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Radial electric fields and global electrostatic
microinstabilities in tokamaks and stellarators

L. Villard,1 A. Bottino, and J. Vaclavik

Centre de Recherches en Physique des Plasmas, Association Euratom - Confederation
Suisse, Ecole Polytechnique Federale de Lausanne, PPB, CH-1015 Ecublens,

Switzerland

There is mounting theoretical and experimental evidence that radial electric fields play

a pivotal role in the dynamics of turbulence responsible for anomalous transport in toka-

maks. In this paper, the effects of these radial electric fields on various electrostatic

modes are investigated with a full radius gyrokinetic formulation that unifies the ax-

isymmetric tokamak and helical stellarator perspectives. In particular, it is shown that

the shearing rate criterion for stabilization [T.S. Hahm and K.H. Burell, Phys. Plasmas

2, 1648 (1995)] established for tokamaks can be generalized to helical configurations. In

addition, another stabilizing mechanism independent of the shearing rate has been found

for the cases of toroidal and helical Ion Temperature Gradient (ITG) modes. On the

other hand, it is shown that the inclusion of trapped particle (ion and electron) dynam-

ics can have strong consequences: in some cases the presence of radial electric fields is

destabilizing rather than stabilizing.

'•Electronic mail: laurent.villard@epfl.ch



1 Introduction

Microinstabilities such as the Ion Temperature Gradient mode (ITG), the Trapped Ion

Mode (TIM) and the Trapped Electron Mode (TEM) are underlying the turbulent pro-

cesses commonly held responsible for the anomalous transport in magnetically confined

plasmas. Various theoretical and experimental results support this affirmation. It has

also been shown that the presence of radial electric fields plays a pivotal role in the

process.1'2 These radial electric fields may arise from the turbulent process itself: these

are the so-called "zonal flows", which appear due to modulational instability of the un-

derlying linearly unstable mode. But the turbulence self-generated radial electric field

is not necessarily the only one. An inspection of the radial force balance equation,

E = —Vj x B + ^ ^ T V P J , where Vj is the fluid ion velocity, Z;e is the ion charge and Pi is

the ion pressure, hints at other possibilities for a radial electric field to develop: for ex-

ample by increasing the plasma toroidal rotation with tangential neutral beam injection

and the application of strong heating power. In other experiments an electric field in the

plasma has been directly created4'5 with the application of an electrode bias. The gen-

eral observation is that there is a correlation between improved confinement, reduction

of turbulence levels and rise of radial electric fields.

The picture that emerges is that when equilibrium gradients exceed a certain critical

value microinstabilities grow. When their amplitude gets large enough nonlinear coupling

occurs to the m = 0,n = 0 component (the zonal flows). The effect of these radial

electric fields is to saturate the turbulence to a finite level which is then responsible for

the development of an anomalous heat flux. The mechanism is understood as a shearing

of the unstable mode by the E x B flows. When the shearing rate of the E x B flow

exceeds a certain value the turbulence is supressed, thus giving rise to various types of

improved confinement regimes (H-mode, internal transport barriers, etc). It is nowadays

clear that any realistic future fusion device will have to rely on at least one of these

improved confinement regimes.

Previous works1'6 have expressed a stabilization criterion by E x B flows based on

the decorrelation time of turbulence. The criterion is often used as |U;.EX.B| > 7o> where

U>EXB is the shearing rate of the E x B flow and 70 is the maximum linear growth rate

in the absence of flows. In Ref.6 the shearing rate is given as :

where vg is the E x B drift velocity, p is the plasma minor radius. The interpretation is

rather simple: the shearing rate is equal to the shear in the poloidal angular ExB velocity,

and when this shear exceeds the growth rate without flow the mode is stabilized. However,

this expression is only valid for circular, large aspect ratio tokamak configurations and



omits the magnetic shear effect. In Ref.1 a more general expression, valid for any

axisymmetric geometry, is proposed. Neglecting parallel flows, which are not considered

in the present paper, it reads:

s(dip/ds) d2 ^
dip2 (2)

where ip is the poloidal flux, s = ^/ip, q is the safety factor, E = — V$o(V0 *s ^n e zonal

component of the electric field, Aip/\Vtp\ and J?A<̂  are the radial and toroidal correlation

lengths of turbulence, respectively. [Note that the second equality in (2) is obtained via

two assumptions: first, that the turbulent eddies tend to isotropize perpendicularly to

the magnetic field and second, that the turbulence tends to align with magnetic field

lines]. To get an insight into the meaning of Eq.(2) it is useful to write it in the circular

large aspect ratio approximation:

« . . . « £ | " (&) • (3)

This means that the shearing rate is not simply the shear in the poloidal angular E x B

velocity, but it also includes a combined effect of the magnetic shear with the value of

this velocity.

The main aim of this paper is twofold. First, to examine the effect of E x B flows

on various types of microinstabilities, and in particular the applicability of the shearing

rate criterion. Second, to extend it to stellarator configurations with helical symmetry.

The analysis is based on the gyrokinetic model with electrostatic perturbations and is

solved in full radius numerical simulations using a finite element, Particle-In-Cell (PIC)

discretization of the perturbed distribution functions with a 5f, 84> formulation.

2 Global gyrokinetic model in axisymmetric and he-
lical geometries

We consider an equilibrium magnetic configuration with the representation

B = F u + V^ x u . (4)

For an axisymmetric case, u = Vy, <p is the toroidal angle, ip is the poloidal flux and

F = F(ip) is the toroidal current flux function. For a helical configuration, u = (hrev +

ez)/(l + h2r2), (r,cp,z) are the usual cylindrical coordinates, h is the helicity and tp is

the helical flux per unit length in the z direction; all scalar equilibrium quantities are

functions of two variables: r and ( = <p — hz. We define (x',y') as (x' = r,y' = z)

for the axisymmetric case, and as (x' = rcos(,y' = rsinC) for the helical case. A



radial magnetic coordinate is defined as s = {{tp — ipo)/(^a — i'o))1^2 and a poloidal angle

9 = arctan(y'/(a;' — x'o)), where the subscripts 0 and a indicate the magnetic axis and the

plasma boundary, respectively. The safety factor q and the straight field line coordinate

X are defined as

where £ is the ignorable coordinate and L is the period length (£ = ip, L = 2n for the

axisymmetric case; £ = z, L = 2ir/h for the helical case). Note that the rotational

transform per period length is i = 1/q for axisymmetric configurations and i = 1 + 1/q

for helical configurations. The poloidal (respectively helical) flux ifi is a solution of the

Grad-Shafranov equation which for helical systems is

Id f . t2dil>\ 1 9 V fdP . ,2^dF nL. l4 \
rdr\ dr) r2 d(2 \dip dtp J

[Note that the axisymmetric Grad-Shafranov equation is obtained by formally setting

h = 0 in the above equation and replacing (, with z.\ In this paper we shall consider low

/3 equilibria. In the helical case we further assume current-free configurations for which

we have the analytical solution

h l[{lhr)cos(l() , F = bo + hco. (7)

We assume equilibrium profiles of density no(ip), temperatures Ti(ip) and Te(tp) and

potential $o (VO and study perturbations of the ion and electron distribution functions

Sf = f — fo and electrostatic potential 5<j> = (j) — $o- We consider the gyrokinetic model

with the usual ordering: u/Q, ~ k\\/k±_ ~ e6(f)/Te ~ pL/Ln ~ PL/LT ~ C(e9), where pL

is the ion Larmor radius, O is the ion cyclotron frequency, L^1 = \V\nE\,E = nQ,T.

Another small parameter is PL/LB ~ O(£B), with LB — B/\VB\. Consistent with the

gyrokinetic ordering, the perturbations of interest have k\\ « kj_. We use this property

to extract the poloidal phase variation of the mode by writing the perturbed quantities

as

«5/(x, t) = 8~f(s, 6, t)eiS, ^ ( x , t) = 5<f>{s, 9, t)eiS, (8)

with

S(s,9,z,t) =m0x(sQ,9)+n(p-u!0t, (9)

for the axisymmetric case and

S(s,6tz,t) = mox(8o,e) + kz-u0t, (10)

for the helical case. In Eqs. (9) (10) so is a reference magnetic surface usually taken

near the maximum mode amplitude position and mo is an integer chosen as close as



possible to nq(so). This technique of extracting the rapidly varying poloidal phase implies

that the transformed quantities vary much more smoothly and thus much less numerical

resolution is required for a given accuracy with virtually no upper bound for the poloidal

mode number: a gain of up to two orders of magnitude in numerical performance can be

attained.7

From Ref.8 we obtain the following linearized system of equations:

dR ( 1 _
— = U||e|| + vE {I - - e , | • V x

+ ^e | | x (w||V x (yE + U||en) x e,, + /iVB + - V v | ) , (11)

dt v±

(eN x V x (yE + v^)) , (12)

(13)

where v# = e|| x V$o/B, 0, is the cyclotron frequency, \x = v\/2B. The gyro-averaged

perturbed electric field at the gyro-center position R = x + pL is

V<5~<i>>=~ [ {Q8<t>) 6{x - R + pL)eiS{x)-iS(K)dxda , (15)
Z7T J

where Q = iV5 + V and a is the gyroangle.

While ions are fully gyrokinetic we choose to model trapped electrons using the drift-

kinetic approximation obtained setting pie — 0 in the above equations. Passing electrons

are assumed to respond adiabatically to the perturbation. The system of equations is

closed invoking the quasi-neutrality condition, 5ne = Srii. The ion polarization density

is written using a Pade approximation which has been shown to be valid for k±pL < 2.9

The quasi-neutrality equation then becomes

The above set of equations is discretized using "particles" (gyrocentre tracers)10'11 and

finite elements on a magnetic coordinate system (s, 6)J As we shall consider cases with

VE « vti the terms of order v\jv\ and VEVCL/V^ have been neglected, where v^ is the

magnetic drift velocity and vt% is the ion thermal velocity.

Besides the usual numerical convergence tests with number of tracers and mesh size

the conservation properties of the equations can be checked. For particles we have three



constants of motion: the energy e — mvj/2 + mpiB + Zie®0, the magnetic moment

\i — v\/2B and the conjugate momentum \I>o- A unified expression for \t>0 in axisymmet-

ric or helically symmetric configurations can be obtained: [noting that in axisymmetric

geometry the corresponding one-form for particle motion is invariant in the toroidal di-

rection <p, whereas in helical geometry it is invariant in the helical direction u.] Using

the magnetic representation (4) we obtain for both geometries

mi F , ,
#o = *l> + ^ - « | | -5 = const. (17)

The power balance can also be verified: the time rate of change of the field energy equals

the power transfer from the particles: dEfield/dt = —dEkin/dt or

11
3 Stabilization of toroidal ITG mode with various

profiles of E x B

We consider a circular cross-section tokamak with the following parameters: RQ = 1.19

(m), a = 0.21 (m), Bo = 1 (T), q(s) = 1.25 + 3s2, constant density, T4 = Te, and a

temperature profile given by

d\nT 1 u_2

-IT = ~TT
cosh

with the position of maximum gradient at s0 = 0.617, LT = 0.77, A T = 0.31. Ions are

hydrogen. The parameters have been chosen so that the maximum growth rate in the

absence of E x B flow is for a toroidal wave number n = 7 and the corresponding mode

is a toroidal ITG.

In order to discriminate between expressions of the shearing rate given in Eq.(l) and

in Eq.(2), respectively, the following profiles of E x B are chosen. First,

vE = Mvthio— ee, (20)
Po

where M is the specified Mach number, vthio is the ion thermal velocity at s = SQ, p is

the minor radius, po is the minor radius of the magnetic surface s = s0, . This specifies

a shear less profile of E x B flow and therefore a zero shearing rate according to Eq.(l)

but a nonzero shearing rate according to Eq.(2). Second,

^^eb, 21
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Figure 1: Growth rates of the most unstable toroidal ITG mode in a tokamak versus Mach
number of the E x B flow, for a shearless flow profile, Eq. (20), (filled symbols) and for a
zero shearing rate flow profile, Eq.(21), (open symbols). The dashed line corresponds to
a sheared flow profile with zero value at So-

where Bc is the magnetic field on axis and e^ = e|| x en . This profile is constructed from

Vjg = e|| x Vip (d$o/dip)/B with a constant profile of d$o/dip, so that the shearing rate

of this E x B flow is zero according to Eq.(2).

Simulation results in which all electrons have been assumed to respond adiabatically

are shown in Figure 1 in which the highest growth rate is plotted against the Mach

number. The shearless profile of E x B flow, Eq.(20), shown with filled symbols, leads

to a strong stabilization of the toroidal ITG mode. The Mach number required for

stabilization would be infinity if Eq.(l) is used, whereas it is \M\ = 0.016 if Eq.(2) is

used. The latter is clearly in a much better agreement with the simulation results. The

physical picture of the stabilization in this case is that, although the E x B flow is

shearless, its shearing rate is nonzero. The effect can be observed on the structure of the

perturbed potential of the mode: the radially extended structures, typical for toroidal

ITGs, are getting sheared poloidally.12

Results for the zero shearing rate profile of E x B flow, Eq.(21), are shown with open

symbols in Figure 1. The Mach number required for stabilization would be \M\ = 0.016

if Eq.(l) is used, whereas it is infinity if Eq.(2) is used. Thus none of the expressions

for the shearing rate appears to be correct. However, an inspection of the mode shown

in Figure 2 (left, with M = 0; right, with M = —0.034) shows that indeed the radially
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1.3 1.3

Figure 2: Perturbed potential for a zero shearing rate profile of E x B flow with
Mach=0(left) and Mach=-0.034(right). The position of maximum mode amplitude is
shifted away from the unfavourable grad-B region.

extended structures are not sheared by the flow. Another mechanism plays a stabilizing

role here: the position of maximum mode amplitude is shifted away from the unfavourable

VB region, from 0 » 0 for M = 0 to 6 « -TT/2 for M = -0.034.

We conclude from the above studies that Eq.(2) should be used to define the E x B

shearing rate, but that another stabilizing mechanism for toroidal ITG modes exists,

linked to the value of the E x B flow in combination with the magnetic shear, indepen-

dently of the shearing rate of the E x B flow.

Using the same parameters but considering drift-kinetic trapped electrons and adia-

batic passing electrons yields the same qualitative results for the E x B stabilization of

the toroidal ITG mode. The only marked difference is the overall higher values of growth

rates as compared to the case of full adiabatic electrons.

4 Stabilization and destabilization of TIM and TEM

Turning now to trapped particle instabilities we consider the following tokamak case:

RQ = 1.5 m, a = 0.5 m, BQ = 1 T, hydrogen ions, Tt = Te, To = 5 keV, LT/a = 0.3,

Ln/a = 3, s0 = 0.705 => po/a = 0.6. The q profile q{p/a) = 1 + 2.315(p/a)3 is such

that q(s0) = 1.5 and the magnetic shear at s = s0 is unity. For these parameters the

most unstable mode is a Trapped Ion Mode (TIM) with n — 8.13 Adding a shearless

E x B flow, Eq.(20), and considering purely adiabatic electrons, we obtain the growth

rates of the most unstable modes of Figure 3. The remarkable result is that although the

most unstable mode at Mach=0 is stabilized with small values of Mach, other modes are

8
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Figure 3: Growth rates of the most unstable Trapped Ion Mode in a tokamak versus Mach
number of the E x B flow, for a shearless flow profile, Eq. (20), and assuming adiabatic
electrons.

destabilized even to higher growth rates than without E x B flow. The time evolution

approach adopted in this paper allows us to find the most unstable mode only. With a

spectral approach it was shown in Ref.13 that indeed there are several unstable modes

at Mach=0. As an E x B flow is added some modes are stabilized but some others are

destabilized and thus complete stabilization is not reached, unlike the toroidal ITG case

shown in the previous section.

Considering now drift-kinetic trapped electrons and passing adiabatic electrons we

obtain the growth rates and frequencies of Figure 4. As noted in the previous case the

inclusion of the trapped electron response brings an overall destabilization as compared

to the purely adiabatic electron response case. The remarkable feature is the strong

destabilization of a Trapped Electron Mode (TEM) for M < —0.01: the change in the

frequency sign is clearly visible. Note that negative Mach numbers correspond to negative

radial electric fields. We have verified that the TEM destabilization is not due to a direct

effect of the ExB flow on the electron trajectories: virtually the same results are obtained

when including or neglecting the VE term in the equation of motion of electrons. So the

destabilization mechanism is more subtle. With trapped electrons and positive Er the

same qualitative results are obtained as with adiabatic electrons, i.e. other TIMs are

destabilized; the inclusion of trapped electron dynamics is in this case quantitative: all

growth rates are higher as compared to the full adiabatic electron case. With trapped

electrons and negative Er one TIM is stabilized but a TEM is destabilized to even higher

9
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Figure 4: Growth rates (top) and frequencies (bottom) of the most unstable mode in a
tokamak versus Mach number of the E x B flow, for a shearless flow profile, Eq. (20),
and assuming drift-kinetic trapped electrons. Positive frequency means a phase velocity
in the electron diamagnetic direction and therefore a Trapped Electron Mode.

growth rates than the case without flow.

The general conclusion of these investigations is that there are cases for which radial

electric fields can be overall destabilizing rather than stabilizing, in particular when

trapped particle dynamics is taken into account.

5 Stabilization of ITG modes in a helical stellarator

We consider a helically symmetric configuration given by Eq.(7) with the parameters

h = 2.905 (m-1) , b0 = 1 (T), c0 = 0.11 (Tm), bx = 0.5 (Tm), b2 = -0.06 (Tra).

This results in a bean shaped plasma cross-section with a helical magnetic axis of radius

x'o = 0.26 (m), an average minor radius < a > = 0.21 (m) and an elongation of 2.02.

The configuration is shown in Figures 5 and 6. The most characteristic feature of this

equilibrium is the virtual absence of magnetic shear, with q = —1.507, hence a rotational

transform per 2Tr/h longitudinal length of i = 0.3365, constant up to 10~3 across the

plasma. The other property of this heliac configuration is that it does have magnetic

10



Figure 5: Outer magnetic surface of the heliac configuration.

0.1 0.2 0.3 0.4

Figure 6: Cross-section of the heliac showing magnetic surfaces (continuous lines) and
mod-B contours (dashed lines).

field gradients comparable in magnitude to those in a tokamak of aspect ratio 5 - albeit

with a different symmetry of course. The temperature and density profiles are the same

as for the tokamak results for the toroidal-ITG studies presented in the previous section.

11
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Figure 7: Growth rate (top) and frequency (bottom) of the most unstable mode in a
heliac configuration vs longitudinal mode number. The vertical dotted lines correspond
to resonant wavenumbers (k\\ = 0). Labels 'S' and 'H' mark slab-like and helical-ITG
modes, respectively.

Before we analyze the effects of E x B flows we first show in Figure 7 the growth rates

and frequencies of the most unstable mode as a function of the longitudinal wavenumber

k. The spectrum exhibits an alternance of stable windows near resonant wavenumbers

12



(k\\ — 0, vertical dotted lines), slab-like ITG modes (noted 'S') and helical-ITG modes

(noted 'H'), in a pattern which repeats itself. Note the jumps in frequency at the S-H

transitions, indicating that the 'S' and 'H' ITGs are different modes. For 'S' modes,

the frequency is roughly proportional to |&||m| = \hmfq + k\. The poloidal Fourier

decomposition of the perturbed potential shows a single dominant mode number m. The

'S' modes are characterized by a destabilizing parallel dynamics and this is reflected in

the parallel contribution to the wave-particle power exchange (f j\\E\\dx > 0). As |fc|||

increases, ion Landau damping increases and this is the responsible mechanism for the

levelling off of the growth rate of'S' modes. For 'H' modes, however, the poloidal Fourier

decomposition of the perturbed potential shows a mixture of neighbouring m values with

approximately equal amplitude: the mode tends then to have its largest amplitude in

the most unfavourable VB drift region, and the parallel wavenumber is approximately

equal to h/{qJl + 1I2X'Q) independently of k. The 'H' modes are characterized by a

stabilizing parallel dynamics (f j\\E\\dx < 0) and a destabilizing perpendicular dynamics

(/j_i_ • Exdx > 0). We remark a decrease of the frequency of the 'H' modes with k:

this is due to a global effect: the amplitude of the perturbed potential moves radially

outward where the temperature is lower. As for the stable windows, it has been shown

in14 that they are due to an effect of the VB drifts which, in heliac configurations,

are stabilizing modes with small k\\. This unique property might be responsible for the

resonant behaviour of transport with rational values of the rotational transform in such

shearless systems.

Adding Ex B flows to the system we show in Figure 8 their effect on the growth rate

of a slab-like mode and in Figure 9 on a helical-ITG mode. Two different profiles of flow

are considered: a zero shearing rate profile with d$o/dip = const (open symbols) and a

linear profile of d$o/dip with zero value at s = So (dashed line). For 'S' modes in Figure 8

the shearing rate criterion, using Eq.(2) for the linear profile would give stabilization at

\M\ « 0.027. For 'H' modes in Figure 9 it would give \M\ « 0.03. We observe that

for both cases the global simulation results agree well with the stabilization criterion.

An investigation of the perturbed potential (Figures 10-12) shows that the effect of the

profile of flow with nonzero shearing rate is to twist the radially extended structures.

For M = 0.01 these structures are aligned at 6 = 0 (Figure 11) and the growth rate is

maximal. For higher Mach numbers (Figure 12) the structures are misaligned and the

growth rate decreases.

For the zero shearing rate profile the criterion would give no stabilization. Indeed,

for slab-like modes our results show virtually no effect (Figure 8, open symbols). On

the other hand, there is a stabilization of the helical-ITG (Figure 9, open symbols). The

mechanism works similarly to the toroidal-ITG case in tokamaks, namely the finite value

13



0.04 0.06

Figure 8: Growth rates of slab-like ITG modes vs Mach number in a 2D heliac for a
constant profile of d$o/dtp giving a zero shearing rate E x B flow (open symbols) and a
linear profile ofd®o/dip giving a nonzero shearing rate E x B flow (dashed line).
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Figure 9: Growth rates of helical-ITG modes vs Mach number in a 2D heliac for a
constant profile of d^o/dip giving a zero shearing rate E x B flow (open symbols) and a
linear profile of d$o/dip giving a nonzero shearing rate E x B flow (dashed line).

of VE pushes the position of maximum mode amplitude in the poloidal direction towards

more favourable VB drift regions.
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Figure 10: Pertubed potential contours for a helical ITG mode without E x B flow.

> 0.2 0.25 0.3 0.35
x[m]

Figure 11: Pertubed potential contours for a helical ITG mode with E x B flow defined
with a linear profile of d^o/dij) with zero value at s = s$, Mach—0.01.

The general conclusion of these studies is that the shearing rate criterion applicability

can be extended to helical systems. Zero shearing rate profiles of flow can stabilize helical-

15
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Figure 12: Pertubed potential contours for a helical ITG mode with E x B flow defined
with a linear profile of d$o/difi with zero value at s = SQ, Mach—0.05.

ITG modes in a similar way as the toroidal-ITG mode in tokamaks. However, they

have virtually no stabilizing effect on slab-like modes; this might prove of importance

since in helical systems the presence of slab-like modes is much more prominent than in

axisymmetric toroidal systems.

6 Conclusions

The crucial role of E x B flows on microinstabilities has been evidenced in tokamak and

stellarator configurations within the frame of the gyrokinetic model and using full radius

5f, 8<p simulations.

• Three classes of ITG modes (toroidal, helical and slab-like) and two classes of

trapped particle modes (TIM and TEM) have been investigated, on which E x B

flows have different effects.

• E x B flows with zero shearing rate stabilize toroidal and helical ITG modes by

shifting the position of maximum mode amplitude away from the unfavourable

grad-B drift region.

• E x B flows with nonzero shearing rate stabilize toroidal, helical and slab-like ITG

modes. In these cases the criterion |WEXB| > 7o is verified, except for a slight

16



asymmetry in the sign of radial electric field.

• The shearing rate is not the shear in the poloidal angular velocity of the E x B

flow but can be written in a unified form for arbitrary axisymmetric and helically

symmetric configurations as OJEXB = 1 ^ p ^ o M where ip is the poloidal flux,

respectively helical flux. In the circular, large aspect ratio axisymmetric case it is

WEXB ~ ^jfiq-) where p is the minor radius. Thus magnetic shear combined with

a finite value of E x B contributes to the shearing rate.

• The effect of E x B flows on TIMs is more complex: as one TIM is stabilized, other

modes show up with increasing flow and the overall effect can even be destabilizing.

• When trapped electron dynamics is taken into account the E x B flows can desta-

bilize TEMs. An asymmetry in the sign of radial electric field was found. TEMs

are destabilized for negative radial electric fields, whereas TIMs are destabilized for

positive radial electric fields.

Finally, although the present work suggests some similarities between the axisymmetric

tokamak and the helical stellarator as far as the effects of E x B flows are concerned,

it is still premature to conclude that anomalous transport in stellarators is predicted to

be similar to that in tokamaks. One difference is that optimized advanced stellarators,

such as W-7X15 or HSX16 have much less toroidal curvature and also much less particle

trapping. Therefore there is a basic difference: in tokamaks the most unstable modes

are interchange-like toroidal-ITG modes, or TIMs or TEMs, whereas in W-7X or HSX

stellarators the most unstable modes have more a slab-like character.17'18 For shearless

helical systems such as presented in this paper we have found a remarkable resonant

behaviour of microinstabilities with rational values of the rotational transform. We have

also found that slab-like ITG modes, which are much more prominent in helical systems

than in axisymmetric systems, do not react in the same way to the presence o f B x B

flows. Only full radius nonlinear gyrokinetic simulations in the appropriate geometries

will tell whether this has consequences on the level of turbulence-driven anomalous heat

flux.
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