

## HIGH YIELDING MUTANTS OF BLACKGRAM VARIETY 'PH-25'

Seeds of blackgram (*Vigna mungo* L.) variety PH-5' were treated with chemical mutagens ethyl methanesulfonate (EMS), nitrosoguanidine (NG), maleic hydrazide (MH) and sodium azide (NaN<sub>3</sub>), each at 3 different concentrations. Thirty six mutant lines developed from mutagenic treatments along with parent varieties were tested in M<sub>4</sub> generation. The mutants showed wide variation in most of the traits and multivariante  $D^2$  analysis showed genetic divergence among themselves. Twenty of the thirty mutants showed genetic divergence from parent. Ten selected high yielding mutants were tested in M<sub>5</sub>. Yield and other productive traits of five high yielding mutants in M<sub>4</sub> and M<sub>5</sub> are presented in Table 1. The mutants, their mutagenic treatment origin and significant changes in productive traits from parent variety PH-25 are as follows:

| PE2-1: | (EMS, 0.4%)  | . Increase | in plant | height, | bunches/plant, | pods/plant, | seeds/pod |
|--------|--------------|------------|----------|---------|----------------|-------------|-----------|
|        | and 100-seed | weight.    |          |         |                |             |           |

PS1-3: (NaN<sub>3</sub>, 0.05%). Increase in bunches/plant and pods/plant.

PE1-2: (EMS, 0.2%). Early maturity, increase in pods/plant and 100-seed weight.

PS2-1: (NaN<sub>3</sub>, 0.03%). Increase in bunches/plant and pods/plant and 100-seed weight.

PM2-3: (MH, 0.02%). Early maturity, increase in bunches/plant and pods/plant.

Table 1. Yield and productive traits of high yielding mutants of blackgram variety PH-25 in  $M_4$  and  $M_5$  generations

| Mutant   |                  | Days to  | Plant ht. | Bunches/    | Pods/ | Seeds/ | 100-seed | Yield  |
|----------|------------------|----------|-----------|-------------|-------|--------|----------|--------|
|          |                  | maturity | (cm)      | plant (No.) | plant | pod    | weight   | (q/ha) |
|          |                  |          |           |             | (No.) | (No.)  | (g)      |        |
| PE2-1    | $M_4$            | 89.3     | 38.2      | 9.9         | 26.6  | 3.87   | 4.24     | 10.92  |
|          | $M_5$            | 93.7     | 41.3      | 9.9         | 21.6  | 3.67   | 4.36     | 9.12   |
| PS1-3    | $M_4$            | 87.7     | 37.6      | 9.6         | 28.4  | 3.76   | 4.01     | 10.78  |
|          | $M_5$            | 92.3     | 40.1      | 9.8         | 23.7  | 3.53   | 4.18     | 8.89   |
| PE1-2    | $M_4$            | 86.0     | 33.2      | 8.2         | 27.3  | 3.69   | 4.04     | 10.20  |
|          | $M_5$            | 88.0     | 36.1      | 8.7         | 22.5  | 3.48   | 4.33     | 8.84   |
| PS2-1    | $M_4$            | 86.7     | 35.7      | 10.1        | 27.9  | 3.60   | 4.01     | 9.98   |
|          | $M_5$            | 90.7     | 38.6      | 10.1        | 24.9  | 3.47   | 4.24     | 8.61   |
| PM2-3    | $M_4$            | 86.0     | 35.7      | 10.2        | 28.7  | 3.67   | 3.82     | 9.95   |
|          | $M_5$            | 88.7     | 38.8      | 10.1        | 24.7  | 3.47   | 4.03     | 8.43   |
| PH-25    | $\overline{M}_4$ | 88.7     | 34.4      | 7.5         | 20.5  | 3.64   | 3.88     | 7.25   |
| (Parent) | $M_5$            | 91.7     | 38.0      | 8.2         | 17.6  | 3.41   | 4.09     | 7.36   |
| C.D (5%) | $M_4$            | 1.7      | 3.1       | 1.2         | 3.1   | 0.21   | 0.14     | 0.52   |
|          | M <sub>5</sub>   | 2.4      | 3.3       | 1.6         | 2.7   | 0.21   | 0.23     | 0.92   |

(Contributed by MISRA, R.C., B.D. MOHAPATRA and B.S. PANDA, Regional Research Station, Semiliguda, Post Box No. 10, Sunabeda – 763 001, Dist. Koraput, Orissa, India)