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Abstract

This report has described the software safety analysis techniques and the engineering guidelines for

developing safety critical software to identify the state of the art in this field and to give the software

safety engineer a trail map between the code & standards layer and the design methodology and

documents layer. We have surveyed the management aspects of software safety activities during the

software lifecycle in order to improve the safety. After identifying the conventional safety analysis

techniques for systems, we have surveyed in details the software safety analysis techniques, software

FMEA(Failure Mode and Effects Analysis), software HAZOP(Hazard and Operability Analysis), and

software FTA(Fault Tree Analysis). We have also surveyed the state of the art in the software reliability

assessment techniques. The most important results from the reliability techniques are not the specific

probability numbers generated, but the insights into the risk importance of software features. To defend

against potential common-mode failures, high quality, defense-in-depth, and diversity are considered to

be key elements in digital I&C system design. To minimize the possibility of CMFs and thus increase the

plant reliability, we have provided D-in-D&D analysis guidelines.
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I. INTRODUCTION

I.I Purpose

The development, use, and regulation of computer systems in nuclear ireactor Instrumentation and

Control (I&C) systems to enhance reliability and safety are the complex issues. Software cannot be

proven to be error-free, and therefore is considered susceptible to comrnon-mode failures because

identical copies of the software are present in redundant channels of safety-related systems. To

defend against potential common-mode failures, high quality, defense-in-depth, and diversity are

considered to be key elements in digital I&C system design. This report describes the software safety

analysis techniques and the engineering procedures for developing safety-critical software. This

report has a role of glue to fill a gap between the mandatory requirements (what) and the work

practices (how) when conducting the processes and activities intended to improve the safety of

safety-critical software.

National 10CFR50
International 10CFR52

Codes RG, SRP

1. Codes

/ . IEEE Stds
/ 2. Standards lECStds

/ 3. Methods & Techniques

/ 4. Specific Procedures

/ 5. Design Documents

Fig. 1.1 Standard Framework

There is a framework of methods, as illustrated in Fig. 1.1, to justify the safety of a critical

software, from codes and regulations, through industry-specific standards, generic standards and

guides, to the developer's work practices. The codes and standards layer can be roughly grouped as

an international and a member country's positions and standards, We have surveyed the 3T^ layer

techniques to guide the gap between the 2n^ and 4 t n layer, which may also be a glue to resolve the

discrepancies between the international and national standards, specially to meet the related 1EC and

IEEE framework of standards.

The purposes of this report are to identify the state of the art in this field and to give the software

safety engineer a rough map between the code & standards layer and the design methodology and

documents layer for the software important to safety in nuclear power plants.



The objective of this report is to survey methods which can be used to evaluate the reliability and

safety of a programmable system in during all phases of its life cycle. It includes all phases starting

with the first concepts of the system and continues to the final installation of the system. The

objective is to provide the developer with a set of methods which can be used as an as early stage in

the development as possible, to ensure that the development proceeds in a sound way. The evaluation

methods will generally be of qualitative nature, although quantitative methods will be described

where they are appropriate. The evaluation should be based on all relevant evidences available from

documentation at each stage of the system development. The evaluation methods will be based on a

variety of techniques, including questionnaires, well-known risk analysis methods, document metrics,

statistical methods etc.

Important issues to improve safety integrity are the structure of an I&C system. The structure to

be chosen for an I&C system depends basically upon the structure of the process system to be

controlled and the degree of dependability required. Redundancy, diversity, defense-in-depth as the

basic means for building high integrity systems are applied both for hardwired and software based

I&C systems but in the latter case a set of additional constraints have to be observed which are

characteristic of programmable processors. In this context common mode failures, which may be

introduced by software faults, are of specific concern. A distributed software-based system usually

has, at least to some extent, data sharing and the same software modules in redundant channels which

make the overall system vulnerable to CMF. We have surveyed the techniques and guide to protect

the CMF.

1.2 Scope

This report describes the software safety analysis techniques and the engineering procedures

according to the software safety plan used for the development, procurement, maintenance, and

retirement of safety-critical software; for example, software products whose failure could cause loss

of life, serious harm, or have widespread negative social impact. This report requires that the plan be

prepared within the context of the system safety program.

Because software safety can be analyzed from the relationship between a logical fault of software

and a physical hazard of a system, the software safety process should be a subset of the system safety

process. However, current approaches for analyzing the software safety, originated from system

safety techniques, do not provide formal basis of conducting systematic safety analysis of software,

in particular, for software requirements. Software fault tree analysis is the most commonly employed

safety analysis technique, and its industrial practice depends heavily on technical expertise of human

analysts about the physical hazard and is often ad hoc. The scope of this report includes only the

safety aspects of the software. This report does not contain special provisions required for software

used in distributed systems or in parallel processors.
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Fig. 1.2 Integration of Safety Analysis Methods

There are already a number of methods and tools that claim to assist the software safety analysis,

several of which will be discussed in more detail later. However, it is our belief that these methods

suffer from poor integration into the system development lifecycle at several levels. There must be an

integrated safety analysis method that has several dimension as shown in Fig. 1.2 because of

following reasons:

1. Because it is critical to analyze the safety of a whole lifecycle to develop software, there

must be an integrated and iterative safety analysis method through a software development

lifecycle. The safety of software cannot be analyzed by applying a method at the final

product. There are no failure modes according to an aging of components like in electro-

mechanical hardware. When analyzing the safety of software using a traditional fault tree

analysis method, it is inappropriate to analyze the safety according to the structure of

components and to apply numbers into the leaf modules of software in order to calculate a

quantitative reliability.

2. It is preferable to integrate the safety analysis method and a formal development method in

a semantic level because a development process and a safety analysis process are the

different sides of a same coin. It will make easy to change the design according to the

analysis results, and make the safety analysis method be more systematic, which will not

depend on engineering judgment of analysts.

3. Software itself is not hazardous. A software safety analysis is to search the logical

contribution of software faults to the physical hazard of system. Software safety analysis

method must be able to integrate with hardware safety analysis and human safety analysis,

and also an upper level analysis method of system safety

4. Even though there are many possible methods to be applied at the analysis of software

safety, no one technique can guarantee the completeness of safety analysis. It is preferable

to be integrated among those methods, such as Failure Modes and Effect Analysis (FMEA),

Failure Modes, Effect, and Criticality Analysis (FMECA), Fault Tree Analysis (FTA), and

Hazard and Operability (HAZOP), and configurable according to applications.



The final goal of our research on the software safety is to try to establish the integrated safety

analysis approach in all the dimensions. We have developed a software safety analysis technique, the

Causal Requirements Safety Analysis (CRSA) [LeeOO]. The goal of CRSA is to present a software

fault tree analysis method, which can be integrated with a formal method and a system safety

analysis method. The target system to be analyzed by CRSA is an embedded real-time system like a

digital protection system in LMR. Generally, a system consists of the hardware, software, and human

(or operator). CRSA is focusing into only the software safety analysis at a conceptual requirements

phase, by assuming that the hardware and human factors are perfect.

1.3 Application

The engineering procedures for the software safety are prepared under the direction of project or

system safety program management to address the identified potential software safety risks. The

level of detail in, and the resources required by an software safety plan will be determined by factors

including the type and level of risks associated with the software product, the complexity of the

application, and external forces such as contractual requirements.

Software is a portion of a system. Other portions of that system include computer hardware, other

devices (possibly including mechanical, electrical, chemical, or nuclear devices), and people.

Software alone is not a safety issue; it is only an issue in the context of this larger system. Hence,

software safety must begin with the larger system. Software safety must be considered in the context

of its associated hardware, environment, and operators. The engineering procedures for the software

safety need to address interfaces with these elements.

1.4 Modeling Safety

1.4.1 Security Model

A general model for security systems is that certain assets exist, and certain threats exist. Typical

assets are people, equipment and information. Examples of threats are assassins, saboteurs and spies.

A security system has three primary functions. First, keep the assets and threats apart. Second, in

recognition that this is not always possible, detect any contact between an asset and a threat in time to

prevent damage. Third, in recognition that this is not always possible either, detect damage in time to

permit some recovery. Consider the case of protecting military documents. The documents will be

kept in a secure room surrounded by several layers of fences and guards; getting access to the room

requires increasing scrutiny as one passes through the layers of defense. The room itself will contain

a variety of detection devices, designed to detect pressure, heat and motion. Finally,

counterespionage agents keep alert to any indication that the documents have been compromised.

1.4.2 Basic Safety Model



An analogous model can be created for safety systems. Again, there exist certain assets and

certain threats. Typical assets are people, equipment, the living environment and the non-living

environment. Examples of threats are fire, poison and explosion. A safety system has three primary

functions. First, keep the assets and the threats apart - that is, keep the system in a nonhazardous state.

Second, if the assets and threats start coming into contact, separate them. That is, if the system moves

into a hazardous state, the safety system is expected to move it back to a nonhazardous state. Third, if

contact cannot be prevented, attempt to reduce the damages. In other words, if an accident occurs,

control the damages. In the following, the first two functions are grouped under the general heading

of accident-prevention.

1.4.3 Classification of Safety Systems

The safety portions of application systems that involve safety considerations can be classified in

different ways. Here's one way to cover the accident prevention functions.

1. First order systems are those that are immediately concerned with hazards. That is, first

order systems actively work to keep assets and threats apart. There are at least two

subclasses.

a) Shut-down systems have, as a basic goal, to monitor the threats, and (if a hazardous

event occurs) to cause the application system to move to a safe inactive state. That is,

a shut-down system attempts to prevent an accident by ceasing operation (shutting

down) in a safe manner, in order to provide time for diagnosis and remedial action.

Examples are shut-down systems in power plants and chemical plants. Automated

highway systems may also be examples.

b) Keep-going systems have, as a basic goal, to monitor the threats, and (if a hazardous

event occurs) to take remedial action to remove the threat. That is, a keep-going

system will itself diagnosis the problem and take remedial action. This is done

because shutting down is not a feasible option. Examples are aircraft control and space

craft control. It appears that most keep-going systems involve vehicles that are not in

contact with the ground.

2. Second order systems are those used to create or service first order systems. Simulation

models of aircraft and power plants are examples. Information management systems (used,

for example, in decision making in a hospital patient-care application) also are examples of

this category.



1.4.4 Refining First Order Models

There are probably many ways to refine the accident-prevention first-order safety model. The

method presented here divides the safety functions into three complementary principles (submodels),

termed diversity, defense-in-depth and quality parts.

• Defense-in-Depth (DiD or D-in-D) means that there is more than one way to keep the

assets and threats separated. In a chemical plant where a potentially explosive batch is

being mixed, (1) use a strong vessel capable of resisting considerable over-pressure, (2)

place the vessel in an isolation building with strong walls, (3) locate the building in an

isolated portion of the plant site, (4) locate the plant away from population centers, and (5)

have emergency evaluation procedures worked out in advance.

• Diversity means multiple ways to obtain the same information or to carry out the same

actions. Examples are multiple temperature sensors in the vessel, and multiple valves on

the gas feed line to the heater. Use of a temperature sensor and a pressure sensor, either of

which is sufficient to deduce over-pressure, is also an example.

• Quality parts means building components of sufficient quality that failure is rare. The three

principles are complementary. They should be used in designing a safety system in a plant

so that:

- The components of the plant are of sufficient quality that the safety system is rarely

needed. A possible goal might be no more than a few times per year.

- The safety system is of sufficient quality that failure of individual components of that

system are rare. Say, a few times per decade.

- Diversity is used so that if a component of the safety system does fail, other

components are available as substitutes. A goal might be that failure of the entire

safety system happens a few times a century.

- D-in-D&D is available to handle the rare instances when the safety system does fail.

This might reduce the probability of damage to assets to a few times per millennium.

The principles apply at multiple levels of design. For example, this set of models is itself an

example of defense-in-depth. These principles are well known in the nuclear power field, and have

been used to design nuclear power plants for many decades. Observation indicates that they are used

in many other applications as well.

1.5 Safety Issues of Digital I&C Software for the LMR

We had already identified the issues on the software verification and validation (V&V)

techniques for the digital instrumentation and control system of the advanced nuclear power plants.

They include the technologies against the common-mode software failures, the safety and reliability



assessment methods, practical formal methods, and so on. Another issue in this problem is how will

software reliability measures be used in PRA and what characteristics must the software reliability

measure have.

Along with important benefits, such as computational capabilities and flexibility, digital I&C

systems introduce potential new failure modes that can affect operations and margins for safety. In

order to successfully apply the digital technologies into the I&C system of the LMR, we have

identified the technological and strategic issues.

• Digital I&C requires rigorous treatment of the system aspects of their design and

implementation. For example, system level hazard analysis should extend into software

components by systematic and formal approaches to ensure that software does not

contribute to system hazards.

• For software quality assurance, the main issue is how to define the generally accepted

methodologies in the spectrum of technologies related to the process and product assurance,

in the trade-off between the rigorous approaches and cost-effective approaches. In other

words, we have to be able to answer these questions, "how safe is safe enough?," "how

much test is test enough?," and so on.

• Digital technology introduces a possibility that common-mode software failures may cause

redundant safety systems to fail in such a way that there is a loss of safety function. There

are still lots of uncertainties in the technologies against the common-mode software failure.

• We have identified the issues on the safety and reliability assessment methods. The bulk of

the safety case for a 'traditional' engineering discipline, e.g., for mechanical or hydro-

mechanical systems, comprises safety analyses, which provide the evidence that the

expected hazard rate is tolerable. This evidence is based on known component failure rates,

and an analysis of the design. However, it is comparatively rare to see a safety case which

includes the use of safety analyses on the software.

• We have identified the issues on Commercial-Off-The-Shelf (COTS) software assessment

methods, including the assessment of ASIC and PLC based software.

• We have identified that there must be an investigation of effective testing techniques,

including the linkage between testing and reliability methods.

• We identified the issues on practical formal methods, and the integrated approach for the

multi-disciplined engineering. It will be studied how formal methods can contribute to the

elicitation, specification, and validation of software requirements to fill the gap between

system and software. A research topic will be the formalization of traditional software

specification, with particular emphasis on graphical formal methods.



2. MANAGEMENT OF SOFTWARE SAFETY ACTIVITIES

2.1 Introduction

The goals of system safety can be achieved only with the support of management. In general,

management is responsible for setting safety policy and defining goals; defining responsibility, fixing

accountability, and granting authority; establishing communication channels; and setting up a system

safety organization.

Management has its greatest influence on safety by setting safety policy and goals, defining

priorities between conflicting goals, establishing procedures for detecting and settling goal conflicts,

and setting up incentive structures.

A policy is a written statement of the wisdom, intentions, philosophy, experience, and belief of an

organization's senior managers that guides attainment of stated goals. A safety policy should define

the relationship of safety to other organizational goals and provide the scope for discretion, initiative,

and judgement in deciding what should be done in specific situations.

A safety policy contains such things as the goals of the safety program; a set of criteria for

assessing the short- and long-term success of that program with respect to the goals; the values to be

used in trade-off decisions; and a clear statement of responsibilities, authority, accountability, and

scope of activities. Procedures must exist for reporting back to the policymakers any problems in

carrying out the policy.

A safety policy may be broken into two parts: (1) a document that concisely states general policy

and organization and (2) a more detailed document or set of documents including standards, manuals,

and handbooks describing rules and procedures. Detailed standards have both advantages and

disadvantages: They ensure a minimum level of practice, but they also can inhibit flexibility and

optimisation for particular circumstances.

Not only must a safety policy be defined, it must be disseminated and followed. Management

needs to ensure that safety receives appropriate attention in decision making. Progress in achieving

goals should be monitored and improvements identified, prioritised, and implemented. The flexibility

to respond to safety problems needs to be built into the organizational procedures. For example,

schedules should be adaptable to allow for uncertainties and possibilities of delay due to legitimate

safety concerns, and production or productivity goals must be reasonable.

Perhaps most important, there must be incentives and reward structures that encourage the proper

handling of trade-offs between safety and other goals. Not only the formal rewards and rules but also

the informal rules (social processes) of the organizational culture must support the overall safety

policy.



When conflicting goals exist, proper trade-offs can be ensured using two management

approaches: (i) establish strict and detailed guidelines, which sacrifices flexibility, or (ii) leave the

decisions to employees, which allows more opportunity for major errors of judgement. A

compromise strategy between the two extremes leaves much of the decision-making authority in the

hands of employees, but also establishes incentives for following general organizational safety

policies. For this compromise strategy to work, employees need to feel that they will be supported by

management when they make reasonable decisions in favour of safety over alternative goals.

2.2 Software Safety Analysis Reporting Requirements

There are three major types of documentation in system safety: planning documents, information

systems, and reports.

2.2.1 Software Safety Planning Documents

The system safety program plan (SSPP) is a management document that describes the system

safety objectives and how they will be achieved. It provides a regulatory agency, contracting agency,

or manager with a baseline with which to evaluate compliance and progress. Developing and gaining

approval of a plan should be the first step in any safety-critical project.

Plans for subsystem safety should be part of the SSPP rather than in separate documents. Safety

is a system quality, and separate documents for the subsystems appears to have only disadvantages.

Thus planning for software safety should be included within the overall system safety plan; it should

not be a separate and hence potentially inconsistent or unintegrated process. Software development

too often is separated from the overall system engineering process, with unfortunate results. However,

the subsystem development groups should have major input into the SSPP, or compliance may be

difficult to achieve.

Many standards exist for program plans-each is a little different, but all contain similar

information. Devising a general plan for everyone is not practical, however: Each plan needs to be

tailored to its project and goals and to fit the corporate personality and management system.

As shown in Fig. 2.1, the following information should be included in the software safety plan

document under SSPP.

2.2.2 Safety Information System

Although setting up a comprehensive information system can be time consuming and costly, such

a system is crucial to the success of safety efforts, and resources invested in it will be well spent.



1. Purpose
2. Definitions, acronyms and abbreviations, and references
3. Software safety management

3.1 Organization and responsibilities
3.2 Resources
3.3 Staff qualification and training
3.4 Software life cycle
3.5 Documentation requirements
3.6 Software safety program records
3.7 Software configuration management activities
3.8 Software quality assurance activities
3.9 Software verification and validation activities
3.10 Tool support and approval
3.11 Previously developed or purchased software
3.12 Subcontract management
3.13 Process certification

4. Software safety analyses
4.1 Software safety analyses preparation
4.2 Software safety requirements analysis
4.3 Software safety design analysis
4.4 Software safety code analysis
4.5 Software safety test analysis
4.6 Software safety change analysis

5. Post development
5.1 Training
5.2 Deployment
5.2.1 Installation
5.2.2 Start-up and transition
5.2.3 Operations support
5.3 Monitoring
5.4 Maintenance
5.5 Retirement and notification

6. Plan approval

Fig. 2.1 Contents of Software Safety Program Plan

Control of any activity requires adequate and accurate information. Documenting and tracking

hazards and their resolution are basic requirements for any effective safety program. All hazards need

to be recorded, not just the most critical; otherwise, there is no record that a particular condition has

already been evaluated. Because the hazard list may become quite large, hazard or problem priority

lists summarising the most significant information on complex programs can be useful for reviews

and management oversight. The complete hazard log and audit trail will show what was done and

how and why decisions were made.

An organization's system safety information system will contain such information as the System

Safety Program Plan and the status of its activities, results of hazard analyses, tracing and status

information on all known hazards, incident and accident information including corrective action,

trend analysis data, and so on. Interfaces with various project databases, such as the software

configuration control database, should be well defined.

A crucial aspect of any management system is the feedback of information on which to base

future decisions. Information can be used to describe, to diagnose, to compare, to evaluate, and to

improve. For example, a safety information system can provide the information necessary (1) to

detect trends and deviations that presage an accident, (2) to evaluate the effectiveness of safety

10



controls and standards, (3) to compare models and risk assessments with actual behaviour, and (4) to

identify and control hazards and to improve designs and standards.

An effective information system must consider not only accidents, but also incidents or

near-misses. An accident usually occurs only when the complete set of necessary conditions exist; a

near miss or incident results when only some of these conditions exist. Whether all or some of the

causal conditions exist at any time is often a matter of luck-usually the ratio of incidents to accidents

is several orders of magnitude. Examination and understanding of near misses can warn of an

impending accident and also provide important information about what conditions need to be

controlled.

No matter how the information is collected, understanding its limitations and inaccuracies is

important. Simply collecting information is not enough - the information must be accurate and timely,

and it must be disseminated to the appropriate people in a useful form. Three factors are involved:

information collection, analysis, and dissemination

2.2.2.1 Collection

Various types of information can be collected: performance and operational data, accident and

incident investigations, results of studies and evaluations, technical information such as standards,

manuals, and professional literature, and so on. Operational data, obviously, is the most difficult to

accumulate; only a limited sample of operational data may be available for a particular hazard.

Collection of such data for a single company or organization may be very expensive and require a

large quality control group working over an extensive period of time. Industry-wide efforts may be

more practical, but it is difficult to obtain comparable data from multiple sources in an unbiased and

systematic manner. Data may be seriously distorted by the way it is collected. The two main

problems in collecting data are systematic filtering or suppression and unreliability. Data usually

must be obtained from written descriptions of events in a report about an accident or near miss. Such

reports tend to identify only the proximal events (events closest in time) and not events that are early

in the sequence or causal factors that are at a higher level in the causal framework such as

management problems or organizational deficiencies.

Hazards, by their nature, involve relatively rare and unpredictable events, and these events are

therefore difficult to describe. Data collection is more reliable for accidents that are similar to those

that have occurred in the past than for accidents in new types of systems where past experience on

hazards and causal factors are less well understood. Software errors and computer problems are often

omitted or misdescribed because of lack of knowledge, lack of accepted and consistent

categorisations for such errors, or failure to consider them seriously as a causal factor.
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2.2.2.2 Analysis

Data, once collected, needs to be analysed and summarised. Systematising and consolidating a

large mass of data into a form useful for learning is difficult. Raw quantitative data can be misleading

and should always be tested for statistical significance. Remember, however, that statistical analysis

alone is not enough-it too can be misleading and can leave out important information for hazard

control.

2.2.2.3 Dissemination

Dissemination of information in a useful form may be the most difficult aspect of maintaining an

information system. If information is not presented to decision makers in a meaningful way, learning

from the data is inhibited. Traditionally, information has been disseminated in checklists, standards,

and codes of practice.

Accidents are often repeated, and accident/incident files are one of the most important

information sources for hazard analysis and control. However, the information needs to be presented

in a form that people can learn from, apply to their daily jobs, and use throughout the life cycle of

projects, not just in the conceptual design stage. Accidents are frequently the result of risk decisions

that were changed by default when operations changed or are due to insufficient updates to the

hazard analysis when engineering modifications were made.

2.2.2.4 Safety Reports

The hazard report contains a description of the potential problem and what is being done about it.

These reports are compiled into the hazard catalogue or log to form the basis for the hazard auditing

and tracking system. As each hazard is identified, it should be documented on a uniquely numbered

hazard report form and tracked through closure.

The hazard report form includes, at least, a description and classification of the hazard, a history

of action taken, and some verification that the action has been taken. It might also include the system

or subsystem involved, the operational phase, the cause(s) and possible effects, and corrective or

preventive measures.

In the normal design documentation, a section should be included that describes the basis on

which safety-related design decisions were made and any special design features that were

incorporated for safety reasons. This information is essential for safety reviews and also for

maintenance so that safety features are not inadvertently eliminated because the reasons they were

included are not known. It can also be useful in writing operating and maintenance procedures, safety

manuals, and training manuals.
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The various hazard analyses used in a program generate hazard analysiis reports on the procedures

used and the results. These reports usually are combined into one safety assessment report that

integrates all system, hardware, and software analyses.

A final safety assessment report may be produced which is used (1) to determine compliance with

the program safety requirements and (2) to provide system users and operators with a comprehensive

description of the system hazards and the hazardous subsystems and operations associated with the

system and (3) to provide reviews with a complete evidence of safety determination. This report

might contain some or all of the following:

• General or detailed system and subsystem descriptions and operating characteristics

• Documentation on each hazard-including potential causes, implemented controls, results of

the verification activities, close-out status, and any waivers or deviations from

requirements

• Risk assessments

• Summaries of all hazard analysis and verification activities-including a description of the

methods used, the sources of any basic data used, and simplifications and assumptions

made in the analysis and their potential influence on the results

• Safety-related design or operating limits

• Hazardous materials

• Contingency/emergency procedures

• Incident/accident record-a record of all safety-related failures or incidents during

development, previous use, or other programs using similar hardware or software, along

with all corrective action taken to prevent recurrence.

Figure 2.2 is one of the software hazard reporting forms of LMR.
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LMR software hazard reporting form

System

Subsystem

Operation/Phase

Hazard Level

Date

Closure

Hazard

Possible Effects

Hazard Controls Status Reference

Verification methods Status Reference

Remarks

Closure Concurrence

Software Safety Engineer

System Safety Engineer

Safety Director

Date

Date_

Date

Fig. 2.2 LMR Software Hazard Reporting Form
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3. SOFTWARE SAFETY ACTIVITIES

3.1 Tasks and Methods

Software hazard analysis is performed within the context of the overall system design. It

addresses aspects of the system design that contribute to the system's ability to perform assigned

tasks derived from the plant's safety mission as well as aspects derived from the plant's primary

mission that could be detrimental to the plant's safety mission. Consequently, those performing the

software hazard analysis must understand the role of the software in the performance of the system

safety functions and system control and monitoring functions. The effect of the software acting

within the system with respect to its potential impact on the accomplishment of the plant's safety

mission must be understood. This understanding is obtained from the system safety analysis; in

particular, the system's hazard analysis.

This guideline does not discuss methods or techniques for performing the recommended hazard

analyses. Many different hazard analysis techniques have been proposed and are used, but all have

serious limitations and only a few are useful for software. But whether these techniques or more ad

hoc techniques are used, the software behaviours that can contribute to system hazards must be

identified. The possible methods or techniques are Checklists, Hazard Indices, Fault Tree

Analysis(FTA), Management Oversight and Risk Tree Analysis(MORT), Event Tree Analysis(ETA),

Cause-Consequence Analysis(CCA), Hazard and Operability Analysis(HAZOP), Interface Analysis,

Failure Mode and Effects Analysis(FMEA), Failure Modes, Effect, and Criticality Analysis(FMECA),

Fault Hazard Analysis(FHA), and State Machine Hazard Analysis. There are also many Human Error

Analysis Techniques and other possibilities. FTA is the most popular technique for software hazard

analysis not in the requirements phase but in code level. Most of these techniques has mutual aid

property. This guideline does not prescribe specific methods and techniques.

The software hazard analysis described could require a significant effort when applied to the

digital computer-based I&C system for modern reactor control and protection systems or another

process I&C system whose failure could result in significant adverse public, environmental, or

financial consequences. It must be recognised that in reality, software ha2:ards analysis is only one of

several activities necessary for the development of software to be used in safety-critical applications.

Principal activities in this regard include configuration management, verification and validation, and

quality assurance activities.

One can consider where software hazards analysis offers a unique capability to improve the

integrity of safety-critical software. A major impact of the results from the software hazards analysis

is on changes to the software requirements specification for the purpose of eliminating identified

hazards that are affected by the software or that are not adequately managed by the software. Another
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major impact of these results is on the software architecture, in particular the addition of software

architectural features that improve the management of hazards through the concept of

defence-in-depth.

The impact of software hazards analysis on the software design specification, with the exception

of the use of potentially complex operations associated with data flow and control flow, is

overshadowed by the need to address concerns related to correctness through the traceability and

V&V aspects. The emphasis on correctness is even more true for the software code.

In conclusion, limiting the bulk of the software hazards investigation to the software

requirements specification and the software architectural design and the judicious selection of the

events to be assessed should lead to a hazards analysis result that (1) minimizes the probability of

occurrence of those hazards with the more significant consequences and (2) minimizes the increase in

design requirements that could have the potential for an increase in the complexity of the design.

3.2 Prerequisites to Software Hazard Analysis

Considerable work is required before a software hazard analysis process can begin. The following

list of activities will generally require some modifications to fit specific projects. Since iterations of

analyses are necessary as the software development proceeds, no strict chronology is implied. For

example, a Preliminary Hazard Analysis is needed before a Software Requirements Hazard Analysis

can take place. However, the results of that analysis or some other requirements analysis might result

in a system design change, which in turn might require modifications to the Preliminary Hazard

Analysis.

Each of the prerequisite activities should result in one or more documents. These will be required

in order to perform the various software hazard analyses.

1) Prepare a Preliminary Hazard List (PHL) for the application system. This will contain a list

of all identified hazards, and will generally be based on the reactor Safety Analysis Report

and the list of Postulated Initiating Events (PIE).

2) Prepare a Preliminary Hazard Analysis (PHA) for the application system and subsystems

which have impact on, or are affected by, the software. This evaluates each of the hazards

contained in the PHL, and should describe the expected impact of the software on each

hazard.

It is recommended that the PHA assign a preliminary severity level to each hazard. The

method outlined in IEC 1226 is acceptable. This method assigns a level code of A, B or C

to each hazard, where "A" is assigned to the most critical system.

3) Carry out the required hazard investigations and evaluations at the application system and

application subsystem level. This should include an evaluation of the impact of software on

hazards. There are at least four potential impacts of software on each hazard. These are:
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a) The software may challenge the reactor safety systems. Failure of the software to

operate correctly has the potential for creating a hazardous condition that must be

removed or mitigated by some other system. An example is a software-based reactor

control system whose failure may initiate a reactor transient that causes reactor

operation to diverge toward an unsafe operating region.

b) The software may be responsible for preventing a hazard from progressing to an

incident. Failure of the software to operate correctly has the potential for converting the

hazard to an accident. An example is software control of the reactor trip system, where

potential failure during an emergency would permit a reactor transient to progress to a

significant event.

c) The software may be used to move the system from a hazardous state to a nonhazardous

state, where the hazardous state is caused by some portion of the application system

other than the software. Software controlling the emergency core cooling systems is an

example of this, where decay heat is removed to move a reactor from hot to cold

shutdown when other cooling systems are unavailable.

d) The software may be used to mitigate the consequences of an accident. An example is

software controlling the containment isolation system, which prevents a radiation

release inside the containment structure from escaping and affecting the general public.

4) Assign a consequence level and probability of occurrence to each identified hazard. The

former could be based on IEC 1226 while the latter could be based on Mil-Std-882C.

5) For each hazard identified in the PHL, PHA or other hazard analyses, identify its risk level

as a function of consequence level and probability of occurrence. These could be

qualitative levels such as "high," "medium," and "low."

6) Prepare an application system requirements specification.

7) Create and document a system design, which shows the allocation of safety functions to

software components and other system components and shows how the software

component and the remaining application system components will co-ordinate to address

the hazards discovered in previous analyses.

8) Prepare the remaining documents to the extent required in order to specify, design,

implement, verify and analyse the software component of the safety system. This includes

analysis of additional hazards introduced by choice of specific digital hardware, computer

language, compiler, software architecture, software design techniques, and design rules.

This analysis will be revisited as digital system design and software design.
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3.3 Requirements Hazard Analysis

Software requirements hazard analysis investigates the impact of the software requirements

specification on system hazards. Requirements can generally be divided into sets, each of which

addresses some aspect of the software. These sets are termed qualities which are to be considered

during software hazard analysis: accuracy, capacity, functionality, reliability, robustness, safety, and

security. Some variations may be required to match special situations.

The general intent of software requirements hazard analysis is to examine each quality, and each

requirement within the quality, to assess the likely impact on hazards. There are also numerous

traditional qualities generally considered necessary to an adequate software requirements

specification Completeness, consistency, correctness, traceability, unambiguity and verifiability are,

of course, necessary, but should be handled as part of requirements analysis and verification, not as

part of hazards analysis. However, software requirements hazard analysis will be hampered if the

software requirements specification does not possess these qualities.

3.3.1 Inputs to Software Requirements Hazard Analysis

The following information should be available to perform the requirements hazard analysis.

• Preliminary Hazard List

• Preliminary Hazard Analysis

• Safety Analysis Report

• Safety System Design Description

• Software Requirements Specification

3.3.2 Analysis Procedures

The following steps may be used to carry out the requirements hazard analysis. The steps are

meant to help organize the process. Variations in the process, as well as overlap in time among the

steps, is to be expected.

1) Identify the hazards for which software is in any way responsible. This identification

includes an estimate of the risk associated with each hazard.

2) Identify the software criticality level associated with each hazard and control category.

3) Match each safety-critical requirement in the software requirements specification (SRS)

against the system hazards and hazard categories in order to assign a criticality level to

each requirement.

4) Analyse each requirement using some guide.

5) Document the results of the analysis.

The information collected during this hazard analysis can be of considerable use later during

software development. The combination of criticality level assigned to the various software
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requirements provides information that might affect the assignment of resources during further

development, verification and testing. It can also suggest the need for redesign of the application

system to reduce software-affected hazards.

It is possible that the Software Requirements Hazard Analysis leads to the conclusion that some

changes should be made to the system design. For example, it might be discovered that some system

requirements assigned to software can be better met through hardware.

It is likely that the hazard analysis wil 1 conclude that some requirements do not pose hazards

that is, there are no circumstances where failure to satisfy the requirements can cause a hazard. Such

requirements probably do not need to be considered in subsequent analyses.

There are many ways to carry out the analysis of step 4. The technique most prominently

documented in the literature is Fault Tree Analysis (FTA). Event Tree Analysis (ETA) should also

be considered as top events in the tree and expanding the tree to consider consequences. The choice

of technique depends on what information is known to the analyst and what information is sought.

3.3.3 Outputs of Software Requirements Hazard Analysis

The products of the requirements hazard analysis consist of the following items:

• A list of software hazards.

• A criticality level for each hazard that can be affected by the software.

• A criticality level for each software requirement.

• An analysis of the impact on hazards of the software when it operates correctly or

incorrectly with respect to meeting each requirement.

3.4 Architectural Design Hazard Analysis

Software design hazard analysis is divided here into two sections: one which examines the

computer system architecture, and one which examines the detailed software design. The former is

discussed first.

A computer system architecture consists of three segments: the hardware architecture, the software

architecture and the mapping between them. The hardware architecture describes the various

hardware elements: processors, memories, disk drives, display devices and communication lines. The

software architecture describes the various software processes, data stores, screen layouts and logical

communication paths. The mapping describes how the software will operate on the hardware; this

includes identifying which processes will operate on which processors, where the various data stores

will be located, where the various screens will be displayed, and how logical communications will

take place over physical paths.
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Some architectures may introduce complex functions or may have failure modes that other

architectures do not have. These represent additional hazards introduced by design choices and which

are not identified by previous hazards analyses.

The architectural design documents should contain a two-way trace between requirements and

design elements. Each requirement is traced to the design elements that implement that requirement,

and each design element is traced back to the requirements which it implements. If this trace does not

exist, it should be created before the architecture hazard analysis begins (V&V will also need this

trace for part of its activities).

The analysis here builds on the software requirements hazard analysis by extending the latter to the

software architecture. A similar analysis is recommended for the hardware architecture and the

overall computer system architecture (i.e., hardware, software and mapping).

3.4.1 Inputs to Software Architecture Hazard Analysis

The following information should be available to perform the architecture hazard analysis.

Preliminary Hazard List

• Preliminary Hazard Analysis

• Safety Analysis Report

• Software Requirements Specification

• Software Requirements Hazard Analysis

• Requirements to Architecture Trace Matrix

• Software Architecture Description

3.4.2 Analysis Procedures

The following steps may be used to carry out the software architecture hazard analysis.

1) For each software architectural element, determine all the requirements affected by the

element. This results from the trace matrix.

2) Assign a risk level to each software architectural element, based on the risk associated with

all the requirements affected by the element. The suggested algorithm is as follows:

• Pick one requirement. Assign the architectural element severity level to be the same as

that of the requirement.

• For each additional requirement, accumulate an architectural element severity estimate

by estimating the severity of consequences should all of the identified requirements fail

to be met simultaneously.

• Continue until all requirements affected by the architectural element have been

considered. The final architectural element risk level is the design failure probability of

the architectural element times the accumulated severity associated with failure.
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3) Analyse each safety-critical architectural element.

4) Document the results of the analysis.

The information collected during this analysis can supplement that of the software requirements

hazard analysis. In particular, if several architectural elements are classified as very-high-risk,

consideration should be given to redesigning the architecture, either to lower the risk associated with

the software architecture or to provide compensatory mechanisms to lower overall application system

risk. As with the requirements hazard analysis, assignment of resources to further development,

verification, and testing can be based on this hazard analysis.

Architecture hazard analysis is likely to demonstrate that some architectural elements are

nonhazardous; that is, the analysis shows that no possible failure of the element can affect a system

hazard. Such elements require only minimal attention during design and implementation hazard

analysis.

If FTA or ETA were used during the requirements hazard analysis, they may be extended to

include the software and hardware architectures. The value of the trees comes mostly in the

information contained in the structure of the trees. It is not likely to be possible to make a convincing

assignment of failure probabilities to architectural elements, so using the tree to attempt to calculate

the probability of root events should be used as a reality check and resource allocation tool only.

3.4.3 Outputs of Software Architecture Hazard Analysis

The products of the architecture hazard analysis consist of the following items:

• A list of software architectural design elements with assigned risk level.

• Analysis of the impact on hazards of the software when the specified architecture is used.

• A list of design constraints and coding constraints needed to mitigate hazards associated

with the chosen architecture.

• Recommendations for design changes which will reduce the hazard criticality level of

software elements.

• Recommendations for increased analysis and testing to be carried out during detailed design

V&V, code V&V and final system validation analysis and testing.

3.5 Detailed Design Hazard Analysis

The detailed design documents should contain a two-way trace among the software requirements,

the software architecture and the detailed design. Each requirement is traced through the architecture

to the detailed design elements that implement the requirement. Each detailed design element is

traced back through the architecture to the requirements which it implements. If this trace does not

exist, it should be created before this hazard analysis begins.
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The primary task here is to see if the detailed design changes any of the results of the

requirements or architecture hazard analyses. If the latter have been performed carefully and

completely, there should be little more to do. Verification becomes of increasing importance at this

point in the life cycle, using the results of the hazard analyses to direct the verification activities.

3.5.1 Inputs to Software Detailed Design Hazard Analysis

The following information should be available to perform the architecture hazard analysis.

• Preliminary Hazard List

• Preliminary Hazard Analysis

• Safety Analysis Report

• Software Requirements Specification

• Software Architecture Description

• Software Detailed Design Description

• Software Requirements and Architecture Hazard Analyses

• Trace Matrix, Requirements to Architecture to Detailed Design

3.5.2 Analysis Procedures

The following steps may be used to carry out the software detailed design hazard analysis.

1) For each software architecture element, prepare a list of detailed design elements which

together constitute the architectural element. It may happen that some design elements are

used in more than one architectural element. For example, low level communication

software may be used by almost every element of the architecture. Device drivers are

additional examples.

2) For each design element, determine if the hazards associated with the architecture elements

have changed. This may occur if design elements, design rules, design tools, or design

techniques introduce common-mode failure mechanisms to two or more architectural

elements. If so, previous hazard analyses may need to be redone.

3) Document the results.

If resources do not exist to analyse all design elements, choose those elements that (1) constitute

architectural elements of very high or high risk and (2) those elements that occur in many

architectural elements. The latter are most likely service elements, such as communications modules,

device drivers or file managers.

It should be expected that, in most cases, the analysis will quickly determine that there has been

no change to systems hazards due to the detailed design. That is, if a careful job has been done in

identifying, controlling and mitigating hazards during the requirements and architecture phrases,
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there should be little left to do at the detailed design phase. If this is true, emphasis can start shifting

from the global concern of systems hazards to the more local concern of implementation correctness.

The information collected during this analysis can help provide assurance that no new hazards

have been introduced by the detailed design. It can also help with the assignment of resources for

coding and testing.

3.5.3 Outputs of Software Detailed Design Hazard Analysis

The product of the software detailed design hazard analysis consists of the documented analysis.

3.6 Code Hazard Analysis

The software documents should contain a two-way trace between the detailed design element and

the code elements which implement the design elements. If this trace does not exist, it should be

created before code hazard analysis begins.

Correctness is much more a concern at this point than hazard analysis, provided that the previous

three analyses have been performed well. The main emphasis is on making sure that nothing in the

code changes the previous analyses or creates a new hazard. Results of the previous analyses can be

used to direct verification and testing resources to the most critical code elements.

3.6.1 Inputs to Software Code Hazard Analysis

The following information should be available to perform the architecture hazard analysis.

• Preliminary Hazard List

• Preliminary Hazard Analysis

• Safety Analysis Report

• Software Requirements Specification

• Software Architecture Description

• Software Detailed Design Description

• Code

• Software Requirements, Architecture and Design Hazard Analyses

• Trace Matrix, Requirements for Architecture to Design to Code Elements

3.6.2 Analysis Procedures

The following steps may be used to carry out the code hazard analysis.

1) For each code element, use the guides to determine if the results of the design hazard

analysis need to be modified or if new hazards have been introduced. If so, some or all of

the previous analyses may need to be redone. Resources are not likely to exist to analyse all
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code elements. Concentrate on those that encode the most risky design elements and those

that support basic computing system functions.

2) Examine tools, computer language, and coding techniques for their potential to introduce

common-mode failure mechanisms to all modules. Identify coding rules or tool-usage rules

that avoid risky tool features or coding techniques. If a pre-existing operating system will

be used, identify the risky features or functions that should be avoided.

3) Document the results.

3.6.3 Outputs of Software Code Hazard Analysis

The product of the code hazard analysis consists of the documented analysis.
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4. SYSTEM AND SOFTWARE SAFETY ANALYSIS

4.1 System Safety Analysis Techniques

The objective of a safety analysis is to evaluate a system with respect to potential hazards it may

cause. A risk analysis (PSA/PRA) also includes the probabilities and costs of hazards. A Preliminary

Hazard Analysis (PHA) provides an initial overall view of risks. This provides the initial framework

for a master listing of hazards and associated risks that require tracking and resolution during the

course of the system design and development. The PHA effort should ideally be started during the

concept exploration phase or earliest life cycle phase of the system development. However, in the

present case this analysis was made in retrospective.

Preliminary hazard analysis of the entire target system is performed top-down to identify hazards

and hazardous conditions. Its goal is to identify all credible hazards up front. For each identified

hazard, the PHA identifies the hazard causes and candidate control methods. These hazards and

hazards causes are mapped to system functions and their failure modes. This should then be followed

up by a more detailed System Hazard Analysis (SHA). Some particular methods in hazard and risk

analysis are described below. These are the commonly used methods, but there are also various other

methods.

4.1.1 FMEA and FMECA

Failure Mode Effect and Criticality Analysis (FMECA) is an analysis which concentrates on the

potential failures of individual components. The basis for an FMECA is a functional description of

the system to be analyzed in terms of its components. For each of the components in the system, the

aim is to identify all possible or potential modes of failure. Then, for each failure mode one makes an

evaluation with respect to a set of points:

• The failure mode, i.e. how the failure manifest itself.

• The failure cause. This includes both immediate causes and more basic causes, e.g., design

errors.

• The failure mechanism, i.e. the mechanism which leads from the cause to the failure.

• The failure effect. One can here distinguish between local effect, which is the effect on the

component in question and its immediate surroundings (e.g., failure mode: pump stop,

effect: no flow), and the end effects, which are the effects the failure may have at the

highest system level, i.e. on the plant and its environment. In the latter case one could

utilize fault tree analysis.

• Failure criticality, i.e., the consequences the failure may have on the safety at the plant or

potential harm in the environment. One can also here distinguish between immediate
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consequences (e.g., radioactive release after a tube rupture), and more indirect

consequences which are consequences of the end effects.

• Failure detection, i.e., the way the failure can be detected and the likelihood that it will be

detected.

• Failure probability. This can be stated in qualitative terms (e.g., high, medium, low), or

quantitative as probability of occurrence per time unit or per demand.

This type of analysis has traditionally been applied to hardware components, but in recent years it

also have been applied to software systems.

4.1.2 HAZOP

Hazard and Operability Analysis (HAZOP) was developed by Imperial Chemical Industries in

England in the early 1960s. HAZOP is based on a system safety theory model of accidents that

assumes accidents are caused by deviations from the design or operating intentions. HAZOP is a

qualitative technique whose purpose is to identify all possible deviations from the design's expected

operation and all hazards associated with these deviations.

HAZOP does not attempt to provide quantitative results, but instead systematizes a qualitative

approach. The strength of the method lies in its simplicity and ease of application and in the early

identification of design problems. Although HAZOP is closely connected with the chemical industry,

the basic idea could be adapted to other industries. HAZOP has the advantage over checklists of

being applicable to new designs and design features.

The drawback of the technique are the time and effort required and the limitations imposed by the

search pattern. HAZOP relies very heavily on the judgment of the engineers performing the

assessment.

Hazard and operability (HAZOP) analysis looks at possible disturbances in a system, rather than

failures for each component. Disturbances involve a variation in some process variable such as "too

high speed," "wrong direction." Aspects like causes, consequences, delectability, correctability,

safety barriers etc. are determined.

In general terms a HAZOP analysis is performed as a kind of 'brain storming' activity: An

analysis team is gathered, consisting of different experts, and headed by a HAZOP leader. The team

leader prepares in advance a so-called 'HAZOP form.' The columns in this form identifies a set of

'objects,' and a set of 'guide words' about these objects. At the analysis meeting the HAZOP leader

put forward each object and corresponding guidewords, and ask the team to openly discuss the

objects on the basis of the guidewords. A team secretary is, during this discussion, making a HAZOP

log by filling out the pre-made HAZOP form.

In principle there are no difference in making a HAZOP analysis on a programmable system and

any other system. However, a HAZOP analysis is based on a schema containing different guidewords
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for the analysis, and these need to be adapted to the actual functioning of the system and the potential

disturbances. For a programmable system they will most probably be different than for a mechanical

system.

4.1.2.1 Hazard and Safety Analysis

A HAZOP Study is a hazard identification technique within the field of hazard analysis which, in

turn, falls within the broader scope of safety analysis. Hazard analysis comprises those activities

within safety analysis which pertain to identifying hazards, determining their causes, and planning

their elimination or mitigation. Cost-effective hazard analysis requires an approach which considers

the whole design at differing levels of detail and has clear definitions of the scope and method of

analysis to be used at each level. A HAZOP Study should be used in conjunction with other safety

analysis activities to derive adequate confidence in the safety of a system and to avoid continuing

development of designs with potential hazards.

A number of HAZOP Studies carried out over the system life cycle can contribute significantly to

achieving the level of confidence required in a hazard identification process. Hazard identification is

a process which may be applied at any stage from the feasibility study through to disposal. A

HAZOP Study can be carried out at any level of design representation. Given a suitable

representation, a HAZOP Study can also be applied to a requirements expression.

4.1.2.2 HAZOP Study Process

A HAZOP Study is a hazard identification process, carried out by a team of optimum size

between 5 and 7 members. It is based on examining one or more representations of the system's

design. A HAZOP Study must be initiated by someone of appropriate authority who is responsible

for defining the scope and objectives of the Study. A HAZOP Study shall examine the possible

deviations from design intent of the attributes of the components of the system or the attributes of the

interconnections between components.

Typically, a HAZOP Study consists of a number of HAZOP Study Meetings. A HAZOP Study

must be planned in advance of its first Study Meeting. Planning includes selection of the Study team,

definition of the content and logistics of the Study, and notification of the plans to the Study team.

At each Study Meeting, a design representation is examined systematically to identify what

variations from the design intent could occur in the relevant attributes, and then to determine their

possible causes and consequences. The procedure for identifying deviations from the design intent

shall be facilitated by the application of a number of 'guide words.' Each relevant guide word is

applied to each attribute, so that the thorough search for deviations is carried out in a structured

manner.
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On applying a guide word to an attribute, the team enquire into any possible causes and

consequences of the deviation for the system as a whole. Also examined are any mechanisms which

aid the detection or indication of any hazards. The results are recorded. When all the relevant guide

words have been applied to the given attribute, the other attributes of the interconnection or

component under consideration are examined. If it is an interconnection under consideration, all

other entities on it are then similarly examined.

All components and their interconnections on the design representation are systematically

investigated in the same way. When there are uncertainties which cannot be resolved, questions to be

studied after the Meeting may be defined. Similarly, when a hazard is identified, there will be a

specific recommendation that safety measures should be taken to eliminate or mitigate it, and follow-

up work regarding this may be defined.

The result of the Study Meeting is documentation which identifies the system hazards and their

causes and consequences, lists questions to be answered, and recommends follow-up actions. All

documentation is agreed by the team and signed off by the Study leader. The success of a Study

Meeting depends on having appropriate team members and on the control of the process by the Study

leader. A HAZOP Study should end in recommendations, not questions, and it is not complete until

the follow-up review of questions raised has been carried out. When the answers to the questions

raised are available, it may be necessary to schedule further Meetings, with the same team, to

complete the Study.

4.1.4 FTA

Fault Tree Analysis (FTA) is a method which has been widely used for safety analysis for many

years. It considers each accident which can occur, and searches for possible causes. The causes are

recorded on a tree structured diagram, with AND symbols to indicate where several conditions must

occur together with an initiating event, in order for an accident to occur, and OR symbols are used to

indicate alternative causes. One main target of FTA is to identify potential common cause failures in

diverse or redundant systems. A characteristic of a software fault, in distinction from random

hardware faults, is that it occurs in all instances of the same software module used in redundant

channels. Software failures therefore constitute a potential risk for common cause failures in such

systems, and a task of FTA is to reveal where such failures can occur.

Another application of FTA on software were suggested by Leveson and Harvey [Lev83]. Here

FTA is applied directly on the code listing, and is more closely related to code verification than

actually to PSA. A rather different attempt has been to apply FTA, not on the product, but on the

development process of safety related software [0vs91]. The goal of this application is to find critical

events concerning fault introduction, and to relate these events to the development process.
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4.2 Software Safety Analysis Techniques

A significant problem of developing software for safety critical systems is how to guarantee that

the functional behavior of a developed software system will satisfy the corresponding functional

requirements and will not violate the safety requirements for the associated overall system. In order

to solve this problem, it is important to analyze thoroughly the safety properties of the overall system,

to achieve accurate software functional requirements and to verify properly the implementation of the

software.

Software failures alone cannot cause harm, only the interactions between "faulty" software and

the rest of the system can do so. Furthermore, correctness and safety are not necessary the same thing.

It is possible for a system to be in a state that is incorrect with respect to a functional specification

but that still meets defined safety criteria. It is possible to separate the states of a system into four

categories: [Lev83b]

a) correct and safe

b) correct and unsafe

c) incorrect and safe

d) incorrect and unsafe

The interface between system and software, requirements analysis, is a key activity in the process

of software development for achieving the safety goal of systems. The quality of requirements

analysis determines the quality of requirements specifications, which directly affects the quality of

the developed system.

It is hard to bound precisely the environment which should be considered in requirements

analysis, but it should cover at least those systems which interact directly with the target system. In

the case of safety critical systems the environment model should cover sources of threats to the

system and other systems or equipment in which hazards could arise due to failure in the target

system.

Technically requirements analysis methods need to deal with causality, e.g. 'when this event

occurs in the environment the system must perform the following actions', and other properties such

as behavior of the system under hardware failure conditions. One of the key differences between

'normal' and safety critical systems is the need to be able to deal with causality in the presence of

failure, and this is the reason that techniques such as failure modes effects analysis and fault tree

analysis are used at this stage in safety critical systems developments.

Requirements safety is a property of an overall system, which depends on both hardware and

software in embedded safety critical systems. A safety requirements can be expressed in terms of

knowledge about the possible causes of system safety failure.
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We believe that identification of appropriate safety requirements is a prerequisite for any useful

safety critical application of formal methods. Therefore, safety analysis methods must be

incorporated in the lifecycle of formal methods applications. It is important to realize that formal

methods are not alternatives to safety analysis; the latter gets as close to analyzing physical reality as

possible, while the former deals in models and abstractions.

Several techniques for safety analysis have been used by industry for decades, and some have

attracted great attention in the research community. They include Fault Tree Analysis (FTA), Failure

Modes, Effects and Criticality Analysis (FMECA), Failure Propagation and Transformation Notation

(FPTN), Hazard and Operability (HAZOP). In Leveson's book, "Safeware" [Lev95], there is an

excellent summary on techniques for system safety and computers. In this section we focus on the

FTA related techniques only.

4.2.1 Software FMEA

4.2.1.1 Fenelon Approach

Fenelon [Fen93] and colleagues proposed an integrated safety analysis method which consists

mainly of Hierarchical FTA (HFTA) and Failure Propagation and Transformation Notation (FPTN).

They insist that while Leveson's template-based FTA is a depth-first and bottom-up approach, HFTA

is a top-down and breadth-first method although compatible with Leveson's methods. FPTN is a new

notation to integrate software FTA and FMECA, and is somewhat analogous to traditional data flow-

based design notations, although instead of showing normal data flow between elements in a system,

it describes the propagation and transformation of failures. Because existing methods of software

FTA are not structured in terms of the failure behavior of the software but in terms of its logical

structure, HFTA, with its emphasis on a failure-based approach to structuring the tree, is more suited

to FMECA which analyzes the propagation of a single failure mode through a causal analysis of the

failure behavior.

4.2.1.2 Halden Approach

At the Halden Project they have investigated two different approaches to software FMECA. One

approach has been to apply FMECA to configurable software systems, i.e., systems which are built

up by standard software components in the same way as a hardware system is built up by standard

hardware components. Such systems are often used in the control of NPPs, also in safety related

applications. The method has been to apply FMECA on the standard software modules as one would

apply them to hardware modules, although there are considerable differences in the detailed analysis

[DaP96, Dah97]. Hardware failures occur randomly during operation, whereas the components

considered here are realized in software. Only potential design (programming) errors which results in
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inherent faults in the programs are therefore taken into account in this connection. However, such

faults can result in stochastic behavior of a program during execution, due to randomness in the input

data.

The following contains some general considerations on the points mentioned above with respect

to software modules.

Failure Modes

From the specification it should be possible to identify the correct output from a module in all

situations, and further to identify all potentially incorrect outputs. Most failure modes can be

classified into some main types:

• incorrect response (output)

• no response when it should occur

• correct response, but outside required time limits

• correct response, but undesired side effects

Depending on the functioning of the particular module to be analyzed, these general failure mode

types could be divided into more specific failure modes, e.g.:

• The result of a computation can be completely wrong, or only slightly inaccurate.

• The failure can occur in all executions of the module, or only in some cases, or perhaps

only in very special cases.

• The algorithm used in the module is not applicable in the particular case.

Failure Causes

When software failures are concerned, there are two main classes of causes, inherent faults in the

software or incorrect use of existing software modules. The more basic causes of inherent faults can

be defects in the specification, programming errors, incorrect corrections, incorrect modifications in

new releases etc. Even if one has limited information about the software modules, one should utilize

all available information to reason about likely failure causes.

Failure Mechanism

The failure mechanism concerning software failures is how a programming error can lead to a

software fault and how a software fault can lead to an execution failure. For an inherent fault the

failure typically occurs when an actual input hits the failure domain of the faulty program. The most

common faults to look for are those which cause wrong results. The most obvious and common

failure mechanism is logical or structural faults in the program, which makes clearly incorrect results.

Other failure mechanisms may be that an approximation algorithm imiy be too inaccurate for a

certain range of input data, or that singularities in the algorithm may occur. A particularly important

failure mechanism is related to timing problems.
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Failure Effects

It is in general only possible to identify local effects based on the module itself. The end effects

must be found in context with the complete program. If for example a failure mode is 'no response,'

the immediate effect is that the module cannot pass control to the next module. This failure mode

will then have an end effect which might be easy to see from a graphical representation of the

complete program.

Failure Detection

This is a point where software modules have some clear advantages compared to their

conventional counterparts. Software faults can be detected and removed during V&V and testing, and

therefore make no harm. Inherent faults that remain can lead to failures that are detected during

execution. As the detection of a failure is important to safety, it is possible to design failure detection

facilities into the software system. These are mainly designed to trap hardware errors, but facilities

also exist which detect failures caused by software faults. In the analysis for failure detection, one

should look for possibilities and likelihood to detect them, both before implementation and during

execution. Concerning the latter, the possibility for fault tolerance is also interesting.

Failure Criticality

Software does not harm anyone, so any immediate safety consequences of failures in the modules

are not expected. The safety consequences should rather be found by an analysis, e.g. fault tree

analysis, of the application program and its influence on the environment.

Failure Probability

The FMECA was based, not on the components of the actual system, but rather on the elements

of a functional specification of the system. This specification was made in the form of a set of MSC

(Message Sequence Chart) diagrams. An MSC consists of a set of processes, and each process can

perform actions and send and receive messages to/from other processes. The 'components' in this

analysis were the actions and messages, The method was to ask the following questions for each

action and message, based on the FMECA framework:

• What can go wrong {failure mode)l

• How can this occur {failure cause/mechanism)!

• Which consequences will this have on the further actions and messages (failure effect)!

• Can any of these consequences potentially lead to any critical event previously identified in

a fault tree analysis {failure criticality)!

• Are there any internal failure detection mechanisms in the system which can detect this

failure, and which can prevent, or reduce the possibility, that this failure will lead to a

critical consequence {failure detection)!
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• If a safety critical failure could be caused by a software fault, which test procedure should

be followed to detect this potential fault {fault detection)?

4.2.2 Software HAZOP

We include a summary of the recent and current research into software HAZOP. This

survey has enabled us to evolve some recommendations and draw together common threads

of work.

4.2.2.1 Data Flow Based Approaches

Chudleigh [Chu93] has recently published an account of the application of HAZOP to Data Flow

Models. This confirmed the suggestion made by Earthy [Ear92] that the use of DFD models during a

HAZOP study was appropriate and could produce useful results. The DFDs provided the team with a

systems view rather than a software view of the application under review. Chudleigh suggests that

not only was the data flow model "readily understandable by all interested parties," but also that the

model provided the "most natural" representation to use for a HAZOP study. Classical CIA

guidewords were not directly applicable to DFD models so new set of guidewords shown based

around data flow and algorithmic functionality were devised. The resultant method required the

appropriate guidewords to be applied to each of the input flows and transformations, down through

the hierarchy of the model.

4.2.2.2 BURNS AND PITBLADO

Burns and Pitblado [Bur93] presented a modified 3 stage HAZOP approach.

1. Conventional HAZOP

2. Programmable Electronic Systems HAZOP

3. Human Factors HAZOP

The PES HAZOP focuses on the control aspects of the system. They claim that several traditional

views, such as cause and effect charts and ladder logic can be used as an appropriate system

representation for a HAZOP study. Their PES HAZOP approach bears strong similarities to classical

FMEA. The paper claimed that application on various case-studies has identified "numerous safety

and operability problems, and provided possible solutions for most of them," although it is unclear

how the PES HAZOP is related to an overall systems-level view of the system.

4.2.2.3 PUMFREY and McDERMID

A modified form of HAZOP is being used at the University of York [McD94] at the software

design stage (using the MASCOT notation) to characterize likely failure modes of software
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components. This HAZOP-like method is called SHARD (Software Hazard Analysis and Resolution

in Design)

The innovative aspect of this work is the derivation of deviations by applying fault classes to flow

types. The fault classification used is based upon those of Bondavalli and Simoncini [Bonda] and

Shrivastava and Ezhilchelvan [Ezhil]. Currently the classification is based around the following fault

taxonomy:

- SERVICE PROVISION: omission, commission

- SERVICE TIMING: early, late

- SERVICE VALUE: coarse incorrect; subtle incorrect

For Mascot they have identified seven basic flow types: Stim (binary signal), Binary (Boolean

value), Timed Pulse, Value (scalar), Message, Complex and Compound.

4.2.2.4 CHAZOPS

The CHAZOP (Computer Hazard and Operability) study is a technique for undertaking an

assessment of a computer system by investigating the areas where potential plant Hazard and

Operability Problems could arise. There is substantial variation in detail of implementations

throughout different organizations. However, the HSE report [Andow] appears to capture the essence

of the overall approach, which is essentially a two-stage process combining a preliminary analysis

early in the design stage with a post-implementation analysis.

4.2.2.5 SHAZOPS

SHAZOPS [ICI88] is basically a systematically applied checklist that can be used to review

sequence flow charts, control schematics and high level program source (in this case RTL2). The

approach can be divided into 2 stages:

- Stage 1 considers the whole process under review; specifically, discussion is prompted by

considering design intent, historical data, compliance to standards and documentation.

- Stage 2 is concerned more with the implementation of the system, its failure behavior and its

interaction with the outside world.

4.2.2.6 MoD PES HAZOP GUIDANCE

Defense Standard (DEF STAN) 00-56 of U.K. calls for Hazard and Operability Studies to be

carried out on systems and sub-systems. Two feasibility studies have been undertaken with the intent

of defining a HAZOP method for Programmable Electronic Systems. The first identifies six key

areas [MoD94]:

- Team Structure
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- Life-Cycle Issues

- Design Representation

- Parameters

- The choice and interpretation of Guidewords

- Reporting and Recording.

The overall philosophy of these initial recommendations appears to be pragmatic and built upon

experience within the field. Much of the discussion reinforces existing HAZOP practices, and the

work is aimed towards the production of guidelines that will "extend the previous guides by catering

for systems which include PES, but is applicable to all systems." The second group have addressed a

similar range of issues to the first. A key concept in their approach is the development of a formal

reference model based upon object oriented techniques. The model has two elements:

- Object based definition of system components

- Formal definition of hazardous conditions and unsafe behavior of the system.

- The reference model a similar philosophy to the modeling stage of our work.

Within this paper we concentrate upon the issues that are innovative or controversial and are

relevant to our interests, particularly the representation. They indicate that the notation used for

system representation should conform to a list of specific attributes:

- well defined

- have an ability to adopt abstraction

- make visible all important issues

- be able to deal with the idiosyncrasies of the domain under study

- expressive yet comprehensive

- verifiable against the system it is modeling.

It is clear that their is no such single notation and that representations will be domain and

expertise specific. However, it is interesting to note that although this work is independent of ours the

conclusions reached are basically similar.

DEF STAN 00-56 states that a preferred method of conducting Preliminary Hazard Analysis is a

HAZOP Study. For systems in the lowest risk class this might be the only HAZOP Study necessary.

For systems in a higher risk class, safety analysis continues throughout the life cycle and it is

recommended that the HAZOP Study process should be carried out at vairious stages of the system's

life cycle in order to refine and extend the identification of hazards. Appropriate times include: when

a high-level design is available, when a detailed design is produced, and when the documented

system has been built.
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The HAZOP Study results should be reviewed in accordance with DEF STAN 00-56 when a

modification to the operational system is proposed or when its environment changes. If there are no

existing HAZOP Study results, then a HAZOP Study should be carried out. If the change is likely to

introduce new hazards, a new Study should be considered. If no results exist from a previous Study,

consideration should be given not only to carrying out a Study on the operational system, but also to

whether a Study should be carried out on a high-level system design.

When a high-level system representation exists, the first HAZOP Study should assess those

hazards which can be identified at this level. In the context of DEF STAN 00-56, this implies

assessing those hazards identified in an earlier preliminary hazard list'. This allows future Studies to

check the design of the system against the previously identified hazards and to identify any new

hazards which may have been introduced. The results may identify the most critical parts of the

system and, hence, help to define the scope of further, more detailed Studies.

It is preferable not to carry out a HAZOP Study at a detailed level unless the higher levels have

first been addressed. For some systems under development, there may be significant design detail

without earlier safety studies being available. In this case, it is recommended that a HAZOP Study

should examine the design in a top-down manner.

4.23 Software FTA

Fault Tree Analysis (FTA) is an analytical technique used in the safety analysis of

electromechanical systems. An undesired system state is specified, and the system is then analyzed in

the context of its environment and operation to find credible sequences of events that can lead to the

undesired state. A fault tree thus depicts the logical inter-relationships of basic events that lead to the

hazardous event.

FTA has been used for the assessment of system reliability and safety for decades and has been

developed into an well-understood, standardized method with wide applications throughout the

discipline of safety and reliability engineering. A comprehensive introduction to fault tree analysis is

the extensive and authoritative Fault Tree Handbook [Ves81].

Traditional fault tree analysis is a probabilistic method in which potential causes of some failure

("top event") are organized in a tree structure reflecting causality—causality is a crucial notion

underlying all safety analysis techniques. High-level events can be caused by various combinations

of lower-level events, with the principal logical connectives used in the tree being AND and OR

gates, which have meanings analogous to those traditionally used in electronic circuit design.

Priority-AND gates, exclusive-OR gates and INHIBIT are also available for use.

Leveson and her colleagues [Lev83] were the first to apply fault trees to the safety analysis of

software at the statement level. Software fault trees are derived from the software (programs) based

on the semantics of statements (e.g. sequential, conditional and iteration statements). Since the
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statements may be either concrete or abstract, Software Fault Tree Analysis (SFTA) can be applied

on both software design and code levels. The goal of software fault tree analysis is to show that the

logic contained in the software design will not produce system failures, and to determine

environmental conditions that could lead to the software causing a safety failure. Unfortunately, the

informal nature of the technique is its major weakness because he success of the technique is highly

dependently on the ability of the analysts. SFTA is essentially a structured walk-through technique

with special emphasis on safety issues rather than correctness ones.

Template-based FTA by Leveson is given for each major construct in a program, and the fault

tree for the program (module) produced by composition of these templates. The templates are applied

recursively, to give a fault tree for the whole module. As they are applied, the fault tree templates are

instantiated, e.g. in the above template the expressions for the conditions would be substituted, and

the event for the THEN part would be replaced by the tree for the sequence of statements in the

branch. SFTA can go back from a software hazard, through the program, and stop with leaf events

which are either "normal events" representing valid program states, or external failure events. If the

hardware failure event probabilities are known, then the top event probability can be determined.

Note that this does not rely on a statistical analysis of software reliability.

Experience with using the template-based approach to analysis indicates that it can, in the right

circumstances, be an effective analysis technique. In an avionics system we studied, only 12 lines out

of 2,200 could contribute to a given hazard, and the fault trees effectively showed that the program

could not give rise to the hazard. Leveson has quoted positive results on the Darlington reactor

protection system [AEC93, Lev95].

In the early papers, Leveson and her colleagues used the OR gate to represent sequential

composition of statements in a program. This construct is incorrect, although it does give the right

answers in some circumstances. In fact, the semantics of fault trees is closely linked to that of

Dijkstra's weakest precondition (wp) calculus. One of the practical advantages of SFTA seems to be

that it has the rigor of the wp calculus, but it is presented in a form that is familiar to safety engineers.

The difficulty with sequential composition is thus a major drawback, although the links to wp

calculus suggest there may be a fruitful area of research in linking formal verification and fault tree

analysis. A recent book [Fri95] treats sequential composition in a rather different way, which may

effectively address this semantic problem using the concept "program segment prefix," but there is

still a challenge. They interpret the semantic of FTA as a Hoare's logic rather than Dijkstra's wp

calculus.

Clark and McDermid propose a more traditional view of the application of fault trees to software

[Cla93]. It is suggested that weakest preconditions are used for program specification and validation,

and software fault tree analysis is employed for a system-wide analysis of hazards. The scope of

software fault trees can be increased to include, for example, compiler errors, control errors, and
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memory errors, as well as logical errors. Thus a more realistic view of the software's role in system

hazards can be given.

Hansen and her colleagues have recently developed fault trees into a notation for describing

software safety requirements for design specifications [Han94]. Specifications are given in a real-

time, interval logic, based on a conventional dynamic systems model with a state changing over time.

Fault trees are interpreted as temporal logic formulae giving a cause effect relationship between

states. It is shown how such formulae can be used for deriving safety requirements for design

components. Similar work on formalization of fault trees is also described in [Gor94].

Because software safety can be analyzed from the relationship between a logical fault of software

and a physical hazard of a system, the software safety process should be a subset of the system safety

process. However, current approaches for analyzing the software safety, originated from system

safety techniques, do not provide formal basis of conducting systematic safety analysis of software,

in particular, for HRTS software requirements. Software fault tree analysis is the most commonly

employed safety analysis technique. Existing software FTA techniques can be grouped as their

application phases of the software life-cycle. That is, FTA of software requirements [Han94], FTA of

the software design specification [Cha91], and FTA of the software code [Lev83a, Lev87, Cha88,

Cla93, Fri95]. However, its industrial practice depends heavily on technical expertise of human

analysts, the understandability of the system physics, and is often ad hoc.

4.2.4 Comparison of software safety analysis methods

A safety analysis method should have the following features in order to be a good solution for

analyzing the safety;

• Formality: In order to have the precision of the analysis, a method should have an

appropriate formality. However, a safety analysis method should have a different formality

for each phase from system to software development.

• Cognitive approach: A safety analysis method should be cognitively balanced in each

phase from system to software, and also in requirements, design, and coding phases of the

software. It should be easy to use, but precise. For example, there are cognitive approaches

such as goal-based approach, causality-based safety analysis.

• Model-based systematic approach: A safety analysis method for HRTS software should

provide a model-based approach because the safety of software is tightly related with the

plant and controller model. It is also preferable to provide a systematic solution such as

template-based FTA.

• Behavioral safety analysis: Most of the software safety analysis methods based on fault

tree analysis are recognized as static method. However, the safety analysis method for
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HRTS software should be a dynamic analysis method in order to be able to find the cause

of the physical hazard of the system from the behavioral aspects of the software.

* Integrated approach: A software safety analysis method should be able to be integrated in

all dimensions of Fig. 1.2.

Table 4.1 is the result of the comparison on the existing software fault tree analysis methods

according to the above features.

Table 4.1 Comparison of software fault tree analysis methods

^ \ ^ Features

Approaches ^ v

[Leveson83]

[Cha88]

[Clarke93]

[Hansen94]

[Gorski95]

[Fenelon93]

[Subramanian95]-

[Liu96]

CRSA

Formality

L

M

H

H

H

M

M

M

H

Cognitively

Balanced

H

M

M

L

—

H

M

M

H

Model-

Based

Systematic

L

H

L

H

—

H

H

H

H

Behavioral

Analysis

L

L

L

H

—

L

M

H

H

Integrated

L

L

M

L

—

H

M

M

H

H: High, M: Medium, L: Low, -: Not applicable
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5. SOFTWARE RELIABILITY ASSESSMENT

The goal of the section is to identify measures that can be used to estimate the failure rate of

digital instrumentation and control(I&C) systems as part of a nuclear power plant Probabilistic Safety

Assessment (PSA). PSA's are used to improve decision making about the safety of nuclear power

plants. The most important results from PSAs are not the specific probability numbers generated, but

the insights into the risk importance of system features. These insights are used to help focus review

on areas of the greatest safety significance and to avoid imposing burdensome requirements with an

associated safety benefit. In digital instrumentation and control systems the important risk insights

often relate whether or not sufficient redundancy and diversity have been provided in the overall

system architecture. These insights are needed early in the design process if they are to have a

meaningful impact upon the architecture.

In essence, what is needed at this stage is a reasonably realistic reliability allocation that

considers both the combined reliability of the software and hardware reliability as a system. This

reliability estimate needs to be conservative enough to avoid setting unreasonable goals for the

reliability of the final system, but realistic enough to avoid inappropriately focusing attention on the

I&C systems if the largest contributors to risk truly lie elsewhere in the plant. Typically, relatively

rough estimates of reliability suffice at the early stages of design. Risk estimates are used in

conjunction with sensitivity analyses that determine which of the rough estimates need most to be

improved. As design and development progresses, improved reliability estimates may be developed

to confirm that the reliability allocations are being met. Ultimately, testing of the completed digital

system may be conducted to demonstrate compliance with the reliability allocation commitments and

screen out systems that cannot meet minimum reliability needs. Given this context, it is very unlikely

that any single measure will be sufficient to provide even a rough number for PSA use. Both process

and product measures exist, and both types can be useful. It appears that this study is leading to the

combination of a variety of measures of various types and various degrees of objectivity into a single

derived measure that can be useful assessing risk importance of digital I&C systems when compared

to other plant features.

5.1 Complexity metrics

The objective of complexity metrics is to measure the complexity of software modules and

programs based on their structure. If a good correlation between the complexity metric and the

number of faults could be established, then the metric could be used to determine the amount of

attention that the various software modules should receive during development and testing. There are

many different complexity measures, but none of them are generally accepted to be superior to others.
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To investigate this a set of common metrics were compared to the error counts of the modules of

three test programs.

Some of the metrics which can be applied are given below:

• Simple metrics, like number of lines, number of separations, number of variables, number

of unique operators, number of unique operands, etc.

• McCabe's cyclomatic complexity [19821]. This metric is based on the graph structure of the

program, and corresponds to the number of closed regions in the graph, provided there are

no crossing edges or sub-programs.

• Halstead's program length (L) and volume (V) estimate [Hal77].

N= ni*log2(ni)+ n2*log2(n2)

where n\ is the number of unique operators and n2 is the number of unique operands.

V=N* Iog2(n, + n2)

• Prather's complexity [Pra92], which takes into account the number of lines, the number and

complexity of conditions and the nesting depth of a program.

• Average number of entries and exits per software module—minimizing the number of

entry/exit points is a key feature of structured design and programming techniques.

The general impression of this type of models is that they may provide a quick and easy way to

compute a figure which tells something about the complexity of the program and the propensity of

making programming errors in them. However, the validity of these models are not proven, neither

theoretically nor experimentally, and they are therefore not suited for reliability assessment of a

safety related program for safety critical applications.

5.2 Coverage measures.

Coverage measures are measures of to what degree all parts of a program are executed in a test,

or in a real execution. The idea is that the probability that there are indigenous faults remaining in the

program decreases the higher these measures are.

Program coverage measure is a measure of the fraction of a program code which is executed.

The best way to obtain such measures instrument the program with counters at each program

branching point. Different types of coverage measures are

• Statement coverage, where the execution of statements in a program are counted.

• Branch coverage, where the execution of statements in a program are counted.

• Condition coverage, where the 'true' and 'false' values of all logical expressions in a

program are counted.

• Path coverage, where each separate execution path through a program. This is the most

rigorous coverage measure One can distinguish between entire paths, i.e. all statements
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executed from start to termination of a program, or module paths, which comprises all

statements executed from start to termination of a program module, e.g. a subroutine. Since

the number of paths is very large, a complete path coverage is not to be expected, even in

small programs.

• Data coverage, where the usage of data elements in the program are counted.

These measures are based on knowledge of the program code. This is, however, not always

available, but here are other measures which can be made:

• Input domain coverage. The input space is divided into a set of domains, and the number of

executed domains is counted.

• Program property coverage. This is a measure of to which degree the required properties

given in the requirement specification and design documents are tested.

5.3 Fault seeding metrics

Fault seeding models compute the estimated number of remaining faults in a program, and the

confidence in fault freeness, based on seeding and retrieval of artificial faults in the program. This

method presupposes that one has the possibility to alter the program, and also the necessary

knowledge about the program to seed faults into it. For this model to be valid these faults must also

be as concealed as one can expect real faults to be, i.e. it implicitly assumes that the seeded faults

have the same probability of being detected as the indigenous ones. Also, a seeded fault may "mask"

an indigenous fault in the sense that it makes the indigenous fault undetectable.

seeded \ seeded

N-v I u
indigenous / indigenous

N total errors (unknown) (u+k) errors found

Fig. 5.1 Fault Seeding Metrics

A fairly simple way to derive the above result is to consider Fig. 5.1. Here we have, in the circle on

the left, all the faults in the program N, which includes v seeded faults. In the rectangle on the right,

we have the (w+&) faults that were found during testing, where u are indigenous and k are seeded

faults. If TV and (u+k) are large, the proportions between the seeded and indigenous faults should be

approximately the same in both cases, i.e.,
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N-v

Solving this gives

, v(u + k) I - I v-u
N = — or N-v = l

If one keeps on testing until all the seeded faults have been found (k=v), the number of remaining

faults is estimated to zero. While this is a valid estimate, it is not statistically significant. Instead, one

can estimate the probability that the remaining number of faults is less than or equal to some number

w:

We make the a prior assumption that

{0 n<u+v
C n>u+v

where N is the true number of faults (indigenous and seeded), and C is some constant. For purposes

of calculation, the number of faults n is set to be infinite when we derive equation below. When we

estimate the probability that there are less than or equal to w faults left in the program, we assume n

to be finite, and we get the approximation

P(n < (u + v + w)\ (M + v)found) « 1 -

M + v - 1

v - 1

(u + v + w

{ v - 1

The method is applicable to safety critical programs where no real faults are found during testing.

The result is a confidence in fault freeness, and not a reliability figure. It can therefore not be used

directly in e.g. a PSA evaluation together with hardware reliability estimates. The method requires a

high number of seeded faults to obtain a sufficiently high confidence level for safety critical

applications.

In the special case where no indigenous faults are found, and all the seeded faults are found, we

get the probability that there are no more faults in the program to be

P((n <v)n(w< 0)| (v found) n(u = 0)) = ——
v

This method presupposes that one has the possibility to alter the program, and also the necessary

knowledge about the program to seed faults into it. For this model to be valid these faults must also

be as concealed as one can expect real faults to be, i.e. it implicitly assumes that the seeded faults

have the same probability of being detected as the indigenous ones. Also, a seeded fault may "mask"

an indigenous fault in the sense that it makes the indigenous fault undetectable.
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An advantage of this method is that it can be applied with different types of verification, testing,

reviews, static analysis etc.

Experiments have shown that the method gives quite reasonable estimates when more than 50%

of the seeded faults have been found.

5.4 Statistic reliability modeling

Conventional reliability theory, which is based on reliability engineering of physical objects, in

general is not suited for computer software. A computer program is not subject to wear out. When a

program is fault-free, it will remain fault-free forever, provided the environment in which the

program operates does not change.

A measure of software reliability can be based on the statistical study of failures, which occur

because of some defect in the program. The failure may be evident, but it may be difficult to see the

error responsible, or what to do to make the fault disappear. Reliability models are supposed to

provide quantitative information about the confidence one can have in the correct execution of a

program. A simple estimate of the reliability could be based on a program test by dividing the

number of failed tests with the number of executed tests. However, if a fault is revealed, the program

would probably be corrected, and thus the reliability changed. And if no faults are found, such an

estimate would not differentiate between no failures in 10 tests and no failures in a million tests.

There are, however, developed a variety of more sophisticated models. They can be classified as:

5.5 Reliability growth models

Based on the sequence of times between observed and repaired failures, these models estimates

the reliability and current failure rate, and predict the time to next failure and required time to remove

all faults. These models are primarily used during the debugging phase of program development.

However, they are also used for large systems, such as operating systems, which may fail and be

corrected during periods of operational usage.

The general assumption of these methods is that a single system is followed chronologically with

recording of times to failure, and that the faults are corrected. This is a situation which for instance is

easy to achieve in a debugging phase. However, the reliability figure obtained in this way estimates

the probability of no failures if one continues to debug along the same way. It is questionable,

however, whether this gives a realistic estimate of the reliability in real applications, with a different

input distribution.

A more realistic estimate is obtained if the data are collected during real operation. This could be

the case in the evaluation of a fairly large system, where a significant number of failures occur during

operation. However, in order for the number of failures to be significant, it must be fairly high. It is

questionable whether specific systems will reveal so many faults after they have been taken into use.
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A type of systems which are known to reveal many faults, even after they are released, are large

proprietary systems, as e.g. operating systems, information systems etc. The problem with such

systems is that they are difficult to follow chronologically. Different faults are found by different

users, which report them back to the producers. The same faults may also be found by different users.

The producers will then usually collect the error reports, correct all the reported faults in the next

program release, whereas the users will continue to use the faulty program, and possibly find new

faults, until they get a new program release. None of the models, however, take into account this

realistic scenario.

The methods do not distinguish between different types of faults, e.g. between real faults and

more cosmetic faults. It is of course a possibility to only take into account a particular class of faults.

In this case, however, one may easily obtain a number of faults which is not significant. This is in

particular the case when one only takes into account critical faults. An alternative way to measure the

reliability of a program with respect to a certain class of faults is to perform the reliability estimation

with all types of faults and multiply this with the ratio between the number of faults in the particular

class and the total number of faults.

5.6 High reliability software models.

The reliability growth models are based on software failure data, and require a certain amount of

data to give significant results. In case of safety related software this is usually not the case. For the

final system one will usually not detect any faults, so the expected failure probability is zero, which

is not very interesting. In such a case it is more interesting to consider the confidence level for the

failure probability. Assume that one performs n tests of a program, with input data randomly sampled

from a certain input profile, and no failure occurred. Then one can state with confidence

that the failure probability for the program p<q, if the input data correspond to the same input profile

as during the test.

5.7 Input domain based models.

In these models the input space is partitioned into a set of 'bins', and estimate the overall

reliability from the reliabilities of the input partitions. These models assume that the input domain is

partitioned into equivalence classes. An equivalence class is defined so that one can reasonably (but

not with certainty) assume that a test of a representative value of the class is equivalent to a test with

any other value of the same equivalence class, i.e. if one test with input from an equivalence class is

correct, then the program is probably correct for all values in this class. The probability of failure is

generally assumed to be the same for all members of the same equivalence class. The main advantage
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of these models is that one can obtain a high confidence in the reliability estimates with a limited

number of tests.

An advantage of the input domain approach is the possibility of exhaustive testing within a

particular bin. If the cardinality of a bin is small enough to allow exhaustive testing, and testing

reveals no failures, then we can assign the probability of failure within that bin to zero. Unlike

random testing, input domain testing can take immediate advantage of this information. Another

advantage becomes evident if the usage distribution represented by the bin selection probabilities is

changed. If we assume that the new distribution uses exactly the same partition of the domain, and

that only the selection probabilities are changed, the new estimate of the overall reliability can easily

be calculated.
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5.8 Markov models

Markov models estimate the overall reliability from the reliabilities of the individual program

modules and their transition probabilities. Essential for these models is the definition of the states and

interpretation of what is meant with transitions between them. Different approaches have been used:

A definition based on the control flow structure of the program, i.e. an actual state is defined by the

program module with the locus of control. Another definition based on where one is in the debugging

phase of the program. The third alternative is to define the states based on a Markov model of the

usage of the system, or of the process the system shall control.

The use of finite state automata is a powerful way to specify a program, and this specification can

be the basis for the states in the Markov chain. The knowledge about the: usage or the process should

make it possible to make reasonable guesses about the transition probabilities. This also defines a

testing strategy to obtain a testing chain with the reliability parameters, and together they can be used

to predict future behavior.

An advantage of a Markov model is the distinction between the stochastic behavior due to the

actual usage and the one due to potential failures. It should thus be: possible to recompute the

reliability for different usage profiles without changing the basic reliability figures. In particular it

should be possible to compute the possibility to reach hazardous states, which is important for safety

related software.

A computer program implemented in a safety critical system contains presumably no known

faults. There is, however, a possibility that it contain unknown faults, and an alternative reliability

measure is the confidence in fault freeness of the program, or more generally in the upper limit of the

'bug-size'. Such a measure can be made on statistical basis from data obtained during testing of the

complete program, as well as of the different modules. One set of data can be gained through a

controlled testing combined with a coverage measure. The latter requires a fairly detailed knowledge

about the program structure, which is not always available when proprietary software modules are

used. For these, however, there may be an additional large set of 'test' data obtained from

information about the usage of the system.

Another type of measure is more qualitative expressed as a subjective judgment as a 'belief in

fault freeness. A methodology to use 'influence nets' (also called Bayesian networks or 'belief nets')

and engineering judgment to combine evidences from different information sources for a quantitative

assessment of this belief has been proposed [Nei96, Del97]. Such networks can be used to show the

link between basic information and the confidence one can have in a system. Each node in the

network, except for the roots, expresses the 'belief one can have in a statement, given information

on its immediate predecessors in the net. Quantitative expressions for these conditional 'beliefs' must

to a large degree be based on expert judgment or reasonable guesses. This might itself introduce
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further uncertainty and potentiality for error. In addition, there are serious unresolved difficulties in

combining such disparate evidence in order to make a single evaluation of the overall dependability

and thus to make a judgment of acceptability.

5.9 Evaluation based on combination of evidences

To evaluate whether the goal of a lifecycle phase has been fulfilled one should utilize all

evidences which may contribute to this goal. These evidences may be of rather disparate nature, both

qualitative and quantitative. A problem is how to express observations about these evidences. Ideally

these observations should be objective, but this is often difficult to obtain. Objectivity can be

obtained if the evidence is in itself objective, either quantitative as e.g. the number of tests performed,

or as objective facts, as e.g. that a certain coding standard is used. However, even if the evidence is in

itself not objective, there are sometimes made objective procedures to observe these evidences. An

example is program complexity, which is a qualitative concept, where there are constructed different

metrics to measure this complexity.

Another problem is how to combine these evidences to obtain a common measure of the

achievement of the goal. The Bayesian Belief Net (BBN) methodology is suggested as a way of

combining the evidences. The objective of using BBNs in software safety assessment is to show the

link between basic information and the confidence one can have in a system. A BBN is a connected

and directed graph, consisting of a set of nodes and a set of directed links between them. A variable

which can be in a set of states is associated to each node. Probability density functions over the states

express the probability (or belief, confidence etc.) that the variable is in a particular of these states.

This probability depends on the status of the variables represented by the start nodes at the incoming

edges to the variable (the parent nodes). The edges represent conditional probabilities.

The nodes and associated variables can be classified into three groups:

• Target node(s) - the node(s) about which the objective of the network is to make an

assessment. This assessment is expressed with a quantifiable target variable. Typical

examples of such nodes are "No faults in a program" or "No failure on demand for a trip."

• Observable nodes - nodes which can be directly observed. Some examples are: "No failures

during N test," "No reported failures during previous usage of modules," "All quality

requirements are fulfilled," etc. The associated observable variables should be measurable

or quantifiable, although this measurement may not be exact and objective, but based on

judgement.

• Intermediate nodes - nodes for which one have limited information, or only "beliefs." The

associated variables are the hidden variables. Typical hidden variables are development

quality, producer's reputation etc.

Application of the BBN method consists of three tasks:
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• construction of BBN topology

• elicitation of probabilities to nodes and edges

• making computations.

The construction of the BBN is made gradually, by combining the target node(s) with the

observable and the intermediate nodes. The aim is to combine all available relevant information into

the net. One way to do it is to start from a target node and draw edges to nodes influencing this. Then

from these nodes to draw edges to new nodes. In this way one will gradually build up a large BBN.

The next step is the elicitation of probability distribution functions (pdfs) to the nodes and edges.

To begin with one gives prior pdfs to hidden variables (some, at least the top nodes, but not

necessarily all), and conditional pdfs for the influences represented by the edges. These pdfs may be

either continuous functions or they may be discretized. The latter means that the range of the

variables is dividend into a finite number of states. This has some advantages, both because it is

conceptually easier in an expert judgement to assign discrete values, and because it usually makes the

computation much simpler. The conditional probabilities for edges between discrete variables are

given as dependency matrices between the states of the variables associated with the start node and

the end node of the edge respectively. For the observable nodes one would expect exact values, and

therefore no pdf. However, for some observables the quantification is somewhat fuzzy, and so a pdf

might also be the appropriate representation of these.

The computation method is to insert observations in the observable nodes, and then use the rules

for probability calculation backward and forward along the edges, from the observable nodes,

through the intermediate nodes to the target node (which again can be an intermediate node in a BBN

at a higher level). Forward calculation is straight forward, while backward computation is more

complicated. It can, however, be solved using Baye's methodology.

The goal, Preparedness, expresses the confidence at this stage that the company has properly

considered the safety aspects of introducing a computer based safety system, and also that it is

experienced enough to be able to handle the safety aspects throughout the system development. The

bottom nodes represent the observable evidences. In this example these evidences are of a qualitative

nature. In order to give a quantitative value to the observation a set of corresponding questions where

one can give answers on a scale from "yes" to "no." The pdfs associated with the edges between

nodes represents quantitative expressions of the importance the value of the "child" node has on the

"parent" node.
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6. GUIDELINES TO PROTECT COMMON MODE FAILURES

6.1 Background

The potential for common-cause or common-mode failures (CCF or CMF) has become an

important issue as the software content of digital I&C systems has increased. CCFs are multiple

component failures having the same cause. CMFs denote the failure of multiple components in the

same way, such as stuck open or fail as-is [NRC97].

The potential for CMFs was not present in earlier analog I&C systems used in operating nuclear

power plants because it could usually be assumed that CMF, if it did occur, was due to slow

processes such as corrosion or premature wear-out. This assumption is no longer true for systems

containing digital software, which are used in advanced reactors. Specifically, digital I&C systems

share more data transmission functions and shares more process equipment than their analog

counterparts. Redundant trains of digital I&C systems may share databases (software) and process

equipment (hardware). With the advent of software operated devices—where multiple redundant

units would all be executing the same program with essentially the same inputs and outputs and

more-or-less synchronous—the possibility of simultaneous failure in redundant units becomes all too

real. This was attributed to the issue of common software being operated in all units of a redundant

system where a bug in one would be a bug in all—when a software error exists, all will execute a bug

more-or-less simultaneously, and if this error causes the system to operate improperly or crash, each

of the redundant machines will fail simultaneously [Wym97]. A study on failures of digital I&C

systems in U.S. nuclear power plants from 1990 through 1993 shows that software errors was one of

the primary causes of failures in these systems.

To overcome the software CMF, the possibility of including diversely produced programs in the

software redundancy has been investigated scientifically at various institutions around the world. The

idea of using diverse programs made by independent programming teams to enhance the reliability

and safety of computer systems was introduced in the early 1970s. The concept was suggested by

different people under different names, fault-tolerant programming, parallel programming, distinct

software, redundant programming, etc. One conclusion from these early experiments is that the use

of diverse software clearly increases software reliability. There are, however, various aspects of this

method that have required further investigations. One is possibility of common mode errors in the

diverse programs. A particular source of common mode errors is the common specification. The fact

that the human mind sometimes has the propensity to make certain types of errors may also cause a

common fault in diverse programs.

The purpose of this section is to provide guidelines for analyzing computer-based nuclear reactor

protection systems that discovers and identifies design vulnerabilities to the CMF. A special form of
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CMF analysis called "defense-in-depth and diversity" (D-in-D&D) analysis has been developed to

identify possible CMF vulnerabilities in digital systems. Defense-in-depth is the concept of multiple

lines of defense against a perceived threat so that if one line of defense is penetrated, another line is

invoked to limit the damage caused by the penetration. This can be carried through several levels.

Diversity is the notion that if redundant systems are different in some substantial way from each

other, a failure in one will not necessarily imply a failure in the other.

Diversity and defense-in-depth analyses should be performed when a credible potential exists for

the CMF. This is presently the case for computer-based safety systems and would be the case for

new-technology safety systems whose reliability properties are imperfectly known. The analysis

technique can be used to demonstrate adequate diversity and defense-in-depth, or used as a

constructive design technique to add diverse protection schemes or equipment to counteract

common-mode failure vulnerabilities. The CMF analysis activity involves three major activities:

- Construction of a system model that describes what portions of the design have a potential

for CMF.

- Analysis of the I&C system response to design basis events in combination with assumed

CMFs.

- Analysis of the plant and offsite consequences of the combination of design basis events

and CMFs.

6.1.1 Software fault tolerance

CMF may occur in the I&C architecture's systems & equipment implementing different lines of

defense against the same postulated initiating event (see Appendix A for definition). Software by

itself does not have a CMF mode. CMF is related to system failures arising from faults in the

functional requirements, system design, or in the software [160880].

Defense in depth is required to be applied to all safety activities, whether organizational,

behavioral or design related, to ensure that there are overlapping defenses so that if a failure should

occur in a subsystem, it would be compensated for or corrected in the integral system.

Software fault tolerance has several names and several forms: e.g., fault-tolerant programming,

redundant programming and distinct software, concept of recovery blocks, dissimilar programming

and dual programming, N-version programming, multi-version software, and software diversity. The

main methods for software diversity are recovery block technique (RBT) and N-version

programming technique (NVP). The common feature of all approaches is the independent generation

of functionally identical program modules; the modules may be executed in parallel or sequentially,

either in all cases, or depending on acceptance testing and error detection. N-version programming is

that, working from the same software specification, several independent groups of programmers
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would write the code to meet the specification, perhaps even using different programming languages.

However, this idea has not met with much acceptance for several reasons [Wym97]:

• The cost of maintaining several different sets of software has been daunting.

• Coding errors are not the big problem; errors in the requirements cause much more trouble

than coding errors.

Software faults are systematic, not random faults and therefore, the single failure criterion

[R1153] cannot be applied to the software design of a system in the same manner as it has been

applied for hardware. A means of enhancing the reliability of some systems and reducing the

potential for certain CMFs is the use of diversity. Software diversity is a software development

technique in which two or more functionally identical variants of a program are developed from the

same specification by different programmers or programming teams with the intent of providing

error detection, increased reliability, additional documentation or reduced probability that

programming or compiler errors will influence the end results [Vog94]. As listed in Table 6.1, IEC

60880 [160880] summarizes possible diverse features of software.

One possible view on the application of software diversity is the inspection of the software

development life cycle and the use of software diversity aspects in the different phases such as

specification, design, implementation, test and maintenance. In each of these phases, software

diversity can be applied, and in some cases independent of the application in the other phases. To

achieve software diversity, different approaches are possible, for example the use of independent

teams, independent solution space, independent working environment/tools, and independent run

time support (such as operating system and compiler).

The rationale for defense against software faults is that any software fault will remain in the

system or channel concerned until detected and corrected, and can cause failure if a specific signal

trajectory challenges it [160880]. If two or more systems or channels implementing different lines of

defense for the same postulated initiating event contain the fault, and are exposed to specific signal

trajectories within a sensitive time period, both (or all) systems or channels can fail which is called a

CMF.
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Table 6.1 Possible diverse features of software

a) Diverse software features of importance include:
• Functional diversity;
• Different design specifications for the same functional requirements:
• Implementing the functions differently (N-version software) for the same specification

b) Diversity at the system level can include:
• Use of independent systems for different actuation criteria;
• Use of different basic technology, such as computers versus hardwired design;
• Use of different types of computers, hardware modules and major design concepts:
• Use of different classes of computer technique such as programmable logic controllers (PLCs).

micorprocessors or minicomputers.

c) The design approach features and problem solutions which enhance diversity include differences of:
• Processing algorithms:
• Data for configuration, calibration and functionality;
• Signal input hardware;
• Hardware interfaces and communications:
• Input sampling processes:
• Time sequences of operations;
• Timing processes;
• Use of historical information, latches and rates of change

d) Differences in design and implementation methods include:
• Languages:
• Compilation systems;
• Software tools:
• Programming techniques;
• System and application software:
• Software structures:
• Different use of the same software modules:
• Data and data structures.

e) Diversity during tests (back to back testing).

f) Diverse aspects of management approach include:
• Two designs following deliberate dissimilar development methods (forced);
• Separation of the design teams;
• Restriction of communication between the teams;
• Formal communication of resolution of ambiguities in requirements or specifications;
• Use of different logic definition processes:
• Use of different staff.

6.1.2 Potential CMF causes and effects

The generic types of failures that lead to CMF include errors in requirements, errors in design,

and errors in manufacturing that simultaneously affect multiple channels in a function. Draft

Amendment 1 to IEC 60880 [160880] classifies potential CMF causes and effects as follows:

6.1.2.1 CMF potential

• A potential for a software induced CMF of different systems or between different channels

in one system exists if common software or software modules are used. Other common

features with CMF potential include, common architecture, algorithms, development

methods, tools, implementation methods, staffing and management.

• Requirements that are not properly understood or not correctly transformed can result in

faults in the software specification resulting in risks of CMF due to exercising the resulting

software fault. Deficiencies in software can be due to incorrect, incomplete, inaccurate or

53



misunderstood software requirements and software specifications. Design errors leading to

software faults can be introduced into diverse programs, due to common human factors

such as training, organization, thinking processes and design approaches.

• Another cause of CMF could result from connection of systems to ones with lower quality

software.

6.1.2.2 Signal trajectories

The signal trajectories can cause a CMF when they are read:

• by each redundant channel of a system using common software;

• by two systems whose functions are diverse but which use common software.

A software fault may result in a software failure when a specific signal trajectory appears. If this

signal trajectory is identical for two or more channels or systems, this may result in a CMF which

will jeopardize one or more defense layers when sufficient quality, independence and diversity are

not provided.

6.1.2.3 Abnormal conditions and events

Abnormal hardware failures, plant conditions and events can cause unforeseen signal trajectories,

unexpected software states, transients or overload conditions that were not covered by the initial

requirements or by the software design. Potential events which may cause CMF include:

• common timing signal failure, causing loss of timed actions;

• power supply transients causing software stop or auto-restart;

• plant trips causing communication channels to overload;

• saturation of operator capacity, causing an incorrect action;

• operator demands saturating system capacity during plant trips and transients;

• all automatic controller functions engaged and operating; and

• abnormal conditions during outages and commissioning.

6.1.3 Defense against CMF due to software

The potential for CMF due to software should be considered during the design. If postulated

conditions of CMF can be foreseen, design changes and defense features, including software

diversity, may be needed for protection against CMF due to software. Draft Amendment 1 to IEC

60880 summarizes defenses against CMF due to software as follows.

1. The basic defense against CMF due to software is the production of software to meet

requirements correctly. The extent of coverage of self monitoring features such as for data

plausibility, parameter range checking and loop timing, etc. is a further important factor in

limiting the potential for CMF due to software.
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2. The use of well developed software engineering methods with software tool support for

software development and verification can help to reduce the: number of human design

decisions and so potentially reduce the number of faults in the developed software.

3. If human errors are made before software design starts, they may lead to faults of

requirements and potential system failures against which software engineering alone cannot

provide a defense. If human errors are made during the software engineering process, they

may lead to software faults and potential system failures.

4. Implementation of software diversity should use independent systems with functional

diversity. The use of system diversity, diverse software features and diverse design

approaches should be considered. Different software specifications (e.g., by use of different

specification methods) for different implementations of the same functional requirement

shall be used for modules where diversity is being claimed provided they do not jeopardize

the functional requirements.

The incorporation of redundancy into the system is one way of coping with errors during the

operation of the system. If an error affects all redundant units at once, a common cause failure occurs.

This is especially possible if the redundant units are identical, and if these units either contain an

identical error or are prone to identical malfunction in the event of certain input or environment

conditions (e.g., high temperature, high voltage for hardware, values out of range for software).

6.1.4 Examples of common mode sensitivity

According to Draft IEC 61513 [161513], the following typical CMF situations may exist:

• Case 1: a redundant or distributed system, with all channels using the same software—two

or more parts can suffer software CMF (see Fig. 6.1 a),

• Case 2: a redundant system with different software in each channel, to the same

requirements—incorrect common requirements can result in software CMF (see Fig. 6.1b),

• Case 3: two systems operating the same plant differently (such as automatic initiation or

control room logic control)—both can have common system software modules, resulting in

software CMF (see Fig. 6.1c),

• Case 4: a distributed system, with different functions in each channel (such as different

control loops) —each channel can use common system software, resulting in software

CMF (see Fig. 6.Id),

• Case 5: two different systems operating different safety actuation systems for the same

basic function (such as reactor shutdown)—both can have common design features (such as

voting algorithms) which can suffer software CMF (see Fig. 6.1e).
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Fig. 6.1 Examples of common mode sensitivity

6.1.5 History of D-in-D&D in nuclear power plants

NUREG-0493 [N0493], "Defense-in-Depth and Diversity Assessment of the RESAR-414

Integrated Protection System," published March 1979, was an assessment of a single reactor

protection system that addressed common-mode failure concerns and introduced a method of

analysis. In NUREG-0493 defense against common-mode failures was based upon an approach using

a specified degree of system separation between echelons of defense. Although the application was

specific, the 1979 work established sufficiently general principles that it was adapted to analyze the

GE ABWR in 1991, the Westinghouse AP-600 in 1993, and the GE SBWR in 1993 by an

independent Nuclear Regulatory Commission (NRC) contractor. ABB Combustion Engineering used

the principles themselves in 1992 to analyze their System 80+ protection system.

Subsequently, in SECY 91-292 [SEC91], "Digital Computer Systems for Advanced Light-Water

Reactors," the Staff included discussion of its concerns about common-mode failures in digital

systems used in nuclear power plants. Some of the major points in that paper are summarized as

follows:

1. Common mode failures could defect the redundancy achieved by the hardware architectural

structure, and could result in the loss of more than one echelon of defense-in-depth
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provided by the monitoring, control, reactor protection, and engineered safety functions

performed by the digital I&C systems.

2. The two principal factors for defense against common-mode and common-cause failures

are quality and diversity. Maintaining high quality will increase the reliability of both

individual components and complete systems. Diversity in assigned functions (for both

equipment and human activities) equipment, hardware, and software,, can reduce the

probability that a common-mode failure will propagate.

3. The staff intends to require some level of diversity, such as a reliable analog backup.

As a result of the reviews of ALWR design certification applications that used digital protection

systems, the staff documented an initial statement of a four-point diversity and defense-in-depth

requirement with respect to common-mode failures in digital systems and defense-in-depth. This

position was documented as Item II.Q in SECY 93-087 [SEC93], "Policy, Technical, and Licensing

Issues Pertaining to Evolutionary and Advanced Light-Water Reactor (ALWR) Designs," and was

subsequently modified in the associated Staff Requirements Memorandum (SRM) [MSE93] dated

July 21, 1993. In the SRM, the full Commission approved the modified four-point requirement (see

section 6.1.6). Based on experience in the detailed reviews, theNRC staff has established acceptance

guidelines for D-in-D&D assessments as a branch technical position, BTP HICB-19 [BTP19].

Experience applying NUREG-0493 to four other vendor's protection systems has led to a clearer

picture of how to do the analysis. As computer systems and their developers got more sophisticated,

NUREG-0493 needed to be updated to account for this evolution. NUREG-0493 has been rewritten

and extended as NUREG/CR-6303 [N6303], "Method for Performing Diversity and Defense-in-

Depth Analysis of Reactor Protection Systems," published December 1994, to capture that

experience, to explain the techniques for performing the analysis, to remove those details specific to

the RESAR-414, and to reflect the technical position of the staff and the Commission. NUREG/CR-

6303 is advisory for the assessment of the ALWR designs and the method described is not mandatory.

Analyses performed using the methods of NUREG/CR-6303 are not intended to require the inclusion

or exclusion of specific failures in a reactor protection system design basis, but are intended to

determine points of vulnerability in a design to common-mode failures, should they occur.

6.1.6 The four point regulatory position on D-in-D&D

The US NRC established the following four point position on D-in-D&D for the advanced

reactors as a result of the reviews of ALWR design certification applications that used digital

protection systems [BTP19, SEC93, MSE93].

1. The applicant/licensee should assess the defense-in-depth and diversity of the proposed

instrumentation and control system to demonstrate that vulnerabilities to common-mode
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failures have been adequately addressed (Software design errors to be credible common-

mode failures that must be specifically included in the evaluation [NRC97]).

2. In performing the assessment, the vendor or applicant/licensee shall analyze each

postulated common-mode failure for each event that is evaluated in the accident analysis

section of the safety analysis report (SAR) using best-estimate methods. The vendor or

applicant/licensee shall demonstrate adequate diversity within the design for each of these

events.

3. If a postulated common-mode failure could disable a safety function, then a diverse means,

with a documented basis that the diverse means is unlikely to be subject to the same

common-mode failure, should be required to perform either the same function or a different

function. The diverse or different function may be performed by a non-safety system if the

system is of sufficient quality to perform the necessary function under the associated event

conditions (Diverse digital or nondigital systems are considered to be acceptable means.

Manual actions from the control room are acceptable if time and information are available

to the operators. The amount and types of diversity may vary among designs and will be

evaluated individually [NRC97].).

4. A set of displays and controls located in the main control room should be provided for

manual system-level actuation of critical safety functions and monitoring of parameters

that support the safety functions. The displays and controls should be independent and

diverse from the safety computer systems identified in items 1 and 3 above.

The position for existing plants is the same except that item 4 is not required. The above position

is based on the US NRC concern that software design errors are a credible source of common-mode

failures. Software cannot be proven to be error-free, and therefore is considered susceptible to

common-mode failures because identical copies of the software are present in redundant channels of

safety-related systems. To defend against potential common-mode failures, high quality,

defense-in-depth, and diversity are considered to be key elements in digital system design.

High-quality software and hardware reduces failure probability. However, despite high quality of

design, software errors may still defeat safety functions in redundant, safety-related channels.

Therefore, as set forth in points 1, 2, and 3 above, the staff requires that the vendor/evaluator

perform a D-in-D&D assessment of the proposed digital I&C system to demonstrate that

vulnerabilities to common-mode failures have been adequately addressed. In this assessment, the

vendor/evaluator should analyze design basis events (as identified in the safety analysis report). If a

postulated common-mode failure could disable a safety function that is required to respond to the

design basis event being analyzed, then a diverse means of effective response (with documented

basis) is necessary. The diverse means may be a non-safety system, automatic, or manual if the
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system is of sufficient quality to perform the necessary function under the associated event

conditions and within the required time.

6.1.7 Applicable regulatory basis and guidelines

6.1.7.1 Regulatory basis

The applicable regulatory basis on D-in-D&D is as follows:

• 10 CFR 50.55a(h), "Protection Systems," requires in part that protection systems satisfy the

criteria of ANSI/IEEE Std 279 [1279], "Criteria for Protection Systems for Nuclear Power

Generating Stations." IEEE Std 279 includes the following requirements [N6303]:

4.17, Manual Initiation.

The protection system shall include means for manual initiation.

4.2, Single Failure Criterion. Any single failure within the protection system shall not

prevent proper protective action at the system level when required.

4.6, Channel Independence. Channels that provide signals for the same protective functions

shall be independent and physically separated.

4.7.4, Multiple Failures Resulting From a Credible Single Event. Where a credible single

event can cause a control system action that results in a condition requiring protective

action and can concurrently prevent the protective action from those protection system

channels designated to provide principal protection against the condition, one of

the following must be met.

4.7.4.1, Alternate channels, not subject to failure resulting from the same single event,

shall be provided to limit the consequences of this event to a value specified by the

design bases. In the selection of alternate channels, consideration should be given to (1)

channels that sense a set of variables different from the principal channels, (2) channels

that use equipment different from that of the principal channels to sense the same

variable, and (3) channels that sense a set of variables different from those of the

principal protection channels using equipment different from that of the

principal protection channels. Both the principal and alternate protection channels shall

meet all the requirements of this document.

4.7.4.2, Equipment, not subject to failure caused by the same credible single event, shall

be provided to detect the event and limit the consequences to a value specified by the

design bases. Such equipment shall meet all the requirements of this document.

• 10 CFR 50.62, "Requirements for Reduction of Risk from Anticipated Transients without

Scram," requires in part various diverse methods of responding to ATWS.
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10 CFR 50 Appendix A, General Design Criteria (GDC) states in part in the introduction

that [N6303]:

The development of these General Design Criteria is not yet complete... (S)ome of the

specific design requirements for structures, systems, and components important to safety

have not as yet been suitably defined. Their omission does not relieve any applicant from

considering these matters in the design of a specific facility and satisfying the necessary

safety requirements. These matters include:

a) ... (2) Consideration of redundancy and diversity requirements for fluid systems

important to safety... (T)he minimum acceptable redundancy and diversity of

subsystems and components within a subsystem, and the required interconnection and

independence of the subsystems have not yet been developed or defined.

b) ... (4) Consideration of the possibility of systematic, nonrandom, concurrent failures of

redundant elements in the design of protection systems and reactivity control systems.

... There will be some water-cooled nuclear power plants for which the General

Design Criteria are not sufficient and for which additional criteria must be identified

and satisfied in the interest of public safety. In particular, it is expected that additional

or different criteria will be needed... for water-cooled nuclear power units of advanced

design.

10 CFR 50 Appendix A, GDC 21. Protection systems reliability and testability requires in

part that, "...no single failure results in the loss of the protection system..."

10 CFR 50 Appendix A, GDC 22. Protection system independence requires in part that,

"design techniques, such as functional diversity or diversity in component design and

principles of operation, shall be used to the extent practical to prevent loss of the protection

function."

10 CFR 50 Appendix A, GDC 23. Protection system failure modes requires that, "the

protection system shall be designed to fail in a safe state or into a state demonstrated to

be acceptable on some other defined basis if conditions such as disconnection of the system,

loss of energy (e.g., electric power, instrument air) or postulated adverse environments (e.g.,

extreme heat or cold, fire, pressure, steam, water, and radiation) are experienced."

10 CFR 50 Appendix A, GDC 24. Separation of protection and control systems requires in

part that, "interconnection of the protection and control systems shall be limited so as to

assure that safety is not significantly impaired."

10 CFR 50 Appendix A, GDC 29. Protection against anticipated operational occurrences

requires that, "the protection and reactivity control systems shall be designed to assure an
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extremely high probability of accomplishing their safety functions in the event of

anticipated operational occurrences."

6.1.7.2 Relevant guidelines

The applicable relevant guidelines on D-in-D&D is as follows:

• KINS/AR-541, "Development of the Technology for D-I-D and Diversity Regulations of

Computer-based Reactor Protection Systems," is the first Korean regulatory guideline on

D-in-D&D, which was published from the Korea Institute of Nuclear Safety in April 1998

[KINS98].

• Reg. Guide 1.53, "Application of the Single-Failure Criterion to Nuclear Power Plant

Protection Systems," clarifies the application of the single-failure criterion (GDC 21) and

endorses ANSI/IEEE Std 379 [1379], "Standard Application of the Single-Failure Criterion

to Nuclear Power Generating Station Safety Systems," providing supplements and an

interpretation.

• Reg. Guide 1.153, "Criteria for Power, Instrumentation, and Control Portions of Safety

Systems," endorses IEEE Std 603 [1603], "IEEE Standard Criteria for Safety Systems for

Nuclear Power Generating Stations," as an alternative to ANSI/IEEE Std 279.

NUREG-0493, "A Defense-in-Depth and Diversity Assessment of the RESAR-414

Integrated Protection System," is the first formal defense-in-depth and diversity assessment

of a reactor protection system, the RESAR-414 [N0493].

NUREG/CR-6303, "Method for Performing Diversity and Defense-in-Depth Analyses of

Reactor Protection Systems," documents several D-in-D&D analyses performed after 1990,

and presents a method for performing such analyses [N6303]. The methods and results of

D-in-D&D assessments used in ALWR design certification submissions are documented in

NUREG/CR-6303. This document describes an acceptable method for performing such

assessments.

• The Staff Requirements Memorandum on SECY 93-087 describes the NRC position on

defense-in-depth and diversity [MSE93].

6.2 Analysis Guidelines

Modern computer-based systems have become sufficiently complex that details can soon

overwhelm the analyst. Dividing the system into blocks is intended to reduce design detail to the

abstraction level consistent with the goals of the analysis. Consequently, the failures postulated

herein subsume many kinds of similar, individual failures and must be considered group failures
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whose inner workings need not be defined precisely. This is typical of the effects of software failures

in which many individual failures are capable of producing the same or similar outputs. Attempting

to postulate all possible individual software errors is impossible on any relevant human time scale

and is unnecessary.

As shown in Fig. 6.2, NUREG/CR-6303 describes fourteen analysis guidelines on the D-in-D&D.

In this section, the brief outline of each guideline will be described.

6.2.1 Guideline 1 - Choosing blocks

To conduct a D-in-D&D analysis, components of the system architecture should be defined. A

block is the smallest portion of the system under analysis for which it can be credibly assumed that

internal failures, including the effects of software errors, will not propagate to other equipment (see

section 2.5 of NUREG-0493 [N0493]). The objective of choosing blocks is to reduce the need for

detailed examination of internal failure mechanisms while examining system behavior under

reasonable assumptions of failure containment. As shown in Fig. 6.3, the different types of blocks are

defined in section 3 of NUREG-0493. The basic idea is to aggregate the components and modules of

the system into a manageably small number of functional units, or blocks, to systematize the

postulation of CMF and the analyses of the consequences of these postulated CMF.

_ . „ . '. T] 7 I • Physical failure containment
G1: Choosing Blocks | . J ^ M i m contajnment

I ~ ~ ; I • Design diversity
G2: Determining D.vers.ty | . Equipment diversity

' Functional diversity
• Human diversity
• Signal diversity
' Software diversity

m

I
G3: System Failure Types

• Type 1 failures
• Type 2 failures
• Type 3 failures

G10: Diversity for AOOs

G4: Echelon Requirement * Control echelon
' ' Reactor trip echelon

• ESFAS echelon
• Monitoring and indication echelon

G11: Diversity for Accidents

V. | G12: Diversity Among Echelons of Defense

• Control/Reactor Trip Interaction
• Control/ESFAS Interaction
• Reactor Trip/ESFAS Interaction

G5: Method of Evaluation

G6: Postulated CMFs of Blocks

G7: Use of Identical H/Wand S/W Modules

G13: Plant Monitoring

G14: Manual Operator Action

G8: Effect of Other Blocks

G9: Output Signals

Fig. 6.2 Overall structure of guidelines
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Fig. 6.3 Basic system architecture for evaluation of defense-in-depth principle

Since an objective of this analysis method is to view the subject design at a level of abstraction

that reduces the level of detail, the main criterion for selecting blocks is that the actual mechanism

of failure inside a block should not be significant to other blocks. Therefore, a block is a physical

subset of equipment and software for which it can be credibly assumed that internal failures,

including the effects of software errors, will not propagate to other equipment or software.

Failure propagation modes can be divided into two classes: physical (e.g., electrical) and logical

(e.g., by corrupted data or corrupted interactions caused by software design faults). In general,

physical containment of faults is well understood and consists of (but is not limited to)

physical separation, electrical isolation, electrical shielding, and separation of power supplies.

Propagation of logical faults (caused, for example, by software design errors), however, is not so well

understood. In general, logical faults can propagate by the transmission of data for which the

recipient is unprepared, or by failure to transmit data for which a recipient is waiting.

The decision about where to draw block boundaries may hinge upon design commitments made

by the applicant about certain equipment interconnections and logical dependencies.

Criteria for determining physical failure containment are:

• Physical separation

• Electrical isolation

• Power supply separation

• Electrical shielding

Criteria for determining containment of logical failures are:

63



• Given two software modules A and B, if it is physically impossible for a software fault

in A to cause module B to fail, then there is sufficient fault isolation between A and

B.

• There is no interaction through shared memories.

• There is only unidirectional communication (no handshaking) with other systems.

• The software continues to work regardless of local area network faults (i.e., the

software is impervious to errors transmitted by, or occurring in, networks to which

the processor running the software is connected).

• All input data from other systems are qualified before use.

6.2.2 Guideline 2 - Determining diversity

The digital I&C systems should provide three echelons of defense-in-depth: control, trip and

ESFAS. These three functional echelons of defense should be sufficiently separated and diverse so

that postulated CMF events will not lead to unacceptable consequences.

Diversity cannot be considered in the absence of independence; diverse protection system

elements that are not independent are assumed to fail simultaneously through interdependencies.

Thus, diversity is not a substitute for, nor should it be proposed instead of the independence required

by regulation and by standard. Rather, diversity should be seen as a necessary accessory to

independence for increasing system robustness in the face of unidentified common-mode failures.

To determine the degree of diversity between two blocks, subsystems, or items of equipment,

each block, subsystem, or item should be assessed with respect to the diversity attributes. A set of

recommended criteria is listed below for each attribute. A documented basis for claimed

diversity attributes should be assembled, with arguments or supporting data.

After assessing individual diversity attributes between two blocks, subsystems, or items of

equipment, the combined assessment should be used to present an argument that the one is either

diverse or not diverse from the other. Following the suggested criteria for judging diversity attributes,

an example is given for computer-based systems of combining such results to reach a diversity

conclusion.

In NUREG/CR-6303, diversity is assumed to be separable into the following six attributes:

i) Design diversity—Factors increasing diversity between two designs meeting the same

requirements—excluding the effects of human diversity—are listed here in decreasing

order of effect:

• Different technologies (e.g., analog versus digital)

• Different approaches within a technology (e.g., transformer-coupled AC

instrumentation versus DC-coupled instrumentation)

• Different architecture (i.e., arrangement and connection of components)
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ii) Equipment diversity—Factors increasing equipment diversity between two groups or items

of equipment are listed here in decreasing order of effect:

• Different manufacturers of fundamentally different designs

• Same manufacturer of fundamentally different designs

• Different manufacturers making the same design

• Different versions of the same design

iii) Functional diversity—Factors increasing functional diversity between two independent

subsystems are listed here in decreasing order of effect:

• Different underlying mechanism (e.g., gravity convection versus pumped flow, rod

insertion versus boron poisoning).

• Different purpose, function (e.g., normal rod control versus reactor trip rod insertion),

control logic, or actuation means.

• Different response time scale (e.g., a secondary system may react if accident

conditions persist for a time).

iv) Human diversity—Factors increasing the human diversity of a design in decreasing order

of effect are:

• Different design organization (i.e., company).

• Different engineering management team within the same company.

• Different designers, engineers, or programmers.

• Different testers, installers, or certification personnel.

Management has the most significant effect on diversity because management controls the

resources applied and the corporate culture under which designers, engineers,

or programmers work.

v) Signal diversity—Factors increasing signal diversity between two signal sources are listed

here in decreasing order of effect:

• Different reactor or process parameters sensed by different physical effects (e.g.,

pressure or neutron flux).

• Different reactor or process parameters sensed by the same physical effect (e.g.,

pressure versus water level or flow sensed by differential pressure sensors).

• The same reactor or process parameter sensed by a different redundant set of similar

sensors (e.g., a set of four redundant water level sensors backed up by an additional set

of four redundant water level sensors driving a diverse design of protective

equipment).
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vi) Software diversity—Factors increasing diversity between software designs meeting the

same requirements, excluding the effects of human diversity, are listed here in decreasing

order of effect:

• Different algorithms, logic, and program architecture

• Different timing, order of execution

• Different operating system

• Different computer language

Another way of expressing these points is that software must differ significantly in

parameters, dynamics, and logic to be considered diverse, but only if the "operating

system" is sufficiently simple that it can be considered a small set of demand-driven

subroutines. Two different safety-critical subsystems that use the same operating system

may be subject to CMF through the operating system even if no CMF exists in the safety

software. Computer language has little effect on algorithms, logic, architecture, timing, or

operating system services.

vii) Combining Diversity Attributes—Once an assessment of diversity attributes is made,

the results can be combined to make an overall decision or to declare, for instance, that

sufficient signal diversity exists. Which diversity attributes assume the greatest

importance depends upon the situation.

• The clearest distinction between two candidate subsystems would be design diversity;

a non-digital subsystem would easily be considered a diverse alternative to a digital

subsystem.

• Between two digital systems (limited design diversity), different computer

equipment (equipment diversity) made by different manufacturers (human diversity)

would be considered diverse provided there was some functional and signal diversity

or some software diversity.

• Some caution is indicated even where there is apparent computer equipment diversity,

since program portability is now fairly common and the same software may run on

two different computer types.

• In the likely instance of the same developer (limited human diversity) and similar

equipment (limited equipment diversity), then software diversity coupled with

either functional diversity or signal diversity would probably be necessary to declare

that two subsystems were diverse.

In any case, the basis for claiming that a particular combination of diversity attributes

constitutes sufficient diversity should be documented.
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6.2.3 Guideline 3 - System failure types

Guidelines 5 and 6 (Method of Evaluation/Postulated Common-Mode Failure of Blocks) of

NUREG/CR-6303 describe the method for postulating common-mode failures of blocks of the

protective system. The system-level effects of these postulated CMFs are described here as three

instrumentation system failure types, in order to clarify what the analyst should look for. Note that

these failures are not the same as those considered in SAR Chapter 15 ana lyses.

i) Type 1 Failures—Failures of type 1 happen when a plant transient is induced by the

instrumentation system for which reactor trip or ESF function is needed, but may not occur,

because of an interaction between echelons of defense. Type 1 failures typically begin with

a challenge presented by the control system to the reactor trip system or to the ESFAS due

to failure of a common sensor or signal source. Defense against such failures depends upon

means of accomplishing safety functions that are diverse to the shared signals or equipment

(i.e. not impaired by the postulated common-mode failure). Defense-in-depth analysis of

type 1 failures is required by general analysis Guideline 12 (Diversity Among Echelons of

Defense).

ii) Type 2 Failures—Failures of type 2 do not directly cause plant transients but are

undetected until environmental effects or physical equipment failure cause a plant transient

or design basis accident to which protective equipment may not respond. Failure to respond

is due to postulated common-mode failure of redundant protection system divisions or

portions thereof. Type 2 failures can have serious consequences only if the event needing

safety action occurs while the protection system is in the failed state and before the

failure is repaired. Defense against type 2 failures depends upon some combination of

diverse control system, reactor trip system, ATWS mitigation equipment, ESFAS, and

• functions that are sufficient to mitigate the postulated incident. Defense-in-depth

analysis of type 2 failures is required by general analysis Guidelines 10 and 11 (Diversity

for Anticipated Operational Occurrences/Diversity for Accidents).

iii) Type 3 Failures—Type 3 failures occur because, for some reason the primary sensors

expected to respond to a design-basis event instead produce anomalous readings. Since

type 3 failures are unpredictable by definition, a strategy dictated by experience is to

ensure sufficient signal diversity that alternate means of detecting significant events exist.

• At a minimum, there should be sufficient signal diversity to ensure that for each

anticipated operational occurrence in the design basis in conjunction with postulated

CMFs, the plant shall be brought to a stable hot standby condition.

• For each accident in the design basis in conjunction with postulated CMFs, the plant

response calculated using best-estimate (using realistic assumptions) analyses should
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not result in exceeding the 10 CFR 100 dose limits, violation of the integrity of

the primary coolant pressure boundary, or violation of the integrity of the containment.

Defense-in-depth analysis that supports signal diversity required for type 3 failures

is required by general analysis Guidelines 10 and 11 (Diversity for Anticipated Operational

Occurrences/Diversity for Accidents).

6.2.4 Guideline 4 - Echelon requirement

The instrumentation system should provide four echelons of defense-in-depth: control, reactor

trip, engineered safety features (ESF) actuation, and monitoring and indicator system.

i) The control echelon is that non-safety equipment which routinely prevents reactor

excursions toward unsafe regimes of operation and is used for normal operation of

the reactor,

ii) The reactor trip echelon is that safety equipment designed to reduce reactivity rapidly in

response to an uncontrolled excursion.

iii) The ESFAS echelon is that safety equipment that removes heat or otherwise assists in

maintaining the integrity of the three physical barriers to radioactive release

(cladding, vessel, and containment),

iv) The monitoring and indication echelon is that set of sensors, safety parameter displays, and

independent manual controls required for intelligent human response to events.

In general, the normal operational hierarchy for transients and accidents is that the second

echelon {reactor trip) functions when the first {control) fails, and the third {ESFAS) and fourth

{monitoring and indication) echelons support the first two. The monitoring and instrumentation

echelon allows operators to compensate for control system excursions, or, in some cases, for failure

of one of the two automatic safety echelons.

6.2.5 Guideline 5 - Method of evaluation

i) The protection system is usually subdivided into redundant divisions, with each division

consisting of interconnected blocks. Each block should be considered a "black box," so that

any failure required to be postulated within the block fails all output signals.

ii) Block output signals must be assumed to fail in a manner that is credible but that produces

the most detrimental consequences when analyzed in accordance with Guideline 9 (Output

Signals).

iii) In blocks containing software, it is credible that outputs shall assume values irrespective of

inputs because the only logic connecting inputs to outputs is software, and the effects of

software failures on outputs are unpredictable.
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6.2.6 Guideline 6 - Postulated common-mode failure of blocks

Analysis of defense-in-depth should be performed by postulating concurrent failures of the same

block or identical blocks (as defined in Guideline 7) in all redundant divisions. Since several

channels may pass through the same block or identical blocks, such common-mode failures have the

potential to cause multiple channel failures in a single division, with the same failure replicated

across all (four) protection system divisions. The output signals of the blocks thus postulated to fail

should do so in accordance with Guideline 5 (Method of Evaluation). In other words, signals entering

failed blocks assume the most adverse credible values on output, essentially losing their protective

function at that point. Subject to Guidelines 7, 8, and 9 (Use of Identical Hardware and Software

Modules/ Effect of Other Blocks/ Output Signals), concurrent failure of each set of identical blocks

in all divisions should be postulated in turn (until the list of diverse blocks has been exhausted), and

the result of the failure should be documented as a finding of the analysis.

6.2.7 Guideline 7 - Use of identical hardware and software modules

To limit the postulated CMF to a single block in all redundant channels, the likelihood of CMF

among different blocks in the same channel should be shown to be acceptably low [N0493]. Blocks

are to be considered identical for the purposes of the postulated common-mode failures required in

Guideline 6 (Postulated Common-Mode Failure of Blocks) when the likelihood of a CMF affecting

them simultaneously is not acceptably low. This means that the probabilities of block failure are not

independent and the probability of system failure cannot be calculated by simply multiplying block

failure probabilities. Guideline 2 (Determining Diversity) should be used to provide the basis for

judging diversity of blocks. For more information, refer to section 3.3.4 of NUREG-0493 [N0493].

6.2.8 Guideline 8 - Effect of other blocks

The analysis should include propagation of the postulated CMF in the single block in each

channel via its output signals to all the other blocks influenced by these signals, directly or indirectly

[N0493]. During any postulated common-mode failure, signals from failed blocks are propagated to

downstream blocks, which react to the possibly erroneous signals. Subject to Guidelines 7 and 9, the

other blocks are assumed to function correctly in exact response to all true or false input signals they

receive.

6.2.9 Guideline 9 - Output signals

Output signals are assumed to function one-way; that is, failures cannot propagate backwards into

an output of a previous block. In cases where a block has more than one output signal, no output

signal should be significantly influenced by any credible change or failure of equipment to which any

other output signal is connected. This guideline includes any signal transmission paths involving

multiported memory, local area networks, serial communication links, or multiplexers. If compliance
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with this guideline cannot be demonstrated, block definitions are incorrect and involved blocks

should be redefined so that blocks mutually affected through output interconnections are coalesced

into one block.

6.2.10 Guideline 10 — Diversity for anticipated operational occurrences

For each anticipated operational occurrence in the design basis which occurs in conjunction with

each postulated CMF, the calculated plant response should not exceed a small fraction (10%) of the

10 CFR 100 dose limit or violate the integrity of the primary coolant pressure boundary. This

guideline covers instrumentation system CMFs of types 2 and 3 (Guideline 3) for anticipated

operational occurrences. A part of the analysis described herein should either (1) demonstrate that

sufficient diversity exists to achieve these goals, or (2) identify the vulnerabilities discovered and the

corrective actions taken, or (3) identify the vulnerabilities discovered and provide a documented

basis that justifies actions not taken (see also the first item of the acceptance criteria in BTP-19,

NUREG-0800 [BTP19]).

6.2.11 Guideline 11 -Diversity for accidents

For each limiting fault in the design basis which occurs in conjunction with each postulated CMF,

the combined action of all echelons of defense should ensure that equipment provided by the design

and required to mitigate the effects of the accident is promptly initiated, supported by necessary

auxiliary equipment, and operated for the necessary period of time. This guideline covers

instrumentation system CMFs of types 2 and 3 (Guideline 3) for accidents.

The plant response calculated using best-estimate (using realistic assumptions) analyses should

not exceed the 10 CFR 100 dose limits, violate the integrity of the primary coolant pressure boundary,

or violate the integrity of the containment. A part of the analysis described herein should either (1)

demonstrate that sufficient diversity exists to achieve these goals, or (2) identify the vulnerabilities

discovered and the corrective actions taken, or (3) identify the vulnerabilities discovered and provide

a documented basis that justifies actions not taken (see also the second item of the acceptance criteria

in BTP-19, NUREG-0800 [BTP19]).

6.2.12 Guideline 12 — Diversity among echelons of defense

The control system, which includes most instrumentation and control equipment not part of the

protection system, is not required to be Class IE. The plant design basis includes postulated failures,

some involving the control system, for which the reactor trip and the ESF actuation systems must

provide ample protection. Yet the control system, even though not Class IE equipment, plays three

important roles in defense-in-depth.

1. First, most disturbances are controlled without the need for action by the protection

system.
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2. Second, failures in the control system may challenge the protection system.

3. Third, during an incident in which one of the protection system echelons (reactor trip or

ESFAS) is incapacitated by a CMF, the control system may mitigate the disturbance.

The control system and the protection system should not be disabled by the same single failure.

This concern is stated by GDC 24 of 10 CFR 50 Appendix A (separation of protection and control

systems), the IEEE 279 requirement for no interaction between protection and control due to single

random failures, and also by the IEEE 379 inclusion of identifiable cascaded failures within the

definition of single failures.

Diversity between echelons is therefore necessary and is a concern of this analysis. The

instrumentation and control system should be examined for potential interactions between the four

echelons of defense, the control system, the reactor trip system, the ESFAS, and the monitoring

and indicator system, with the intention of determining that the functions of at least two out of the

four echelons of defense are unimpaired by interconnections.

According to NUREG/CR-6303, potential interactions (see Fig. 6.4) between the

nominal echelons are considered as follow (see also the third item of the acceptance criteria in BTP

HICB-19, NUREG-0800 [BTP 19]).

Reactor Trip/ESFAS
Interaction

Fig. 6.4 Echelon diagram showing possible interactions

i) Control/Reactor Trip Interaction—When a CMF of a common element or signal source

shared between the control system and the reactor trip system is postulated according to

Guidelines 5 through 9, and (1) this CMF results in a plant response that requires reactor

trip and (2) the CMF also impairs the trip function, then diverse means, which are not

subject to or failed by the postulated CMF, should be provided to ensure that the plant

response calculated using best-estimate (using realistic assumptions) analyses should not

exceed a small fraction (10%) of the 10 CFR 100 dose limit or violate the integrity of the
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primary coolant pressure boundary. The diverse means may include manual action if the

conditions of Guideline 14 (Manual Operator Action) are met.

ii) Control/ESFAS Interaction—When a CMF of a common element or signal source

shared between the control system and the ESFAS is postulated according to Guidelines 5

through 9, and (1) this CMF results in a plant response that requires ESF and (2) the CMF

also impairs the ESF function, then diverse means, which are not subject to or failed by the

postulated CMF, should be provided to effect the ESF function and to ensure that the plant

response calculated using best-estimate (using realistic assumptions) analyses should not

exceed a small fraction (10%) of the 10 CFR 100 dose limit or violate the integrity of the

primary coolant pressure boundary. The diverse means may include manual action if the

conditions of Guideline 14 (Manual Operator Action) are met.

iii) Reactor Trip/ESFAS Interaction—Interconnections between reactor trip and ESFAS

(for interlocks providing for (1) reactor trip if certain ESFs are initiated, (2) ESF initiation

when a reactor trip occurs, or (3) operating bypass functions) are permitted provided it can

be demonstrated that functions required by the ATWS rule (10 CFR 50.62) are not

impaired under the constraints of Guidelines 8 and 9 (Effects of Other Blocks/Output

Signals).

6.2.13 Guideline 13 - Plant monitoring

Signals may be transmitted from the reactor trip and the ESFAS to the control system or other

display systems for plant monitoring purposes provided that all guidelines are met (with special

attention to Guidelines 8 and 9 (Effect of Other Blocks/ Output Signals) and the independence

required by regulations and standards is maintained (GDC 24—10 CFR 50 Appendix A, IEEE 279

[1279], IEEE 603 [1603], IEEE 379 [1379], and IEEE 384 [1384]).

Connections and software used for plant monitoring and for surveillance of the reactor trip and

ESF actuation systems should not significantly reduce the reliability of or increase the complexity of

these systems. No failure of monitoring or display systems should influence the functioning of

the reactor trip system or the ESFAS (see also the fourth item of the acceptance criteria in BTP

HICB-19, NUREG-0800 [BTP19]). A part of the analysis described herein should address the

possibility that failure of the plant monitoring system may induce operators to attempt to operate the

plant outside safety limits or in violation of the limiting conditions of operation. The analysis should

demonstrate that such operator-induced transients will be compensated by protection system function,

or a basis should be documented for claiming that the identified operator-induced transients are either

not credible or result in no damage.
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6.2.14 Guideline 14 - Manual operator action

The fourth point of the NRC position (see section 6.1.6, item 4) requires that independent and

diverse displays and manual controls be available so that operators can initiate a system-level

actuation of critical safety functions. To verify this, the analysis should identify the critical safety

functions, identify variables necessary for operator decisions using Regulatory Guide 1.97 [R197]

for guidance, and demonstrate that the required sensor channels, displays, and manual controls are

diverse and independent from the other three echelons {control, reactor trip, and ESFAS). In addition,

manual operator action is permissible as a diverse means of response to postulated CMFs if the

following criteria are met:

• The postulated CMF and its effects do not impair any related aspect of the manual action,

including information displayed that is necessary for operator action.

• Sufficient information is available to the operator.

• Sufficient time is available for operator analysis, decision, and action.

• Sufficient information and time is available for the operator to detect, analyze, and correct

reasonably probable errors of operator function.

6.3 Analysis Procedure

This section describes the typical sequence of activities by the vendor for developing a D-in-

D&D analysis. Most of activities will be described based on NUREG/CR-6303 [N6303]. Figure 6.5

shows a brief D-in-D&D analysis procedure. Other analysis sequences are acceptable. In practice, the

analyses may be iterative in nature with the analysis being refined as information is gained and as

issues are identified.

6.3.1 Develop I&C system block diagram

Typically a D-in-D&D analysis begins with the development of an overall I&C system block

diagram that shows the protection systems and the other systems that may be credited as diverse

mitigation systems. The block diagram should depict the four echelons of defense in depth as

described in Guideline 4 (see section 6.2.4) of NUREG/CR-6303. The block diagrams should include

the operator displays and controls credited to meet the criteria in Guidelines 13 and 14 (see sections

6.2.13 and 6.2.14) of NUREG/CR-6303.

Blocks within a system should be selected consistent with Guideline 1 of NUREG/CR-6303 such

that it may be credibly assumed that failures internal to each block will not propagate (either

physically or via common design errors) to other blocks. Blocks may be selected as the smallest

portion of the system that meet this criterion, but the selection of larger blocks is acceptable. For

example, some analyses have made the simplifying assumption that the entire protection system fails
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and have demonstrated that plant consequences are acceptably mitigated by diverse systems. More

often, however, a more detailed block diagram of the I&C system is needed to support the analysis.

The block diagrams should show all communication connections between blocks. The

communication connections may be depicted very simply, but the analyst must understand what

kinds of information can propagate along each connection. Figure 6.8 in section 6.4.7.2 shows an

example of typical block diagrams.

S1: Develop an I&C system block diagram.
Selection of blocks: G1
Depiction of four echelons of D-in-D&D: G4
Consideration of the operator displays and controls: G13 & G14

S2: Determine diversity.
Examination of candidate blocks: G2
Which blocks are identical for analysis purposes?: G7
Which will be considered diverse?: G7

S3: Determine the system effects of CMF.

S4: Determine the plant response
in the presence of CMFs.

Postulation of concurrent failure for each set of
identical blocks: G5, G6 and G7
The effect on the system: G8 and G9

• Consideration of failure types: G3

To detect vulnerabilities to the three system failure types (as defined in G3)
ForAOOs:G10
For DBAs: G11
Demonstration of diversity among echelons of defense: G12

S5: Analyze diverse displays and manual controls Analysis of the diverse displays: G13
Analysis of the diverse manual controls: G14

S6: Summary findings on vulnerabilities Summary and discussion identified by the analysis
Each vulnerability should be examined and resolved.

S7: Documentation in a report

Fig. 6.5 A brief D-in-D&D analysis procedure

6.3.2 Determine diversity

Each system, subsystem, or block should be assessed to determine if it can be credited as diverse

from other elements in the block diagram. Guideline 2 should be followed in determining diversity

and a summary should be prepared describing which groups of blocks are considered vulnerable to

common mode failure, groups of elements are not subject to common mode failure, and the reasons

behind these judgments. One way of performing this analysis is to describe each block and discuss

the reasons why there is or is not a potential for common mode failure affecting both the selected

block and other blocks in the diagram. This analysis may sometimes be done at a higher level than a

block. An example would be an ATWS (Anticipated Transient Without Scram) mitigation system

that is implemented in a way that the whole systems can be judged to be diverse from the protection

system using Guideline 2. In this case, the diversity may be established for the entire system without

needing to address each block of the ATWS system individually. In any case, there is no need to

make the analysis more detailed than is needed to support the analytical conclusions.
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6.3.3 Determine the system effects of common mode failure

For each set of identical blocks in the protection system, concurrent failure should be postulated

in accordance with Guidelines 5, 6, and 7. The effect on the protection system should be determined

using the criteria of Guidelines 8 and 9. This analysis should consider each type of failure described

by Guideline 3.

Once the effect of common mode failure on system elements is understood, the effect on the

protection system response to design basis events is examined. Each event analyzed in the plant

safety analysis is examined and each set of common mode failures that can affect the assumed

response to the event is considered. For every event/common mode failure pair, the remaining

operable functions are examined to determine if at least one diverse protection mechanism is

available. Tables such as those shown in Fig. 6.7 and Fig. 6.9 can be helpful in organizing this

analysis.

6.3.4 Determine the plant response in the presence of common mode failures

The diverse protection mechanisms identified by the analysis of system effects must be shown to

limit consequences within the criteria provided in Guidelines 10, 11, and 12. Furthermore, diversity

among echelons of defense must be demonstrated in accordance with Guideline 12.

For anticipated operational occurrences as described in Guideline 10 (in combination with

primary protection system failure), the goal of defense-in-depth analysis using best-estimate (realistic

assumptions) methodology is to show that no more than a small fraction (10%) of the 10 CFR 100

dose limit is exceeded, and that the integrity of the primary coolant pressure boundary is not violated.

For design basis accidents as described in Guideline 11 (in combination with primary protection

system failure), the goal of defense-in-depth analysis using best-estimate methodology is to show

that any credible failure does not result in exceeding the 10 CFR 100 dose limits, violation of the

integrity of the primary coolant pressure boundary, or violation of the integrity of the containment.

Often consequences can be determined by examining the results of existing safety analyses. The

assistance of design basis event analysts will be useful in interpreting the meaning of these analyses.

In some cases additional analysis of design bases events may be needed to determine the

consequences of the event when mitigated by the credited diverse system rather than the primary

protections system.

Often there will be some interaction between the analysis of plant response and the determination

of system effects. For example, many possible diverse responses may be possible in some cases. If it

is difficult to determine plant response when mitigated by one diverse function, or if the selected

function does not provide adequate mitigation, another diverse function may be examined. It is not

necessary to analyze every possibility; it is only necessary to show that at least one diverse means is
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available. Consequently, if the I&C analyst and event analyst can use their plant knowledge to pick

successful diverse mitigation strategies at the first time, considerable work can be avoided.

6.3.5 Analyze diverse displays and manual controls

The diverse displays and manual controls provided as a backup to the automatic systems are

analyzed for conformance with Guidelines 13 and 14. This should be possible by simple examination

of the block diagram.

6.3.6 Summary findings on vulnerabilities

The vulnerabilities identified by the analysis should be summarized and discussed. Figures 6.7

and 6.9 provide example charts that may be used to summarize the findings. Each vulnerability

should be examined and dispositioned. Disposition may involve making system modifications to

remove the vulnerability or developing a technical justification for accepting the vulnerability.

6.3.7 Documentation in a report

The D-in-D&D analysis should be documented in a report. Section 6.4 (see also sections 5

through 9 of NUREG/CR-6303) describes elements of a recommended report. Ideally, much of the

required information should be developed during the analysis and preparation of the final report

should only involve assembling the information into final form.

6.4 Preparation of a CMF Analysis Document

This section summarizes the table of contents that should be in the analysis document that should

be prepared by a vendor. The description in this section is based on the guidelines of NUREG/CR-

6303 [N6303].

The document of a D-in-D&D analysis should explain why and how the analysis was done

in sufficient detail that a competent evaluator can identify the underlying bases and assumptions and

follow the reasoning to the document's conclusions. Normally an analysis will be presented as a

report body, which describes significant features and results, to which is attached one or

more appendices which contain the detailed work. The following suggested format, presented in brief

outline as shown in Fig. 6.6, is a structure that accomplishes these purposes.

6.4.1 Introduction

Introduction identifies the design being evaluated and those doing the evaluation. Purpose

describes the certification or approval for which the evaluation is being performed, or other reasons,

if applicable. Background cites relevant regulatory or applicant history and places this particular

analysis in historical context. New or unusual features of the analyzed design which may affect the

analysis process or outcomes should be noted.
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1. INTRODUCTION
1.1 Purpose
1.2 Background
1.3 New or Unusual Design Features

II. SCOPE OF THE ANALYSIS
11.1 Items Within the Scope of The Report
II.2 Items Not Within the Scope of The Report

III. ANALYSIS METHODS
111.1 NUREG/CR-6303 Guidelines

III. 1.1 Guideline 1 -Choosing Blocks
III. 1.2 Guideline 2 - Determining Diversity
III.1.3 Guideline 3 - System Failure Types

•
.

III.1.14 Guideline 14 - Manual Operator Action
111.2 Types of Failure Analysis

111.2.1 Type 1 Failure Analysis
III.2.2 Type 2 and 3 Failure Analysis

111.2.2.1 Chapter 15 Events
III.2.2.2 CMF Groups

III.3 Summarized Findings
III.4 General Assumptions

III.5.1 Worst-Case Assumptions
III.5.2 Assumptions Based on System Structure
III.5.3 Assumptions for Echelon Defense-in-Depth
III.5.4 Evaluation Criteria

IV. DESCRIPTION OF THE: DESIGN
IV. 1 Design Basis

IV. 1.1 General or Regulatory Bases
IV. 1.2 Additional Agreed Bases
IV.1.3 Applicant's Statements

IV.2 Design Architecture
IV.3 Intentional Design Diversity (e.g.. Signal Diversity)

V. FINDINGS
V.1 General Vulnerabilities
V.2 Specific Vulnerabilities
V.3 Evaluation of Diversity (e.g.. Signal Diversity)
V.4 Shared Signal Vulnerabilities
V.5 Special Findings,

(VI. RESOLUTION
VI. 1 D-in-D&D Position
VI.2 Design Changes to Address D-in-D&D Findings)

REFERENCES

APPENDIX A ANALYSIS WORKSHEETS
A.1 Event 15.1.1
A.2 Event

•
•

APPENDIX B SUMMARIES OF OTHER SYSTEMS

Fig. 6.6 An example of the table of contents for a D-in-D&D analysis document

6.4.2 Scope of the analysis

The scope of the current analysis is important to both analyst and evaluator to ensure appropriate

coverage..

• What is in scope: The subsystems and equipment being analyzed should be identified. The

types of failure being postulated should be stated. The basis set of anticipated

operational occurrences and accidents to be used should be stated or referenced.

• What is not in scope: Subsystems and equipment being excluded should be identified and

reasons for the exclusion should be stated. Certain failures that are incredible or do not fit

the definition of common-mode failure as used in the analysis should be described and

reasons given for their exclusion.

6.4.3 Analysis methods

The analysis methods and their derivation from various authorities and guidelines should be

described in detail. It is particularly important to discuss deviations from standard methods or

assumptions made to clarify missing, incomplete, or inconsistent information provided by design

descriptions (which usually accompany a Standard Safety Analysis Report).

Guidelines for performing the D-in-D&D analysis are given in section 6.2 and should be referred

to in this section of the analysis document. However, these guidelines do not supplant or

supersede the general design criteria of 10 CFR 50, Appendix A, or other standards or design bases

required by regulation or practice. Such criteria or standards as are applicable to the design should

also be stated here.
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The types of failures to be considered in the analysis should be noted here. See section 6.2.3 for

further detail.

6.4.3.1 Data required to the analysis

Besides the general guidelines and other background information, a D-in-D&D analysis requires

certain specific information, some of which is unique to this analysis process. The following

describes the main analysis data inputs.

i) System Diagram and Logic Diagrams—A system diagram showing one division (of

multiple redundant divisions) of the protective system to be analyzed is required.

Additional detailed logic diagrams or textual descriptions may be necessary so that system

response to various events can be determined by the analyst. The system diagram is

equivalent to a single-line electrical diagram in that it is an abstraction that presents the

system architecture at a level of detail appropriate to "block" failure analysis,

ii) Chapter 15 Events—-In most instances, the SAR Chapter 15 events form the basis set of

anticipated operational occurrences and accidents which will be used to challenge the

protective system design. The applicant usually presents simulation curves of reactor

parameters during the Chapter 15 incidents which at least determine the primary

trip variables, but often exclude secondary trips due to postulated prompt protection system

action. This is appropriate, considering the goals of Chapter 15 analyses. Chapter 15

analyses are also performed under conservative, rather than best-estimate, assumptions,

iii) Alternate Trips—Because the purpose of D-in-D&D is to determine whether sufficient

diversity or defense-in-depth exists to compensate for primary trip (or ESF initiation)

failure, it is necessary to know which secondary trip or initiation signals will activate

defenses, if any, if primary signals or signal paths fail. Sometimes this is possible if trip

point values are known and simulation curves of an incident or a closely similar incident

show that alternative reactor parameters exceed trip values. When such information exists,

a secondary trip will occur under conservative assumptions, although it is sometimes

not clear whether, for less severe event sequences, a secondary trip point will be reached.

In cases in which secondary trips cannot be clearly determined, it may be necessary

to perform simulations that assume the primary trip variable fails. A set of best-estimate

(using realistic assumptions) secondary trip sequences for events lacking a clear secondary

trip should be deduced or obtained. An alternative to secondary trip data is best-estimate

analyses that demonstrate for each such event that all possible sequences lead to safe

conclusions.

iv) Required Mitigation—Success or failure of protective system action, whether by primary

or alternate trip variables, is determined solely by the actuation of, or failure to actuate,
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appropriate mitigation measures. For this, the analyst needs to know the

mitigation measures required for satisfactory response to the design basis incidents.

6A3.2 Assumptions to be stated

The assumptions made by the analyst are crucial to understanding the decisions made during

analysis. Statement of the analysis assumptions is important because it permits easier and faster

resolution of misunderstandings, should they arise.

i) Worst-Case Assumptions —The worst-case assumptions describe the particular application

of Guideline 5 (Method of Evaluation) of NUREG/CR-6303 to the subject design. Failures

are assumed to occur in the most limiting fashion possible consistent with hardware or

software construction. The assumption on failure latency is the worst-case assumption

applied to surveillance effectiveness. That is, failures are assumed to be latent and

undetectable until stressed by event or accident, at which time the failure becomes manifest.

ii) Assumptions Based on System Structure—System structure is the crux of D-in-D&D

analysis. The assumptions should describe what portions of the design have potential

for common-mode failures and how and why block delineations were made. Guideline 7

(Use of Identical Hardware and Software Module) of NUREG/CR-6303 requires that

"identical" blocks in a design be determined. Guideline 2 (Determining Diversity) provides

criteria for determining diversity (or similarity) among subsystems, and this section should

describe the precise application of Guideline 2 to the instant design so that it is clear which

blocks are considered identical. The standard for independence between two subsystems as

defined (in Guideline 2) is that they must differ significantly in parameters, dynamics, and

logic. If two such subsystems perform similar functions but have different inputs

(different parameters being sensed) combined by different logic, it is assumed that the two

subsystems do not have a common failure mode. This assumption is reasonable since it is

implicit that the programs being run will differ in timing and logic because of the different

inputs and processing code.

iii) Assumptions for Echelon Defense-in-Depth—The equivalent of the four nominal echelons,

control, trip, ESFAS, and monitoring and indicator must be identified in a design. Defense-

in-depth assumptions describe the arrangement of echelons of defense (which equipment is

part of which echelon), necessary mitigations or effectiveness of certain

mitigation equipment, and any other assumptions necessary to clarify which combinations

of equipment must function during the events studied. In some instances, this may

require identifying and categorizing equipment such as that designed to satisfy the ATWS

rule, but which crosses nominal echelon boundaries in its effects.
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iv) Evaluation Criteria—The criteria for success are stated in Guidelines 10 through 12 of

NUREG/CR-6303 for event responses and in Guideline 13 for plant monitoring. Any

deviation or additional criteria should be stated here. By default, the applicant's list (if such

a list exists) of necessary and sufficient mitigation actions for various events is considered

sufficient protection system response to fulfill Guidelines 10 through 12.

6.4.4 Description of the design

This section, the assumptions section (see section 6.4.3.2), and a system diagram (see section

6.4.3.1) combine to provide an accurate description of the design to be analyzed. This section should

be a high-level text description that, combined with the system diagram, lays out the system

architecture and the details of the design that are material to the analysis. The sources from which

design information was taken should be cited.

The design being analyzed should be described with emphasis on factors that are important to D-

in-D&D. This is not merely a repetition of the applicant's SAR submission, which may be detailed,

but is a critical selection from what may be voluminous material of that part that forms the basis for

analytic decision making. A design description consists of three parts: the design basis which any

successful design must satisfy, a description of the design architecture (probably supported by a

number of drawings), and a description of intentional diversity in the design.

6.4.4.1 Design basis

Design bases are the rules under which a design is executed and they specify general qualities

that the resulting design will satisfy. In cases where it may not be clear from details how to decide a

particular analytic question, the design basis may provide guidance sufficient to make the

decision. Certain design qualities are mandated by regulation and these are listed below under

"General or Regulatory Bases." An applicant may also have agreed or may have volunteered to use

certain standards or techniques.

i) General or regulatory bases—Design basis requirements pertinent to D-in-D&D for the

light water reactor (LWR) designs include the regulations and standards (which is

summarized in section 6.1.7.1) as follows:

10 CFR 50 Appendix A, "General Design Criteria,"

- 10 CFR 50.55a(h) requires that protection systems meet the requirements of IEEE Std

279 [AI279], and

IEEE Std 603 [1603] includes criteria substantially similar to the foregoing IEEE Std

279 [1279] requirements, and is endorsed by Regulatory Guide 1.153 [R1153] as an

alternative.
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ii) Additional agreed bases—The applicant may have agreed to use additional standards or

conform to regulations or design techniques that are not directly required by the sources

mentioned above. These bases should be identified,

iii) Applicant's statements—The applicant may have made statements in SAR text that certain

standards would be used or that certain design techniques would be used or would be

avoided.

6.4.4.2 Design architecture

i) The points of the applicant's design that are salient to defense-in-depth and to the

separation of the design into independent, diverse subsystems should be described.

ii) A system block diagram, such as that demonstrated in the Appendix (Block Examples) of

NUREG/CR-6303, is extremely helpful here. The echelons of defense should be identified,

and any division into redundant, independent divisions should be described. Relations

between the echelons, and between the echelons and subsystems such as diverse ATWS

mitigation equipment or the remote shutdown panel, should be detailed with attention to

aspects important to the analysis.

iii) In parts of the design that use redundancy, the voting scheme should be described,

particularly where it may have asymmetries that could be single-failure vulnerabilities.

iv) It should also be noted where the applicant's design commitments are being used to decide

significant design issues rather than using applicant-supplied design details.

6.4.4.3 Intentional design diversity

Any specific diversity (e.g., signal diversity) or design features (e.g., a diverse backup system)

intended by the applicant to improve protection system performance in the face of CMF should be

acknowledged.

6.4.5 Findings

Findings should be presented in a sensible organization that could be used directly by license

applicants to reduce discovered vulnerabilities in their reactor protection systems. Certain graphical

aids to presenting results, such as analysis chart (see section 6.4.7.1), system block diagrams (see

section 6.4.7.2) and vulnerability summary charts (see section 6.4.7.3), are suggested in section 9 of

NUREG/CR-6303. Previous analyses have used an organization similar to the following.
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6.4.5.1 General vulnerabilities

These are vulnerabilities that appear in a majority of cases studied under Guidelines 10 and 11

(Diversity for AOOs and Accidents) of NUREG/CR-6303. Reducing these would probably be

considered a higher priority than reducing isolated, specific vulnerabilities.

6.4.5.2 Specific vulnerabilities

Vulnerabilities found under Guidelines 10 and 11 of NUREG/CR-6303 that occur only during

one or a few SAR Chapter 15 events are reported here. These might be considered lower priority than

general vulnerabilities, depending upon the event consequences.

6.4.5.3 Evaluation of diversity

This section contains an evaluation of how many events are potentially detected only by one

sensor. Since reactor trip and various ESF functions are initiated by different logical combinations of

sensor signals, this findings section discusses diversity for all mitigation functions.

6.4.5.4 Shared signals

This section reports the results of the analysis required by Guideline 12 (Diversity among

Echelons of Defense).

6.4.5.5 Special findings

Any other findings that a responsible reviewer may have noted during perusal of the design

should be reported here.

6.4.6 References

Standards, regulations, and publications used during the preparation of the analysis should be

cited in this section.

6.4.7 Appendices

The appendices contain the actual analysis worksheets and narratives. Section 9 of NUREG/CR-

6303 describes an analysis worksheet that may be useful for systematic documentation of analysis

details.

Graphical aids can be used to enhance the intelligibility of a report and their use is encouraged.

Previous workers have found two kinds of charts and a drawing to be particularly useful both in

doing the analysis and in presenting the results.

• Analysis charts aid the analyst by presenting analytic decisions in a matrix format that

permits failure-by-failure determination of system response.
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• The system block diagram presents the system architecture with only the interconnections

of interest to the analyst being displayed.

• Vulnerability summary charts show analysis results consolidated in matrix form by design

basis event versus signals and blocks.

6.4.7.1 Analysis charts

The illustrative format of analysis charts is shown in Fig. 6.7 (for more information, see section 9

of NUREG/CR-6303). These charts differ in detail, but their common purpose is to record failed

signals or blocks ("CMF groups") systematically and to indicate the results of each failure.

One analysis chart is prepared for each Chapter 15 event studied. The top portion of the chart

consists of lines labeled with reactor parameters and columns labeled with sensors or blocks. The

failure of a sensor or a block will prevent a reactor parameter signal from passing through the sensor

or the block, and this is indicated by placing a zero in the appropriate intersection of row and column

in the upper half of the chart.
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Fig. 6.7 An illustrative format of analysis charts for a pressurized water reactor
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If the column is followed to the lower half of the chart, the mitigation means required for this

event and for the CMF represented in this column are marked either with a zero (meaning no diverse

initiation) or the number of the reactor parameter that does cause initiation. The chart is marked for

each sensor, block, parameter, and mitigation means relevant to the event and then examined for

zeros in the lower half.

The lower-half zeros represent a failure to initiate mitigation for the columnar CMF in

conjunction with the Chapter 15 event, and if insufficient mitigation is initiated, a vulnerability

has been found. Insufficient mitigation exists if the sum of mitigation means with non-zero initiators

in a column is less than the applicant's required mitigation for the Chapter 15 event, reduced by the

effects of portions of the control system that are postulated to continue operation.

The analysis chart provides a stepwise method of considering common-mode failures and their

effects. However, it may be difficult for others to interpret the analyst's work solely from the chart,

so it should be accompanied with a short narrative describing the reasoning behind the chart

marking.

6.4.7.2 System block diagram

System block diagrams (see Fig. 6.8 for a sample pressurized water reactor (PWR) system block

diagram) are contained in the Appendix of NUREG/CR-6303, along with a discussion of how blocks

were selected and what level of detail is appropriate.

Arrangement into blocks also aids the analyst's perceptions and presents the significant

interconnections graphically. Guidelines 6 through 9 require that input and output connections be

determined for each CMF taken in conjunction with SAR Chapter 15 events, and it is tedious and

inefficient to have to search through several drawings each time. Also, the system block diagram

makes the analyst's view of the system clear to readers of the analysis results, so that analyst

misperceptions can be corrected by knowledgeable evaluators.

6.4.7.3 Vulnerability summary charts

There are potentially about 20 or 30 events to analyze, which result in an equal number of

analysis charts. Vulnerabilities documented on the analysis charts can be transferred to a

vulnerability summary chart (see Fig. 6.9). The example in Fig. 6.9 is from analyses in progress,

before resolution of vulnerabilities has occurred, a process beyond the scope of this discussion.
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Fig. 6.8 Sample pressurized-water-reactor system block diagram

86



IPS TRIP SIGNALS

TT Group 1 Rtitv^ytton

Xerpower
.ow Coolant Flow in 1« OF 3/4 loops
.ow Coolant Pump Speed
High Prcssurirer Water Level
4tgh RCP Bearing Temp. « 1/4 or 2ii
Safeguards Actual ion

High Containment Pressure
Low Slearnkne Pressure
LowTcotd
Low Piessurizer Pressure

IT GTOUD i SuMvstem
INF intermediate Range
INF Power Range (Low Set Point)
HNF Power Range (High Set Point)
iigh Positive Flux Rate Power Range
.cw Pressurfcer Pressure
ijgfo Pressun/ef Pressure
.ow SG A or 6 Water Level
iigh-2 SG A or B Water Level
tog. Flux Rate PWT Rg. for RCCA

Block passed to Comm. Sub.
dndlhetttolCC

:irsi Stage ADS Vah*
tenua)

ESF INITIATION SIGNALS
;.SF Groua 1 Subsystem
source range tiigh neutron (IUK

doubling boron UKrtwn block
^.v-l T avg
.oiv-2 T awg
<igh pressurUer pressure
.ow pfsssunzer pressure
AW compensated pressurizer level
ikft compensated cxessuriier level
,ow compensafod SG WR level
.ow comp. steam fcrte pressure
tegative rate steam line pressure
iigri hot leg temperature

=SF Group 2 Subtvstam
Hign RCP bearing water temp.
4igh-2 comp. SG MR tevtri
.ow comp. SG NR kwet
.ow cokj leg temoeralure
.ow startup feedwater Now
ligh-l coniainment piussure
4iglv2 containment pressure
.ow-t core m-ikeup tank (cvsJ
.Ow-2 core rrvlkei^ CcHik levd)

.ow-4 core makeup tank !evei
1igH-1 containmenl radioacGvrty
iKjh*2 containment radioactivity

Shared
in:

Control

Control

Control
Control

Control
Control
Control
Control

IPC
I) Tiie relarurwesusedwttevetop this btotkiSagram were: WCAP-

K-382 *AP-600 Insttumeniation ,ind Corrtrd Hardware
Oiiscription." SAR Chapter t, instrumentation ana Controls

4) E.wh subsysiem consists ot a card cage. PWB cards, processor,
ar.d IEEE 796 commurfccaticn bacKpU™>.

5) This drawing was produced for 'A Defense-*i-Depth and
Di/otsrty Assessmom « the Westinghcuse AP-600 Protection
System * UCRL-ID-XXXXXXX.

ESF Engineered Safety Features
ESFAC Engineeted Safety Features Actualior. Cabinat
ESFAS Engineered S.ifety Features Actuation Subsysl*
HNF High tJeutron Fiux
ICC Integrated Control Cabinet
IPC Integrated Protection Cabinet
MCR MainControi Room
N! Nuclear insinwenidtion
NR Narrow flange
PLC Protecticn Logic Cabinet

Steam General
Un<)«ivcltag«
Wide Range

WIRING LEGEND

Multiple Electrical Analog
aivl'or Dgitai Signais

EJ€cirieal Communication Unk

Fiber Optic Conwminicatvon Link

Fiom ESF Group 2 Su&dystem
OvsionA B C D

I M I ESFAC RSR MUX

MCR MUX DAS

MCR Mufeplexei
Subsystem

8ft Bus •*•>•* | ^ I A A ^ Sit Bus n ?

Many;Chassis
_ _ _
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Fig. 6.9 An illustrative format of a vulnerability summary chart for a pressurized water reactor
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7. CONCLUSIONS

This report has described the software safety analysis techniques and the engineering guidelines

for developing safety critical software to identify the state of the art in this field and to give the

software safety engineer a trail map between the code & standards layer and the design methodology

and documents layer. We have surveyed the management aspects of software safety activities during

the software lifecycle in order to improve the safety. After identifying the: traditional safety analysis

techniques for systems, we have surveyed in details the software safety analysis techniques, software

FMEA, software HAZOP, and software FTA. We also surveyed the state: of the art in the software

reliability assessment techniques. However, the most important results from the reliability techniques

are not the specific probability numbers generated, but the insights into the risk importance of

software features.

Software cannot be proven to be error-free, and therefore is considered susceptible to common-

mode failures because identical copies of the software are present in redundant channels of safety-

related systems. To defend against potential common-mode failures, high quality, defense-in-depth,

and diversity are considered to be key elements in digital I&C system design. Implementation of

software diversity should use independent systems with functional diversity. The use of system

diversity, diverse software features and diverse design approaches should be considered. To

minimize the possibility of CMFs and thus increase the plant reliability, we have provided D-in-

D&D analysis guidelines.

This report will provide a possibility to fill a gap between the mandatory requirements (what) and

the work practices (how) when conducting the processes and activities intended to improve the

reliability of safety-critical software in digital I&C systems.
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APPENDIX A. DEFINITIONS AND TERMS

Accident. Accidents are defined as those conditions of abnormal operation that result in limiting

faults: These are occurrences that are not expected to occur but are postulated because their

consequences would include the potential for the release of significant amounts of radioactive

material. Limiting faults are further defined as those accidents whose effects circumscribe or

bound the effects of similar faults of lesser magnitude. For the purposes of the analysis

described in this document, a basis set of limiting faults, identical to those considered in the

Standard Safety Analysis Report, Chapter 15, should be identified.

Anticipated Operational Occurrences: For the purposes of the analysis described in this document,

a basis set of anticipated operational occurrences should be identified by the following criteria.

"Anticipated operational occurrences" mean those conditions of normal operation which are

expected to occur one or more times during the life of the nuclear power unit and include but are

not limited to loss of the turbine generator set, isolation of the main condenser and loss of offsite

power" (10 CFR 50, Appendix A, Definitions and Explanations). Such occurrences are further

categorized as to frequency:

- Incidents of moderate frequency—these are incidents, any one of which may occur during a

calendar year for a particular plant.

— Infrequent incidents—these are incidents, any one of which may occur during the lifetime of

a particular plant.

Architectural Design. The process of defining a collection of hardware and software components

and their interfaces to establish the framework for the development of a computer system.

Baseline. A defined configuration on which a design freeze decision has been implemented,

thereafter requiring formal configuration

Block. Generally, a system is described as an arrangement of components or black boxes

interconnected by communication, electrical connections, pipes, or physical effects. This kind of

description, often called a "system architecture," may be too complex or may not be partitioned

conveniently for diversity and defense-in-depth analysis. A more convenient description may be

obtained by restricting the portion of the system under consideration to instrumentation and

control equipment and partitioning the restricted portion into "blocks." A "block" is the smallest

portion of the system under analysis for which it can be credibly assumed that internal failures,

including the effects of software errors, will not propagate to other equipment. The objective of

choosing blocks is to reduce the need for detailed examination of internal failure mechanisms

while examining system behavior under reasonable assumptions of failure containment.
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Examples of typical software-containing blocks are computers, local area networks or

multiplexers, or programmable logic controllers (PLCs). A block can be solely hardware, but

there are no solely software blocks; software-containing blocks suffer the distinction that both

hardware or software faults (and sometimes both acting together) can cause block failure.

Consequently, it is difficult to separate the effects of software from the machine that executes

that software. For example, a software defect in one small routine can cause an entire computer

to fail by corruption of other data or software. Guideline 1 and Guidelines 6 through 9 (see

section 6.2) provide additional direction on block choice and failure propagation limits.

Categorization of Functions Important to Safety. The Assignment of a category for each l&C

function and for systems and equipment important to safety. Note - The process of assignment

according to categories A, B, and C is described in IEC 1226.

Channel. A channel is defined as a set of interconnected hardware and software components that

processes an identifiable sensor signal to produce a single protective action signal in a single

division when required by a generating station condition. A channel includes the sensor, data

acquisition, signal conditioning, data transmission, bypasses, and logic up to voters or actuating

device inputs. The objective of the channel definition is to define subsets of a reactor protection

system that can be unambiguously tested or analyzed from input to output.

Common-Mode (or -Cause) Failure. Common-mode failures (CMFs) are causally related failures

of redundant or separate equipment. For example, (1) A CMF of identical subsystems across

redundant divisions defeats the purpose of redundancy, or (2) A CMF of different subsystems or

echelons of defense defeats the use of defense-in-depth. CMF embraces all causal relations,

including severe environments, design errors, calibration and maintenance errors, and

consequential failures.

Configurable Software. Consists of a set of basic functional elements and a set of rules describing

how these elements can combined. The user configure the basic elements into the specified

system. This software can be treated as existing software with either accessible or proprietary

documentation. It is possible that the base software has already been rigorously validated and in

this case only the application specific extension has to be validated.

Defense-in-Depth. Defense-in-depth is a principle of long standing for the design, construction and

operation of nuclear reactors, and may be thought of as requiring a concentric arrangement of

protective barriers or means, all of which must be breached before a hazardous material or

dangerous energy can adversely affect human beings or the environment. The classic three

physical barriers to radiation release in a reactor—cladding, reactor pressure vessel, and

containment—are an example of defense-in-depth.
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Design Diversity. Design diversity is the use of different approaches, including both software and

hardware, to solve the same or similar problem. Software diversity is a special case of design

diversity and is mentioned separately because of its potential importance and its potential

defects. The rationale for design diversity is that different designs will have different failure

modes and will not be susceptible to the same common influences. A factor that weakens this

argument is that different designs may nonetheless use similar elements or approaches.

Design Fault. A fault due to the inadequate design of an item.

• Note 1 - A design fault is caused by a human error during system development.

• Note 2 - Design faults in software are usually latent, transient, recurrent and systematic.

• Note 3 - Design faults give rise to failure during operation when activated by a certain

combination of conditions referred to as the trigger. Since these conditions are

encountered at random during operation, design facilities are: random events.

Detailed Design. The process of refining and expanding the preliminary design of a system or

component to the extentthat the design is sufficiently complete to be implemented.

Diverse System. An independent system designed and developed with the intention of ensuring that

design failures occur independently.

Diversity. Diversity is a principle in instrumentation systems of sensing different parameters, using

different technologies, using different logic or algorithms, or using different actuation means to

provide several ways of detecting and responding to a significant event. Diversity is

complementary to the principle of defense-in-depth and increases the chances that defenses at a

particular level or depth will be actuated when needed. Defenses at different levels of depth may

also be diverse from each other. There are six important types of diversity to consider: human

diversity, design diversity, software diversity, functional diversity, signal diversity, and

equipment diversity.

Dynamic Analysis. The process of evaluating a system or component traced on its behavior during

execution. Contrast with static analysis.

Echelons of Defense. "Echelons of defense" are specific applications of the principle of defense-in-

depth to the arrangement of instrumentation and control systems attached to a nuclear reactor for

the purpose of operating the reactor or shutting it down and cooling it. Specifically, the echelons

are the control system, the reactor trip or scram system, the Engineered Safety Features

actuation system (ESFAS), and the monitoring and indicator system. The echelons may be

considered to be concentrically arranged in that when the control system fails, the reactor trip

system shuts down reactivity; when both the control system and the reactor trip system fail, the
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ESFAS continues to support the physical barriers to radiological release by cooling the fuel, thus

allowing time for other measures to be taken by reactor operators to reduce reactivity. All four

echelons depend upon sensors to determine when to perform their functions, and a serious safety

concern is to ensure that no more than one echelon is disabled by a common sensor failure or its

direct consequences.

Equipment Diversity. Equipment diversity is the use of different equipment to perform similar

safety functions, in which "different" means sufficiently unlike as to significantly decrease

vulnerability to common failure. The fact that equipment is made by different manufacturers

does not guarantee diversity; many computer designs use the same semiconductor chips, and in

the most extreme cases, two suppliers may acquire, re-label, and sell the same printed circuit

boards from a single manufacturer. The use of diverse computer equipment may have an effect

on software diversity; using a different computer architecture forces the use of diverse compilers,

linkers, and other support software.

Error. A discrepancy between a computed, observed or measured value or condition and the true,

specified or theoretical value or conditions.

Erroneous State. An incorrect internal state of a system, due to a component failure or an external

failure.

Failure. The event of an item not providing its full required service.

Note 1 - A failure is an event in time. A fault is a state in the system.

Note 2 - A failure may be due to a physical failure of a hardware component, to activation

of a latent design fault, or to an external failure.

Note 3 - After a failure, an item may recover and resume its required service after a break,

partially recover and continue to provide some of its required functions (fail

degraded) or it may remain down (complete failure) until repaired.

Fault. The state of an item characterized by inability to perform a required function, excluding the

inability during preventive maintenance or other planned action, or due to lack of external

resources.

Fault Activation. The event in which a latent fault give rise to a failure in response to a trigger.

Fault Mode. An observable state of an item, which can give rise to a failure under certain operating

conditions. (Note - This covers both the state of a hardware component following a physical

failure and a design fault.)

Fault Tolerance. The attribute of an item which makes it able to perform a required function in the

presence of certain given sub-item faults.
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Formal Proof. A complete mathematical proof constructed to discharge proof obligations.

Functional Diversity. Two systems are functionally diverse if they perform different physical

functions though they may have overlapping safety effects. For example, cooling systems

normally intended to function when containment is isolated are functionally different from other

liquid control systems intended to inject coolant or borated water for other reasons. However,

the other liquid control systems may have a useful cooling effect, while the isolation cooling

systems may have useful coolant makeup side effects. Functional diversity is often useful when

determining if sufficient mitigation means have been employed in a postulated accident; a

combination of alternative systems in the face of primary system failure may be enough to

mitigate the effects of an accident. A type of functional diversity, called "aspect" diversity, was

applied to systems using relays, specifically to distinguish "de-energize to trip" arrangements

from "energize to trip" arrangements.

Functional Isolation. Means for preventing the functioning of a circuit or a system from being

influenced by the failure of another circuit or system.

Functional Requirement. A system requirement that specifies a function that a system or system

component must be capable of performing. Functional requirements; define the behavior of the

system, that is, the fundamental process of transformation that software and hardware

components of the system perform on inputs to produce outputs.

Functional Specification. A document that specifies the functions that a system or component must

perform. Often a pan of a requirements specification.

Guide word. A word or phrase which expresses and defines a specific type of deviation from design

intent.

Hazard. A hazard is a state or a set of conditions of a system that, together with other conditions in

the environment of the system, will lead inevitably to an accident. A hazard is defined with

respect to the environment of the system or component. What constitute a hazard depends upon

where the boundaries of the system are drawn.

Hazard analysis. An analysis for the purpose of exploring the hazards which may be caused by the

system or which may affect the system.

HAZOP Study. A formal systematic examination, by a team under the management of a trained

leader, of the design intentions of a new or existing system or parts of a system, to identify

hazards, mal-operation or mal-function of individual entities within the system and the

consequences on the system as a whole and on its environment. It typically includes several

HAZOP Study Meetings.
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Human Diversity. The effect of human beings on the design, development, installation, operation,

and maintenance of safety systems is known to be extremely variable, and has been a factor in

several serious accidents. Used in a positive way, human diversity can be a plus for system

safety. For instance, using different maintenance personnel to calibrate separate, redundant

divisions of safety instrumentation may provide some assurance that the same, systematic error

is not made in all divisions. Using separate designers to design functionally diverse safety

systems may reduce the possibility of similar design errors.

Instrumentation System. A plant instrumentation system is that equipment which senses various

plant parameters and transmits appropriate signals to control systems, to the reactor trip system,

to the engineered safety features actuation system, and to the monitoring and indicator system

for use in determining the actions these systems or reactor operators will take. Independence is

required between control systems, safety-related monitoring and display systems, the safety

systems, and between redundant divisions of the safety systems.

Latent Fault. An existing, fault located in a software component.

Maintainability. The probability that a given active maintenance action to an item under given

conditions of use can he carried out within a stated time interval when the maintenance is

performed under stated conditions and using stated procedures and resources.

Maintenance. The combination of all technical and administrative actions, including supervision

actions, intended to retain an item in, or restore it to, a state in which it can perform a required

function.

Monitoring and Indicator System. The monitoring and indication echelon is the slowest and also

the most flexible echelon of defense. Like the other three echelons, operators are dependent

upon accurate sensor information to perform their tasks, but, given information, time, and means,

can perform previously unspecified logical computations to react to unexpected events. The

monitoring and indication echelon includes both Class IE and non-Class IE manual controls,

monitors, and indicators required to operate equipment nominally assigned to the other three

echelons.

N-Version Software. A set of different programs, known as versions, are developed to meet a

common requirement and common acceptance test. Concurrent and independent execution of

these versions takes place, generally in redundant hardware. Identical inputs in test systems or

corresponding inputs in redundant systems are used. A predetermined strategy such as voting is

used to decide between conflicting outputs in different versions.
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Operability. The capacity of a system to function. In this Standard, the ability of the system to

perform its functions is implied, but in the military context there is often an additional

implication of the ability of the operators to use the system effectively.

Operational System Software. Parts of the system software used by the application software and

which run on the target processor during operation.

Performance specification. A document that specifies the performance characteristics that a system

or component must possess. These characteristics typically include speed, accuracy and memory

usage. Often a part of a requirements specification.

Plant Functional Safety Analysis. The process of identification of the l&C functions important to

safety of nuclear power plant.

Pre-Developed Software. An software which has not been specifically developed and verified to

meet the requirements of the application for which it will be used. It may have been developed

to satisfy a general market need or meet the requirements of another application.

Quality Assurance. All the planned and systematic activities implemented within the quality system

and demonstrated as needed, to provide adequate confidence that an entity will fulfill,

requirements for quality.

Reactor Trip or Scram System. The reactor trip echelon is that safety equipment designed to reduce

reactivity rapidly in response to an uncontrolled excursion. It consists of instrumentation for

detecting potential or actual excursions, means for rapidly and completely inserting the reactor

control rods, and may also include certain chemical neutron moderation systems.

Recovery Block Technique. Alternative software versions for the same function are organized such

that an acceptance test is used to check the results found by the versions in the same equipment

If the test is not passed, recovery is implemented by initial state restoration, followed by the

execution of the alternate version.

Redundancy. Provision of alternative (identical or diverse) elements or systems, so that any one can

perform the required function regardless of the state of operation or failure of any other.

Re-Usable Software Modules. Basic software modules implementing application functions that can

be configured .

Risk. Risk is the hazard level combined with (1) the likelihood of the hazard leading to an accident

and (2) hazard exposure or duration. Risk is the combination of the frequency, or probability,

and the consequence of an accident.

Safety. Safety is freedom from accident or losses.
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Safety analysis. An analysis carried out with the purpose of assessing and examining the safety of

the system and its surroundings. A hazard analysis is a necessary element of a safety analysis.

Safety-critical Software: Software that falls into one or more of the following categories:

a) Software whose inadvertent response to stimuli, failure to respond when required,

response out-of-sequence, or response in combination with other responses can result in

an accident.

b) Software that is intended to mitigate the result of an accident.

c) Software that is intended to recover from the result of an accident.

Safety Functions Requirements Specifications. This specification contains the requirements for the

safety functions that have to be performed by the systems important to safety.

Signal Diversity. Signal diversity is the use of different sensed parameters to initiate protective

action, in which any of the parameters may independently indicate an abnormal condition, even

if the other parameters fail to be sensed correctly. For example, in a BWR, neutron flux increase

due to void reduction is a diverse parameter to reactor pressure excursion for events that cause a

reactor pressure pulse.

Software Diversity. Software diversity is the use of different programs designed and implemented

by different development groups with different key personnel to accomplish the same safety

goals—for example, using two separately designed programs to compute when a reactor should

be tripped. It has been suggested that sufficient diversity can be obtained by implementing the

same specification through intentionally diverse designs (possibly by the same programming

team); however, the bulk of significant reported experience concerns independent software

teams. The great hope of software diversity is that different programmers will make different

mistakes. Unfortunately, some (very sparse) data suggest that different programmers designing

to the same requirements too often make similar mistakes.

Software Failure. System failure due to the activation of a design fault in a software component.

Software Fault. Design fault located in a software component.

Software Hazard: A software condition that is a prerequisite to an accident.

Software Release. A version of the software product that has been extended with new functionality

as compared with the previous version

Software Reliability. The component of the system reliability which depends on software failures.

Software Safety: Freedom from software hazards.
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Software Safety Integrity. A qualitative measure that signifies the likelihood of software in a

computer-based system achieving its safety functions under all stated conditions within a stated

period of time.

Software Safety Integrity Level. One of a number of possible discrete levels for specifying the

safety integrity of software in safety systems according to pre-defined categories.

Software Safety Program: A systematic approach to reducing software risks.

System Hazard: A system condition that is a prerequisite to an accident.

System Safety: Freedom from system hazards.
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APPENDIX B. SOFTWARE SAFTY TECHNIQUES AND METHODS

The Software Safety Plan requires the specification of the types of analyses that will be

performed during the software life cycle. The information in this annex may be helpful in preparing

the Software Safety Plan.

B.I Software safety requirements analyses

The software safety requirements analysis evaluates software and interface requirements and

identifies errors and deficiencies that could contribute to a hazard. It is the basis for subsequent

software safety analyses. Analyses may include, but are not limited to, those listed below.

a) Criticality analysis identifies all software requirements that have safety implications. Each

requirement in the Software Requirements Specification (SRS) is evaluated against the

various system hazard analyses (including the PHA) to assess its potential for unacceptable

risk. Each requirement in the SRS is evaluated against the system design to ensure that

each safety-critical software requirement imposed by the system design is satisfied in the

SRS. Requirements that satisfy either portion of this analysis are termed safety-critical

requirements. A criticality level is assigned to each safety-critical requirement based on the

estimated risk.

b) Specification analysis evaluates each safety-critical software requirements. This evaluation

is with respect to a list of qualities, such as, completeness, correctness, consistency,

testability, robustness, integrity, reliability, usability, flexibility, maintainability, portability,

interoperability, accuracy, auditability, performance, internal instrumentation, security, and

training. (Items are listed in no particular order.)

c) Timing and sizing analysis evaluates safety implications of safety-critical requirements that

relate to execution time, clock time, and memory allocation. During requirements analysis,

timing analysis identifies conditions, events, and time intervals that satisfy one or more of

the following criteria:

i) If Condition C becomes true, then Event A must occur within T seconds.

ii) If Condition C becomes true, then Event A must not occur until T seconds have

elapsed.

iii) Event B must not occur until T seconds after Event A has occurred.

A preliminary performance analysis may be performed.

d) Different software system analyses may be required if more than one software system is

being integrated. Such integration will significantly expand the amount of analysis required

in the software safety requirements analysis. Specific analysis of the allocation of software

requirements to the separate systems can reduce subsequent integration and interface errors
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related to safety. This is particularly true when a system hazard results in a requirement

that is partially implemented in two or more software systems.

B.2 Software safety design analysis

The software safety design analysis verifies that the safety-critical portion of the software

design correctly implements the safety-critical requirements and introduces no new hazards.

Analyses may include, but are not limited to, those listed below.

a) Logic analysis evaluates the safety-critical equations, algorithms, and control logic of the

software design.

b) Data analysis evaluates the description and intended use of each data item in the software

design. This analysis ensures that the structure and intended use of data will not result in a

hazard. Data structures should be assessed for data dependencies that circumvent isolation,

partitioning, data aliasing, and fault containment issues affecting safety, and the control or

mitigation of hazards.

c) Interface analysis verifies the proper design of a software component's safety-critical

interfaces with other components of the system, both internal and external. The major areas

of concern with interfaces are properly defined protocols and control and data linkages.

External interfaces should be analysed to demonstrate that communication protocols in the

design are compatible with interfacing requirements. Hazards associated with an interface

are also related to the system context and the environmental context as defined by their

state at any point in time. The interface analysis must document this system and

environment contexts. Interface analysis is also a tool that indicates the source of a system-

level hazard and areas where further analyses are required.

d) Constraint analysis evaluates the safety of restrictions imposed on the selected design by

the requirements and by real-world restrictions. The impacts of the environment on this

analysis can include such items as the location and relation of clocks to circuit cards, the

timing of a bus latch when using the longest safety-related timing to fetch data from the

most remote circuit card, interrupts going unsatisfied due to a data flood at an input, and

human reaction time.

e) Functional analysis ensures that each safety-critical software requirement is covered and

that an appropriate criticality level is assigned to each software element.

f) Software element analysis examines software elements that are not designated safety-

critical and ensures that these elements do not cause a hazard.

107



g) Based on the results of the timing and sizing analysis conducted for software safety

requirements analysis, timing and sizing estimates can be established to allow evaluation of

the operating environment,

h) Reliability predictions may be made for safety-critical software elements. Acceptable risk

levels as defined in the software safety requirements may set reliability goals (see IEEE Std

982.1-1988 for additional information).

B.3 Software safety code analysis

The software safety code analysis verifies that the safety-critical portions of the design are

correctly implemented in the code. Analyses may include, but are not limited to, those listed below.

a) Logic analysis evaluates the sequence of operations represented by the coded program and

detects programming errors that might create hazards.

b) Data analysis evaluates the data structure and usage in the code to ensure each is defined

and used properly by the program. Analysis of the data items used by the program is

usually performed in conjunction with logic analysis.

c) Interface analysis ensures compatibility of program modules with each other and with

external hardware and software.

d) Constraint analysis ensures that the program operates within the constraints imposed upon

it by requirements, the design, and the target computer. Constraint analysis is designed to

identify these limitations, to ensure that the program operates within them, and to ensure

that all interfaces have been considered for out-of-sequence and erroneous inputs.

e) Programming style analysis ensures that all portions of the program follow approved

programming guidelines.

f) Non-critical code analysis examines portions of the code that are not considered safety-

critical code to ensure that they do not cause hazards. As a general rule, safety-critical code

should be isolated from non-safety-critical code. The intent of this analysis is to prove that

this isolation is complete and that interfaces between safety-critical code and non-safety-

critical code do not create hazards. If isolation is not provable, the Plan should discuss how

to handle the risk.

g) Timing and sizing analysis is further refined to ensure that no hazards due to timing or

sizing factors have been added by the process of writing the code.

B.4 Software safety test analysis
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Software safety test analysis demonstrates that safety requirements have been correctly

implemented and the software functions safely within its specified environment. Tests may include,

but are not limited to, the following:

a) Computer software unit level testing that demonstrates correct execution of critical

software elements.

b) Interface testing that demonstrates that critical computer software units execute together as

specified.

c) Computer software configuration item testing that demonstrates the execution of one or

more system components.

d) System-level testing that demonstrates the software's performance within the overall

system.

e) Stress testing that demonstrates the software will not cause hazards under abnormal

circumstances, such as unexpected input values or overload conditions.

f) Regression testing that demonstrates changes made to the software did not introduce

conditions for new hazards.

B.5 Software safety change analysis

The starting point of the change analysis is the safety-critical design elements that are affected

directly or indirectly by the change. The purpose of software safety change analysis is to show that

the change does not create a hazard, does not impact on a previously resolved hazard, does not make

a currently existing hazard more severe, and does not adversely affect any safety-critical software

desian element.
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APPENDIX C. POTENTIAL SOFTWARE SAFETY ANALYSIS METHODS

The New Mexico chapter of the System Safety Society issued a report on safety analysis in 1993.

The relevant portion of that report is a 312-page discussion of hazard analysis techniques. Ninety

techniques are discussed to varying levels of detail. The following topics are included for each

technique:

• alternate names

• purpose

• method

• application

• thoroughness

• mastery required

• difficulty of application

• general comments and references

Many of the techniques do not apply directly to software (for example, Tornado Analysis). Some

of the remaining analyses could have indirect application to software. Bent Pin Analysis, for example,

applies to connector pins in a cable connection. If the cable carries computer data, a bent pin could

affect software functions. However, the analysis is performed on the cable, not the software, so it is

considered to be indirect.

The 47 techniques that might potentially apply to software are listed below. The word "potential"

means that it is conceivable that the technique could be used, not that there is any evidence of use.

For each of these techniques, the list gives its name and an extract of the purpose. In some cases, the

purpose sections were not very complete.

• Accident Analysis evaluates the effect of scenarios that develop into credible and

incredible accidents. This is expected to be performed at the system level, but could be

extended to software safety by considering the effect of software on the prevention,

initiation or mitigation of accidents identified in the system accident analysis.

• Cause-Consequence Analysis combines the inductive reasoning features of Event Tree

Analysis with deductive reasoning features of Fault Tree Analysis. The result is a technique

that relates specific accident consequences to their many possible causes. Computer codes

exist to assist in the performance of this analysis. GENII, RSAC4, MACCS, ARA, EPA-

AIRDOS and HOTSPOT are examples.

• Change Analysis examines the potential effects of modifications from a starting point or

baseline. The Change Analysis systematically hypothesizes worst-case effects from each

modification from that baseline.
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Checklist Analysis uses a list of specific items to identify known types of hazards, design

deficiencies and potential accident situations associated with common equipment and

operations. The identified items are compared to appropriate standards.

Common Cause Analysis identifies any accident sequences in which two or more events

could occur as the result of a common event or causative mechanism. . Comparison-To-

Criteria (CTC) Analysis provides a formal and structured format that identifies all safety

requirements for a (software) system and ensures compliance with those requirements.

Contingency Analysis is a method of preparing for emergencies by identifying potential

accident-causing conditions and respective mitigating measures to include protective

systems and equipment.

Critical Incident Technique uses historical information or personal experience in order to

identify or determine hazardous conditions and high-risk practices.

Criticality Analysis ranks each potential failure mode identified in a Failure Modes and

Effects Analysis (FMEA) according to the combined influence of severity classification

and its probability of occurrence based on the best available data. It is often combined with

FMEA, forming a Failure Modes, Effects and Criticality Analysis (FMECA).

Digraph Utilization Within System Safety is used to model failure effect scenarios within

large complex systems, thereby modeling FMEA data. Digraphs can also be used to model

hazardous events and reconstruct accident scenarios. As a result, both hazard analysis and

accident investigation processes can be improved via modeling event sequences.

Event and Casual Factor Charting reconstructs the event and develops root cause(s)

associated with the event.

Event Tree Analysis is an analytical tool that can be used to organize, characterize and

quantify potential accidents in a methodical manner. An event tree models the sequence of

events that results from a single initiating event.

Failure Modes and Effects Analysis (FMEA) determines the result or effects of sub-

element failures on a system operation and classifies each potential failure according to its

severity.

Failure Modes, Effects and Criticality Analysis (FMECA) tabulates a list of equipment

in a process along with all of the possible failure modes for each item. The effect of each

failure is evaluated.

Fault Hazard Analysis is a basic inductive method of analysis used to perform an

evaluation that starts with the most specific form of the system and integrates individual

examinations into the total system evaluation. It is a subset of FMEA.
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• Fault Isolation Methodology is applied to large hardware/software systems that are

unmanned and computer-controlled. There are five specific methods: half-step search,

sequential removal or replacement, mass replacement, lambda search and point of

maximum signal concentration.

• Fault Tree Analysis (FTA) assesses a system by identifying a postulated undesirable end

event and examines the range of potential events that could lead to that state or condition.

• Hazard and Operability Study (HAZOP) is a group review method that assesses the

significance of each way a process element could malfunction or be incorrectly operated.

The technique is essentially a structured brainstorming session using specific rules.

• Hardware/Software Safety Analysis examines an entire computer system so that the total

system will operate at an acceptable level of risk.

• Human Error Analysis is used to identify the systems and the procedures of a process

where the probability of human error is of concern. This technique systematically collects

and analyzes the large quantities of information necessary to make human error

assessments.

• Human Factors Analysis allocates functions, tasks and resources among humans and

machines.

• Interface Analysis identifies potential hazards that could occur due to interface

incompatibilities.

• Maximum Credible Accident/Worst-Case Analysis determines the upper bounds on a

potential accident without regard to the probability of occurrence of the particular accident

identified.

• Nuclear Safety Cross-Check Analysis (NSCCA) verifies and validates software designs.

It is also a reliability hazard assessment method that is traceable to requirements-based

testing.

• Petri Net Analysis provides a technique to model system components at a wide range of

abstraction levels. It is particularly useful in modeling interactions of concurrent

components. There are many other applications.

• Preliminary Hazard Analysis (PHA) can be used in the early stages of system design

(possibly including software design), thus saving time and money which could have been

required for major redesign if the hazards were discovered at a later date.

• Preliminary Hazard List (PHL) creates a list of hazards to enable management to choose

any hazardous areas to place management emphasis.

• Probabilistic Risk Assessment (PRA) provides an analysis technique for low probability,

but catastrophically severe events. It identifies and delineates the combinations of events
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that, if they occur, will lead to an accident and an estimate of the frequency of occurrence

for each combination of events, and then estimates the consequences.

Production System Hazard Analysis identifies (1) potential hazards that may be

introduced during the production phase of system development which could impair safety

and (2) their means of control. This could apply to software if "production" is replaced by

"operation."

Prototype Development provides a modeling/simulation analysis technique that constructs

early pre-production products so that the developer may inspect and test an early version.

Repetitive Failnire Analysis provides a systematic approach to address, evaluate and

correct repetitive failures.

Root Cause Analysis identifies causal factors relating to a mishap or near-miss incident.

The technique goes beyond the direct causes to identify fundamental reasons for the fault

or failure.

Safety Review assesses a system or evaluates operator procedures for hazards in the design,

the operations, or the associated maintenance.

Scenario Analysis identifies and corrects potentially hazardous situations by postulating

accident scenarios where credible and physically possible events could cause the accident.

Sequentially-Tiimed Events Plot (STEP) Investigation System is a multi-linear events

sequence-based analytical methodology used to define systems; analysis system operations

to discover, assess and find problems; find and assess options to eliminate or control

problems; monitor future performance; and investigate accidents. STEP results are

consistent, efficiently produced, non-judgmental, descriptive and explanatory work

products useful over a system's entire life cycle.

Single-Point Failure Analysis identifies those failures that would produce a catastrophic

event if they were to occur by themselves.

Sneak-Circuit Analysis identifies unintended paths or control sequences that may result in

undesired events or inappropriately timed events.

Software Failure Modes and Effects Analysis (SFMEA) identifies software-related

design deficiencies through analysis of process flow charting. It also identifies interest

areas for verification/validation and test and evaluation.

Software Fault Tree Analysis applies FTA to software. It can be applied to design or code.

Software Hazard Analysis identifies, evaluates and eliminates or mitigates software

hazards by means of a structured analytical approach that is integrated into the software

development process.
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Software Sneak Circuit Analysis (SSCA) is used to discover program logic that could

cause undesired program outputs or inhibits, or incorrect sequencing/timing.

Subsystem Hazard Analysis (SSHA) identifies hazards and their effects that may occur as

a result of the design of a subsystem.

System Hazard Analysis (SHA) concatenates and assimilates the results of Subsystem

Hazard Analyses into a single analysis to ensure that hazards or their controls or monitors

are elevated to a system level and handled as intended.

Systematic Inspection uses checklists, codes, regulations, industry consensus standards

and guidelines, prior mishap experience and common sense to methodically examine a

design, system or process in order to identify discrepancies representing hazards.

Uncertainty Analysis identifies the incertitude of a result based on the confidence levels

(or lack thereof) and variability associated with the inputs.

What-If Analysis is a brainstorming approach in which a group of experienced individuals

asks questions or voices concerns about possible undesired events in a process.

What-If/Checklist Analysis is a combination of What-If Analysis and Checklist Analysis.
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APPENDIX D. WOLSONG SOFTWARE HAZARD ANALYSIS PROCEDURE

AECL, the Canadian supplier of Wolsong nuclear power plant., developed a procedure of

software hazard analysis for the safety critical software of Wolsong SDS2 [AEC93], and conducted a

successful analysis using the procedure. The result is in Wolsong SE'S2 software hazard analysis

report [AEC94]. Although there are a number of types of hazard analysis ranging from FMEA,

FMECA, and HAZOP to FTA, "Software Hazard Analysis" implies "Software Fault Tree Analysis"

in the procedure for Wolsong nuclear power plants.

A hazard analysis consists of two analytical processes. The first process is "hazard identification"

which defines the hazards. The second process is "hazard evaluation" which assesses the identified

hazards. The most common "hazard evaluation" technique is the fault tree analysis. Practical

applications reveal that hazard analysis is applied to the overall system instead of the software in

isolation. Software itself typically cannot cause harm; however, hardware which it controls can cause

damage.

System hazard analysis shall consist of two analytical processes, namely Preliminary System

Hazard Analysis (PSHA) and System Fault Tree Analysis (FTA). System FTA shall encompass

hardware, software, and human factors. Software FTA shall therefore represent a subset of the system

FTA. Figure D.I illustrates the complete system hazard analysis process [AEC93]. The system

requirements definition and safety report are used to provide the information required to perform the

PSHA. The system hazards, identified by the PSHA, provide the necessary input to the system hazard

evaluation process (system FTA) since they define the top events of the system fault trees. Each

system hazard must be evaluated using a separate system fault tree.

A fault tree is a symbolic logic diagram showing the cause and effect relationship between an

undesired event and contributing causes. FTA is a backward process which attempts to determine all

possible causes for the undesired event to occur. Forward approaches, such as testing or formal

verification, try to ensure that all possible reachable states of the system are safe, whereas backward

approaches try to ensure that unsafe states are not reachable.

The system hazards are defined by the preliminary system hazard analysis. They provide the

necessary input to the system FTA process by defining the top events. As the development of the

hardware portion of the system fault trees progresses, branches will be created defining software

events. The identification of the software hazards requires the system hazard identification process to

be performed followed by the partial completion of the system FTA process, that is, an attempt made

to postulate undesired software events. There are following limitations in most software FTA

techniques;

• It is labor intensive task with no present automatic generation of fault trees.
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Fig. D. 1 Wolsong System Hazard Analysis Process

• Software FTA is costly. A cost comparison with other software safety techniques is not

practical as it is very application dependent.

• Safety-critical software, whose safety has been analyzed and validated using FTA

techniques, cannot be re-used in other applications without performing a separate analysis

unless its environment is identical.

• Within very large systems, it is often prohibitive to perform a complete FTA as the fault

trees become huge and difficult to relate to the plant and its operation.

• Since software FTA is a static technique, it does not lend itself to situations where timing

scenarios must be represented and analyzed.

There is no explicit causality information from logical faults of software to physical hazards of

system. For example, in Fig. D.2 [Rav93], the logical contents of "Observation interval less than 30

sec" and "Gas leaks for more than 4 sec" must be the safety requirements for the controller, and will

be implemented as software. However, when searching the cause of the upper event, it is thoroughly

dependent on the analyst's knowledge to find the causal relation between the physical hazard (e.g.,
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'Fire occurs' in Fig. D.2) and the logical fault of software. Here, software: in requirement phase is the

specification such as "Observation interval less than 30 sec" and "Gas leaks for more than 4 sec."
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Fig. D.2 Fault Tree for a Gas Burner Controller

According to the Wolsong SDS2 software hazard analysis procedure [AEC93], there are two

groups of outcome from software FTA. One group is the recommendations to improve the fault

tolerance, and the other is the influence on testing. However, there is no detail guide to narrow down

the testing domain from the software FTA. The analysis report [AEC94] by the procedure shows that

they have identified about 50 software hazards, and provided the recommendations. The summary of

the results by Wolsong software FTA is shown in Table D.I.

However, there was no explanation about how they found the software hazards from the software

fault tree. That is, there is no mechanism to relate the logical aspects of software to the physical

hazard of the system. For example, there must be an explanation why a specific IF-THEN-ELSE

statement is hazardous. The explanation must not come from the program structures, but from the

behavioral relations between the physical system and the logical software. In Wolsong SDS2

software FTA, more than 90% of software hazards are related to the program structure, and most of

the hazards are expressed as "the current construct is not fully guarded against the hazard." The

recommendations are also to change the program structure, not to change the logic or state of the

program.
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Table D.I Hazards Identified from Wolsong SDS2 Software FTA

NAME OF SOFTWARE HAZARDS

For construct hazard

Initialization hazard

IF-THEN-ELSE construct hazard

CASE construct hazard

Sequence checks hazard

Main loop timer hazard

Wait in the main loop hazard

Backup timers hazard

Common mode failure hazard

Summary

NO

4

4

38

4

1

3

1

1

1

57

%

7

7

67

7

2

4

2

2

2

100

REMARKS

Hardware related

Hardware related

Figures D.3 and D.4 are a part of the fault trees for SDS2 of Wolsong nuclear power plant. When

creating these fault trees, in addition to the general limitations of software FTA, there are also

following drawbacks in the Wolsong software FTA approach;

• It is a static FTA based on the information of the program structure. In hardware FTA, the

root cause of the top event is searched based on the structure of hardware. However, in

software case, it is difficult to find the causes of software hazards from the structural

information of the code, such as calling sequence, program structure, and module structure,

because the I/O and the state changes of software determine whether the system could be

hazardous or not.

• It is a code level FTA. It is difficult to relate the logical fault of software to the physical

hazard of system because of the long conceptual distance between the logics of code and

the physics of the system. It takes too much cost to fix the hazardous software because of

the late phase in the lifecycle.

It depends on the ad hoc engineering judgments when deciding the cause of the upper event. The

approach requires a lot of experiences of the analyst as not only a domain expert of the system, but

also a software engineer.

Of course, there are many advantages of FTA itself and the Wolsong software FTA approach. For

example, it provides the focus needed to give priority to catastrophic events and to determine the

further verification. We show from next section that CRSA preserves all advantages of the FTA and

also eliminates the above drawbacks.
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