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Abstract

This paper summarizes the present status of a computer code that describes some of the main
phenomena occurring in a nuclear fuel element throughout its life. Temperature distribution, thermal
expansion, elastic and plastic strains, creep, mechanical interaction between pellet and cladding,
fission gas release, swelling and densification are modelized. The code assumes an axi-symmetric rod
and hence, cylindrical finite elements are employed for the discretization. Due to the temperature
dependence of the thermal conductivity, the heat conduction problem is non-linear. Thermal
expansion gives origin to elastic or plastic strains, which adequately describe the bamboo effect.
Plasticity renders the stress-strain problem non linear. The fission gas inventory is calculated by
means of a diffusion model, which assumes spherical grains and uses a finite element scheme. In
order to reduce the calculation time, the rod is divided into five cylindrical rings where the
temperature is averaged. In each ring the gas diffusion problem is solved in one grain and the results
are then extended to the whole ring. The pressure, increased by the released gas, interacts with the
stress field. Densification and swelling due to solid and gaseous fission products are also considered.
Experiments, particularly those of the FUMEX series, are simulated with this code. A good agreement
is obtained for the fuel center line temperature, the inside rod pressure and the fractional gas release.

1. INTRODUCTION

Among the numerous phenomena that take place during operation of a fuel element,
thermomecanical interaction between pellet and cladding and fission gas release have
historically deserved special attention. These phenomena are interconnected and mutually
dependent. On the one hand, due to the low thermal conductivity of the fuel material, a quite
steep temperature gradient appears in the pellet. The high temperatures developed within the
pellet, especially at its center, give rise to thermal expansion. The strain produced in the pellet
may be either of the elastic or plastic types. For sufficiently long periods, creep may also have
a significant effect. As a consequence, the initially cylindrical pellet surface distorts, bending
outwards, the top and bottom faces being displaced further than the central belt [1]. The
dimensional changes in the fuel rod provoked by thermal expansion may induce pellet-
cladding interaction (PCI) and the consequent plastic cladding strain [2]. To simulate this
problem the thermal-elastic-plastic coupled equations have to be solved. On the other hand,
fission products accumulate within the pellet. Among them, the gaseous products, namely Xe
and Kr, represent about 30%. Their almost complete insolubility in the UO2 matrix is
responsible for the formation of bubbles, either intra and intergranular. They decrease the
thermal conductivity of the fuel, and consequently its temperature increases. An important
fraction of the gas generated accumulates in the intergranular bubbles, until they saturate and
release the gas in excess to the plenum and the gap. In this manner, it contributes to increase
the internal pressure in the fuel element, modifies the gap thickness and affects the thermal
conductance of the gap.

The code presented here solves first the heat diffusion equation and gives the temperature
distribution in the pellet, the gap and the cladding. To this end, a finite element scheme in
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cylindrical coordinates is used. Its solution is the input to the stress-strain problem. For
simplicity, the system is divided into five cylindrical rings, according to the temperature
range, hi each ring the gas diffusion problem is solved in an ideal, spherical grain.

2. THE MODELIZATION

2.1 The thermal problem

Since the system is assumed to have axial symmetry, cylindrical coordinates are employed.
The temperature depends on r and z only. If T represents the temperature, Q is the volumetric
heat generation rate, K = K(7) is the thermal conductivity and assuming steady-state heat
transfer conditions, the temperature distribution in each material is obtained by solving the
differential equation:

with the boundary conditions: T = constant at the cladding external radius (Dirichlet
condition) and VT= 0 (Neumann condition) at the remaining portion of the system boundary.
These together with the power history, represent the input data.

Application of the finite element method involves definition of a mesh, which in this case is
chosen of triangular elements, definition of the corresponding shape functions and
approximation of the continuous unknown function T by a linear combination of the shape
functions. A system of linear equations is finally obtained one equation for each unknown
nodal value.

For the thermal conductivity of UO2 the following expression was used [1]:

6.157xlO9
, ~ JL u . i ^ , - i v 1.41x1.6x10

K(7)= — + - exp
0.034944 +2.2430 xlO~4r T1

~19

kT

with T in K and K in W m^K1. The temperature dependence of K is responsible for the non-
linearity of the thermal problem and hence the temperature is calculated by an iterative
procedure. The solution of the heat transfer problem becomes the input to the stress analysis.
The same discretization is used to solve both.

2.2. The stress-strain analysis

2.2.1. Elasticity and plasticity

The Hill's theory of plasticity together with the flux rules of Levy Prandtl-von Mises provide
the following relation for the plastic strain [3]
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The equivalent stress,

ae = (a r r + azz -<J r ra z z + 3arz)

and the equivalent strain, Aep, are related by an experimental curve characteristic of each

material, where the segment corresponding to small stresses and strains is linear and
represents the elastic range. For large strains this relation is non-linear and hence an iterative
procedure is necessary for the calculations.

2.2.2. Creep

The creep analysis is carried out by means of the flux rules of Levy Prandtl-von Mises and the
Norton law [4]

where K and m depend on the material. The values K= 10~6MPa"3d~1and m—3 [5] were used
in the present work.

2.2.3. The constitutive equations

Given the axial symmetry of the system, neither the geometry nor the surface loading depend
on the angular coordinate. The displacements, strains and stresses are functions of r and z
only. Let us represent with u and w the displacements in the r and z direction, respectively.
The strain-displacement relations are [6]:

du u dw du dw
err =— ; eQQ =~ 1 ezz=^~ '> erz =T~ + ^~ > eri = ° '> ezQ = °or r oz dz or

The column vector {e} contains the four non-zero components of the strain:

{ef = [err eQQ ezz erz\

It has four contributions: thermal {s^}, elastic {s}, plastic {sp} and creep {sc}

where the first two are expressed as:

{sih}
T=[aAT a AT a AT 0] and {s f = [e^ s60 szz zrz\

and a is the thermal expansion constant. The components of the elastic strain are related with
the stress by the Hooke law
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where the components of the stress vector are:

and [£>] is the material matrix, which components are determined with the Young's modulus
and the Poisson's ratio.

The plastic term is obtained by a recursive procedure in which the values of stress and strain
are fitted to the uniaxial curve corresponding to the material involved, hi the case of the
present study, in the temperature range involved, only the Zry exhibits a significant plastic
deformation.

When the finite element method is applied, the unknown displacements u and w are written in
terms of the element nodal values and the shape functions. The above differential equations
are thus transformed to linear equations, which are formally similar to those for the thermal
problem.

The physical constants employed in the present calculations [7] are listed in Table I.

TABLE I. ELASTIC AND THERMAL CONSTANTS USED IN THE CODE

Young's modulus E (Pa)

Poisson's ratio //

Thermal expansion a (K"1)

UO2: 2.065xl0n (l+1.091xl0'4 T)
Zry: 1.236x10" - 6.221xlO7 T
UO2: 0.316
Zry: 0.32
UO2: (-4.972xlO"4 + 7.107xl0"6 T + 2.583xlO"9 T2 )/AT
Zry: (- 2.07x10"3 + 6.72x10"6 T)/AT

Thermal conductivity K (W m' K")
UO2:

4 Q4 x i

464+ T
- + 1.216xl0"zexp(1.867xl0'JT)

Zry: 7.51 + 2.09x10'2 T - 1.45xlO"5 T 2 + 7.67x10"9 T":

He: 0.3366 T0668

Temperatures T in K.

2.3 The fission gas release problem

The fission gas model, which was already outlined in some previous works [7, 8], is based on
the following hypotheses:
it The UO2 fuel is considered as a collection of spherical grains where, due to continuous

irradiation, noble gas atoms are produced by fission of the U atoms.
it Due to the virtually complete insolubility of these gases in the UO2 matrix, they either

precipitate within the grains forming bubbles of a few nanometers (intragranular
bubbles) or are released to the grain boundaries forming intergranular, lenticular
bubbles, with sizes of some microns.

it Diffusion is the rate-controlling step.
it Intragranular bubbles are considered immobile and acting as traps for the diffusing gas.
it Irradiation can cause destruction of both types of bubbles.
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ik The gas atoms contained in the destroyed intragranular bubbles return to the diffusion
process. Due to kinetic reasons, a dynamical solubility, much higher than that predicted
by the equilibrium diagram is established.

ik Destruction of intergranular bubbles acts as an additional source of gas atoms that affect
mainly the region of the grain adjacent to the grain boundary.

ik The amount of gas stored in the grain boundary bubbles grows up to a saturation value.
Then, these bubbles interconnect and the gas in excess is released to the plenum and to
the gap between fuel and cladding.

ik The grains grow due to the high temperature of the fuel, especially near its center. The
grain boundary traps the gas, either free or in bubbles, in the swept volume.

The rate of gas release is calculated by means of the diffusion equation in spherical
coordinates, with sources and traps:

—-//— - — 1 -
dt [dr2 r drj

together with the balance equation for trapped atoms:

dm
— =gc-bm

where c and m are the concentrations of free and trapped gas atoms (at/m ), B is the gas
generation rate (at/m3s), g and b are the probabilities of capture and release by traps (at/s) and
D is the diffusion coefficient of the single gas atoms in the UO2 matrix. Assuming stationary
trapping conditions: gc-bm=0 and defining the total gas concentration of gas in the grain
\\i-c+m and the effective diffusion coefficient D '=Db/(b+g), the equivalent equation

dt

is obtained, with the boundary conditions: \\i(r=a)=Or, i.e., the grain boundary at r=a acts as a
perfect sink, and d\\f/dr=0 at r=0 due to spherical symmetry.

The diffusion coefficient D was given by Turnbull et al.[9]; the bubbles' size and
concentration, and the trapping parameters, g and b, are due to White et al. [10]; the equiaxed
grain growth rate is that used by Ito et al.[2].

The saturation concentration of the grain boundary, Ns, is calculated assuming that the gas in
the intergranular bubbles obeys the ideal gas law, that the gas pressure, the external stress and
the surface tension are in equilibrium and that bubbles interconnection occurs when a given
fraction, f$, of the grain boundary area is covered. The value fs-0.5 is usually assigned.
However, it seems appropriate to assume that bubbles interconnection occurs as a percolation
process. To this end, let us consider the grain boundary area divided into regular triangles and
let us put circles, of radius equal to half the triangle side, in some of the crossing lines that
form the triangles. The elementary theory predicts that the percolation threshold occurs when
half of the sites are occupied [14]. This corresponds to a fraction of covered area
/o = 7cV3 712 = 0.453.
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The function representing the gas production rate, (3(r), was already given in. It contains the
uniform gas generation rate due to irradiation, obtained from the fission rate, F (flssions/m s),
times the gas production yield, y, and the contribution due to resolution of intergranular
bubbles, which is proportional to the occupation of the grain boundary, TV. Its expression is:

F for 0<v<a-2X
yF+h(r) for a-2X<r<a

where X represents the penetration depth of the redissolved atoms and the function h(r) is such
that

a

| h(r)4%r2dr = 4na2b'—

a-2X

where N indicates the number of gas atoms per unit area of the grain boundary.

An appropriate choice for h(r) is a Gauss function. For simplicity, a triangular approximation
was used [16]. The proportionality constant b'(l/s) represents the probability of resolution of
the intergranular bubbles and is one of the parameters of the model.

Before saturation, the gas content per unit area of the grain boundary, Nk, at the time tk is
obtained from a balance equation that includes the gas contained in the grain volume at tk-i

the gas contained in the grain boundary at

2 Nk-\

the amount of gas generated by fission during Atk

4 3-nakyFkAtk,

the amount of gas incorporated to the grain and grain boundary by sweeping of the grain
boundary

and the gas contained in the grain volume at tk (C*). The balance equation is

\ +—najcyFjc Atk =zCk + 4nak ——'4
°k-l.
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which, with the initial conditions (t=0, k=0) Co=O and No~O yields Nk at every instant 4-
Before saturation Nk represents the gas content of the grain boundary. After saturation the
grain boundary content is set equal to Ns and the difference Nk— Ns times the grain boundary
area gives the number of gas atoms released to the free volume. This number is determined by

which prevents the decrease of Rk when the temperature decreases.

2.4. Swelling

The contribution to swelling of intragranular and intergranular gas bubbles and of
fission products dissolved in the lattice is considered. In the first case, if a concentration CB of
intragranular bubbles is created and if they are assumed to have the same radius RB, the
swelling they produce is

(4 / 3)nRBCB ,

lintbub. l-(4/3)%R3
BCB

The concentration CB is initially zero and grows up to an stationary value, provided that the
irradiation conditions are kept constant. This implies that the swelling due to this type of
bubbles reaches a saturation value.

To determine the swelling due to intergranular bubbles, we assume that the gas in a bubble
obeys the ideal gas law and that the gas pressure balances the external pressure, Pext, and the
stress due to surface tension 2yAy, where rj indicates the radius of curvature of the bubble's
faces. The swelling produced when a surface concentration N of gas atoms is established in
the boundary of a grain of radius a is

3kTN

ig.b.bub 2a(2y/rf + Pext)

Given that the concentraion N reaches a saturation value, the swelling due to intergranular
bubbles also saturates. On the contrary, the volume increase due to fission products, either
solid or gaseous, dissolved in the lattice, either in interstitial or substitutional sites, although
smaller than that due to gas bubbles, maintains a steady growth. As a rough estimate, we
assume that the swelling due to fission products in the lattice is described by the empirical
relation

AV
= 0.0032Bup[at%]

2.5. Densification

In the simple densification model used in the present work the porous solid is represented by
an assembly of spherical grains which contain a density of spherical pores of equal radius
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uniformly distributed in the solid. The pores are assumed to be small compared to the grain
size and small compared to the interpore spacing. The fission fragments, passing near a pore,
provoke the emission of vacancies to the lattice, which then diffuse to the grain boundary.
This process is similar to the resolution of gas bubbles but given that the pores size is
considerably larger than that of the bubbles, it is unlikely that a pore can be completely
converted to vacancies by a single resolution event. Resolution is rather considered to reduce
the size of the pores. However, due to the similarity of both processes we can assume that the
probability that a vacancy in a pore will be ejected into the lattice takes a value similar to the
rate of bubbles resolution, b. With all these assumptions we obtain the time dependence of
porosity [17]

P=Poe
-bt

where P$ represents the initial porosity. From here, the fractional volume change due to
densification results

'dens.

which is similar to the expression used in Refs. [18].

The total fractional volume change due to swelling and densification is obtained as the
sum of these four contributions. This gives origin to an extra strain term

AV

V

AV

int.bub.

AV
+ •

g.b.bub. V

AV
+ •

V dens.

which is added to the thermal, elastic, plastic and creep contributions.

3. RESULTS AND DISCUSSION

With the code just described the six FUMEX experiments were simulated. The real power
histories were conveniently simplified to save calculation time. Figures 1-6 show the input
data and the results obtained with the code for the central line temperature, the internal rod
pressure and the fractional release. The comparison between some results of our calculations
and the coresponding data presented in the final report of the FUMEX experiment [19] are
summarized in Table II.

The values shown in Table II reveal that the results obtained with our code fit quite well to the
experimental results and in all the cases, except the final ramp of experiment 6S, fall within
the range of values obtained with the other codes. As it was expected, the fitting is better in
the cases of constant or nearly constant power.

The calculation time required to simulate these experiments, with power histories simplified
to about 50 power steps, was about 10 minutes in a personal computer with a 330 MHz,
Pentium II processor.
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FIG.l. Simplified power history and calculation results corresponding to FUMEX 1.
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FIG. 2. Simplified power history and calculation results corresponding to FUMEX 2.
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FIG. 3. Simplified power history and calculation results corresponding to FUMEX 3 rod 2

0 20 40
Burnup, MWd/KgUO2

1500

o
1000

£
CD

E 500

0
0 20 40

Burnup, MWd/KgU02

0 20 40
Burnup, MWd/KgUO2

0 20 40
Burnup, MWd/KgUO2

FIG.4. Simplified power history and calculation results corresponding to FUMEX 4 rod B.
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FIG. 5. Simplified power history and calculation results corresponding to FUMEX 5.
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FIG.6. Simplified power history and calculation results corresponding to FUMEX 6F.
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TABLE H. COMPARISON BETWEEN DATA OF THE FUMEX EXPERIMENT AND THE
PRESENT CALCULATIONS

FUMEX 1

FUMEX 2

FUMEX 3
rod 2

FUMEX 4
rod A

FUMEX 4
rodB

FUMEX 5

FUMEX 6

FUMEX 6F

FUMEX 6S

central temperature at 20MWd/kgUO2, °C
FGR at EOL, %
central temp, at 5MWd/kgUO2 and 40kW/m,
o/-i

FGR at EOL, %
internal rod pressure at power and EOL, bar
central temp, before power ramp, °C
FGR before power ramp, %
FGR after power ramp, %
central temp, at start-up and 30 kW/m, °C
central temp, during power ramp, °C
central temp, at EOL, °C
FRG before power ramp, %
FGR during power ramp, %
FGR at EOL, %
central temp, at start-up, °C
central temp, at the top of the ramp, °C
central temp, at EOL, °C
FGR at EOL, %
pressure at hot standby after power ramp, bar
FGR before period of high power, %
FGR at EOL, %
pressure at start-up, bar
pressure at EOL, bar
FGR at end of base irradiation, %
pressure at end of base irradiation, bar
FGR at EOL, %
pressure at EOL, bar
FGR at EOL, %
pressure at EOL, bar

experimental
740
1.8

3
20.3
1040

1020
1125
1225

1065
1260
1290

23.9
0

5.8
2.3
9.4
16.4

45
84.6
50

92.3

other codes
508-800
0.05-2.18
1210-1820

1.2-28.8
20.1-50

865-1365
0.6-44

5.3-50.5
876-1398
792-1533
1035-2246
0.3-10.6
0.7-26.1
15.4-53.8
953-1522
1200-1593
1213-2203

27.5-50
3-45.3
0-43.1
1-21.7

2.7-66.6
3.9-82.6
7-20.2

7.6-79.5
8.9-38.2
40.4-102
14-50.4

40.4-106.7

this code
734
1.47
1584

3.69
22.9
1042
42.3
50.4
1067
1161
1610

7
7.1

38.6
957
1445
1482
40.3
19.9

0
2.3
1

12.1
19.1
15.7
51.2
44.9
80.6
69.1

5. CONCLUSIONS

Although the results shown above are quite acceptable, the code requires further
improvement. For instance, a gas mixing model needs to be included. The code doesn't
contain an adequate treatment of the power ramps, which are averaged. The description in the
axial direction has to be modified in order to simulate rod elongation. It is expected that these
modifications will improve the performance of the code.
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