered (At = 1E-1, 1E-2, 1E-3) and it was shown that the pressure rise is correctly
predicted if the time step is small enough (Fig. 13).

4. Conclusions

Figure 13: Vessel pressure during the temperature
rise. Mesh: 10x15 grid points.

The numerical treatment of the probabilistic multiphase flow equations on which ESE is based
has been described. ESE (Evaluation of Steam Explosions) is a general two-dimensional
compressible multiphase flow code, which has been developed to model the interaction of
molten core debris with water during the first premixing stage of a steam explosion.

The mass, momentum and energy equations are solved on a staggered grid in a 2D
rectangular or cylindrical coordinate system using a second order accurate high-resolution finite
difference method. The pressure equation is solved using the CGSTAB method, which
converges fast also for high density ratios.

The numerical methods used in ESE were precisely tested on a number of carefully
chosen basic cases where the analytical solutions are known. All test calculations clearly show
that the applied high-resolution method most exactly reproduces the analytical behavior.
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