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Abstract

In Particle and Asro-Particle Physics experiments, the events which get trough the detectors are read and

processes on-line before they are stored for a more detailed processing and future Physics analysis. Since

the events are read and, usually, processed sequentially, the time involved in these operations can lead to

a significant lose of events which is, to some extent, reduced by using buffers. We present an estimate of

the optimum buffer size and the fraction of events lost for a simple experimental condition which serves as

an introductory example to the use of Markov Chains.
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Resumen

En experimentos de Astrofísica y Física de Partículas Elementales, los sucesos recogidos en los detectores

se leen y procesan "on-line" antes de ser almacenados para una análisis posterior. Puesto que,

normalmente, estas operaciones se realizan secuencialmente, el tiempo que conllevan puede dar lugar a

una perdida significativa de sucesos que se puede reducir, hasta cierto punto, utilizando "buffers "de

sucesos. Presentamos una estimación del tamaño óptimo del "buffers"y de la fracción de sucesos

perdidos para una configuración experimental sencilla como ejemplo introductorio a la aplicación de

Cadenas de Markov.





1 Introduction.

In a typical Particle or Astro-Particle Physics experiment, when an event gets
through the detector the signals are read and the information is processed on-line
before it is stored for a more detailed reconstruction and future Physics analysis.
The events are usually processed one at the time so, when one is being processed,
all other events which fall in tbe detector are, in principle, lost. These loses
can be very large when the inu.-.niug rate of particles (A) is large compared to
the times involved in the process of reading (Tr) and processing (Tp) the events.
These parameters depend on the type of experiment and detector. In an Astro-
Particle Physics environment, for instance, typical rates are of the order of A~103

particles per second and times of the order of T~l ms. The loses are usually
minimised using buffers in such a way that, when one event is being processed,
a fraction of the events which fall in the detector are stored in the buffer and
processed afterwards. Clearly, when AT << 1 there is no need for a buffer.
On the other hand, if AT is very large the buffer will almost always be full and
thus, of no real use. The optimum buffer size depends on the characteristics of
the experiment and is estimated to minimize the loses of events. However, the
fraction of events which are lost has to be estimated in order to determine, for
instance, the incoming flux of particles. Usually, this is estimated by a Monte
Carlo simulation of the detector and the operational conditions so that subtle
effects can be easily taken into account.

In this note, we present a simple approach to the problem which serves as an
introductory example to the use of finite Markov Chains. We have considered an
experimental situation in which the times involved in getting an event into and
from the buffer are negligible compared to the processing time Tp. This is usually
the case. We have assumed also that the time involved in reading the signals (Tr),
during which the events can neither be stored on the buffer nor processed, can also
be neglected. Depending on the complexity of the detector and the operations
involved in the processing, this may not be a valid approximation. Non negligible
reading times can be included in the present approach at the expense of having
much more involved expressions. However, they do not modify the insights of the
example and, for reasonable small values (Tr < Tp/5), the final results are not
very different.

2 Description of the process.

We shall consider the buffer, which can store up to fc,\./ events, as the system
to be analyzed. As we process events, the number of events in the buffer will
change with time. Each time we process one event, the number of events in the
buffer may change. This will correspond to one step in the time evolution of the
buffer. When we start processing the nlh event (at step n) the buffer can be at
any state ê  with fcE[0, fc,\f] events. Therefore, the space £ of the possible states
{eo, e\,..., ejtv } of the system is of dimension dim(£) = k\¡ + 1, finite. The
events are processed one at the time and each one bears a processing time Tp
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during which the events falling in the detector are stored in the buffer until it is
full. Once the buffer is full, the remaining events are lost. Thus, while processing
the nth event, the system can move from state ej to state e¿ with a transition
probability P{i\j) which depends on the number of events which fall during the
processing time Tp. We shall assume that the events fall at a constant rate A
following a Poisson model and that the processing time is the same for all type
of events (mean processing time). Therefore, the probability to receive m events
at the step n (while processing the event n) is:

P0l,Son{rn\fi ^ XT) = er11^-
ml

Suppose that, at the beginning of step n, the buffer is at eo; that is, has
no events stored. Then, we shall process directly the first event falling in the
detector so, for i = 0, 2,. . . , /c,\/ — 1, we have that:

If we get k_w or more, the system will move to the state ejt.u, so:

/ 0 A Í - 1

P(eo^ek,,) = P(kM\O) = 1 - X] P(m\0)
771=0

On the other hand, if at the step n the buffer is in state ej+i we shall automatically
process one event from the buffer, so the transition probabilities correspond to
those from state ej to state e¿: that is:

•* oissonV' 3 ~r -M/-'') —¿i—j+l

otherwise

Finally, the buffer will move from state e, to e¿w if we get k^j — j or more events
during the processing time so:

p(kM\j) = i - E P M J ) j = o.,i,...kM
m=0

The probability to go from state ej to e¿ at the step n depends on the state
of the system at the step n — 1 and not on the state of the system at previous
steps, so the evolution is described by a finite Markov Chain. On the other hand,
since the transition probabilities are independent of the step, the Markov Chain
is stationary.

With these transition probabilities we can define the corresponding transition



matrix B, of dimension dim(B) = (/c,\/ + 1)®(/CA/ + 1), as:

B =

P(0|0)

P(0|2)
P(0|3)

P(2|0) ••• P(kM-
P(2|l) ••• P{kM -
P(2|2) ••• P(kM-
P(2|3) • • • P(kM -

P{kM\O) \

P{kM\2)

V P(0\kM) P{l\k.u) P{2\k¡

( Po
Po
0
0

Pi
Pi
Po
0

P2

P-2
Pi
Po

M) ••• P{kM-l\kM) P{kM\kM) )

> fcw_i N(RkM-l) \

'*,,-i JV(P,A;A/-1)

> fcw_2 N{RkM-2)

'k^3 N(P,kM-3)

V 0 0 0

with

JV(A A:) = 1
m=0

ensuring the stochastic character of the transition matrix.
Finally, at each step in the evolution (that is, each time we process one event),

the state of the system will be described by a distribution IT over £. of dimension
dim(7r) = dim(£) = km + 1. where TÍ¿ denotes the probability for the system to
be in state e¿. At the beginning of the process, when we start the data taking
period, the buffer is empty so the system is in the state eo with probability 1 and
7r(°) = (1,0 ,0 . . . . .0) . At the end of the step n (or beginning of the step n + 1),
the status of system will be described by:

3 Characteristics of the Markov Chain.

The main features of the process can be obtained from an inspection of the
transition matrix. In this section we shall describe them briefly.

Since

we can go from any state to any other in a finite number of steps. Thus, all
the states communicate. Since the communication between states is a relation
of equivalence, all the possible states of the system belong to the same class of
equivalence and, therefore, the stationary Markov Chain is irreducible.

In general, the states which belong to the same class of equivalence are either
recurrent (if starting in state e.¿, the probability that the the system will pass



again by state e¿ is one), or transient (if the aforementioned probability is less
than one). If the Markov Chain is finite, all recurrent states are positive recurrent;
that is, starting in state e.¡, the expected time until the system returns to state
e¿ is finite. Of course, we can have also transient states in finite Markov Chains
(which belong to a separate class of equivalence) but, for finite irreducible Markov
Chains, all states are recurrent and, therefore, positive recurrent. Being the
Markov Chain irreducible and all the states positive recurrent, there is a unique
stationary distribution TT = -JTB. SO:

TTB" = (TTB) B " ^ 1 = T T B ' ^ 1 = . . . = TT

Last, B¿¿ T¿ 0 V¿ = 1, 2 . . . . k¡\¡ + 1 so, starting at state e¿, the system can
go back to a at any step of the evolution. Thus, all the states are aperiodic
(property shared by all the states which belong to the same class of equivalence).
Since all the states are positive recurrent and aperiodic, the Markov Chain is
ergodic having, among others, the following properties:

1)

/ 7TQ 1i\ • • • 7T/C,._i

7i"0

2)

with E[Nii] the mean number of steps to go back to state e¿ starting from
e¿-

Therefore, asymptotically the buffer will be in a state described by the station-
ary distribution TV whose elements represent the probability to find the buffer in
a particular state e¿. They are easily obtained solving the linear system TT — TTB.
In particular, since all the components TT¿ are proportional to TÏQ. a simple way
could be to use a recursive procedure:

7i"0 A) =' TTÏI-I — 7ToP,, ._| — 9{n — l) 2_^ Ttn-mPm

for n — 1, 2 . . . . k_M and obtain TÎQ from the normalisation condition:

7T() T 7f| + . . . + 7ÏI;XI = 1

For large buffer sizes, this becomes a lengthy task, but since IÎQ is always different
from 0, we can fix it to any value in (0,1), implement the above procedure and
scale all components to match the normalisation condition.
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Fig. 1: Discrepancy S between the distribution of the buffer and the asymptotic distribution as
function of the number of cvcnrs vv'- 'cssed for \i = XT,, = 1 and buffer sizes of 2.3,4 and 5.

4 Estimation of the fraction of events lost.

As the system evolves during the event processing, the probability distribution
which describes the buffer tends to the asymptotic distribution. In practice, after
few events are processed, the discrepancy between the actual distribution (TT™))

and the asymptotic one (TT) is very small. To quantify this difference we can use,
for instance, the Kullback-Leibler measure of discrepancy (£{p, q}) between two
probability distributions. Considering IT as an approximation to 7TnK we have
that:

6{lT.7Tn)} =
n)

¿=0

Relative differences between TT,; and n] of about 1 per mil would give values of
o{-K,-Kn^} around 10~3. The discrepancy is shown in fig. 1 as function of the
number of steps (events processed) for buffer sizes of fc,v/ = 2,3,4,5 and and a
value of /i = XTp = 1.

Usually, data taking periods are very long so a large number oí events are
processed and we can safely '•<••>• -der the asymptotic distribution to describe the



o
c
re
Q.

O
O

O

10

10

10
0.2 0.4 0.6 0.8 1.2

Fig. 2: Buffer occupancy as function of fi = XTP for a buffer of size k.M = 4.

buffer after few steps. Thus, at the step n of the evolution, we have a probability
7r¿ to find the buffer at the state e/¿; that is, with k events. The dependence of
these probabilities (buffer occupancy) with the incoming rate is illustrated in fig.
2 for a buffer of size %/ = 4 and //, = XTp — 1. As it is expected, for low incoming
rates it is more likely to find the buffer empty when we start processing an event.
On the other hand, when the rate is large (ATp>l) the buffer is full most of the
times.

Consider, for instance, that the buffer is at the state e/¿ with k>l. Then,
one of the events from the buffer is sent to be processed so. at the beginning,
the buffer moves to state e./,._i having room for k^.¡ — (k — 1) new events to be
collected while one is being processed. All events we get in excess to those are
lost since they can not be stored in the buffer. Thus, we shall lose m events if we
get UM — (fe — 1) + m events, which will happen with probability.

Poissoni^M - {k - 1) + m|/i)

Then, if at the nth step the buffer is at the state e^, the average number of events
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Fig. 3: Fraction of events lost as function of ¡i = XTP for buffer sizes of k,\i = 0.1, 2, 3 and 4.

we shall lose is:

m=0

(hu! — k -

ku-k

= M - (Aw - k + 1) +
.i=a

Clearly, for the state rjo wf1 •'•• • • that, n/-,(0) =
number of events lost for eacii [)rocessed one is:

). Therefore, the average

nL =

so, after processing Np events, we lost a fraction /fcv/ = n¿ of them with a buffer
of size k¡\[.

It is straight forward to implement the previous procedure on a computer.
However, for small buffer .sizes, compact expressions can be obtained. For in-
stance, for sizes up to A;:\/ = 4 we obtain:

/i - - 1 + Pa



P2

h = / * - ! • "
1-P,

h = ß - 1 + (l-P1)
¿-P0P2

f i _¡_ i

with P n = Poisson (^IA*)- The fraction of events lost is shown in fig. 3 as function
of the incoming rate for // = 1 buffer sizes oik M = 0.1,2.3 and 4.


