

Mutant/		Days to	Plant	Capitula/plant	Seeds/capitulum	1000-seed	Seed
variety/season		maturity	height			weight	yield
			(cm)			(g)	(q/ha)
ONS-107	K	115	168	25.8	18.4	3.82	5.04
	R	108	78	26.2	19.0	3.85	5.18
ONS-114	Κ	115	172	22.1	18.8	3.89	4.27
	R	106	81	22.3	19.9	3.98	5.27
ONS-125	K	110	156	18.9	18.8	4.06	3.86
	R	103	80	22.1	20.4	4.23	5.52
ONS-130	Κ	107	138	20.4	18.2	3.96	4.44
	R	99	71	20.9	19.6	4.18	4.56
IGP-76 (NC)	Κ	111	163	16.3	17.4	3.63	3.16
	R	103	73	19.6	18.7	3.92	4.46
GA-10 (ZC)	Κ	118	184	18.4	17.4	3.79	3.53
	R	107	83	20.9	19.9	3.94	4.73
S.Local (LC)	Κ	120	190	20.2	16.4	3.46	3.56
	R	110	85	21.2	16.6	3.55	3.92
C.D. (5%)	Κ	5.4	11.4	2.6	2.2	0.26	0.85
	R	4.1	7.2	2.2	1.9	0.22	0.72

Table 1. Performance of mutant and check varieties of niger during Kharif and Rabi seasons average over 1990-91 and 1991-92

(Contributed by MISRA, R.C., Regional Research Station, Semiliguda, Post Box-10, Sunabeda 763002, Orissa, India)

SEED MUTAGENESIS IN Portulaca grandiflora (Hook)

Betalain pigments have been used as natural additives. Despite their importance, the biochemistry and genetics of betalain synthesis remain relatively undetermined [1]. *Portulaca grandiflora* represents an ideal material for genetic analysis [2]. In the present work, seed mutagenesis was examined with a view to enhance the chance of detection of new genetic markers in this species.

White (PgBmj) and red (PgR) seeds of *Portulaca grandiflora* were treated with ethyl methanesulfonate (EMS) at concentrations ranging from 1.2 to 40% in 0.1 M phosphate buffer (pH 7.0 at $22 \pm 2^{\circ}$ C) for 4 hours, or with sodium azide (NaN₃) at concentrations ranging from 2.5 to 30 mM in 0.1 M phosphate buffer (pH 3.0 at $22 \pm 2^{\circ}$ C) for 1 hour. In another set of experiments the presoaked seeds (sterile water, 6, 16, 28 hours at room temperature 22°C) were treated with 1.2% EMS and 2.5 mM NaN₃ for two hours with shaking of the seeds at 30°C. After the mutagen treatments, the seeds were washed to removing the mutagens.

In the M_1 generation, germination and survival percentage of both cultivars decreased. For the selection of mutants, M_2 segregation progenies were raised from seeds of M_1 plants. The frequency of mutated plants was evaluated in the M_2 generation (Table 1).

Cultivar	Mutant types	Total No. of plants	Mutated M ₁ plants
PgBmj	dwarf	938	217
	late flowering	938	99
	female-sterile	252	2
	male-sterile	162	6
PfR	dwarf	459	144
	dwarf (altered leaves)	409	1
	late flowering	459	53
	female-sterile	370	7
	male-sterile	459	5

1 able 1. Frequency of viable mutations in the M ₂ generation of <i>Portulaca granali</i>	the M ₂ generation of <i>Portulaca grandiflora</i>
--	---

Five morphological mutations, namely, dwarf (Dw_1) , late flowering (Flt), male-sterile (Sm), female-sterile (Sf) and dwarf mutant with altered leaves (Dwr_2) were selected from the M_2 population. Some mutants, identical with those scored in *Portulaca* were identified in another species [3, 4].

The higher frequency of mutants was obtained from treatment of seeds with 4.8% EMS concentration in variety PgR and from 20 mM NaN₃ treatment in variety PgBmj. In the M_3 generation, segregation for Dwr_1 , Dwr_2 , Sm and Sf revealed that these mutations are recessive to normal plants. The experiment proved that EMS and NaN₃ were effective in inducing phenotypic variation. This is the first report on inducing variability in *Portulaca* through mutagenic treatment. The new gene markers identified will be of great value for studying the genetics of *Portulaca grandiflora*.

REFERENCES

- [1] Rossi-Hassani, B. D. and J. P. Zryd, 1994. Genetic instability in *Portulaca grandiflora* (Hook). Ann.Genet. **37**: 53-59.
- [2] Rossi-Hassani, R. D. and J. P. Zryd, 1995. Evidence of transposition in *Portulaca grandiflora* (Hook). Ann.Genet. **38**: 90-96.
- [3] Vaidya, K. R., 1994. An induced female sterile mutant in roselle (*Hibiscus sabdarifa* L.). Rev.Brasil.Genet.(Brazil.J.Genet.). 17: 309-311.
- [4] Yatou, O. and S. H. Lida, 1994. Vivaparous mutants in rice, Oryza sativa L. Breed.Sci. 44: 71-73.

(Contributed by **BENNANI**, F. and B.D. ROSSI-HASSANI, Laboratoire de biochimie and biologie moléculaire, Faculté des sciences -Dhar el Mehraz, Fès B. P. 1796, Morocco)

GENETIC ANALYSIS OF SUNFLOWER CHLOROPHYLL MUTANTS

The method of getting the chlorophyll mutations in sunflower was developed by Y.D. Beletskii in 1969 with the use of N-nitroso-N-methylurea (NMH) [1; 2]. Certain concentrations of NMH are known to induce plastid mutations in growing seeds, and their yield depends on the duration of the exposure [3]. The given work presented studieds on the influence of rifampicin (R) and 2,4-dinitrophenol (DNP) on the genetic activity NMH, as an inductor of plastid and nuclear mutations.