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摘  要

研究了反磁剪切位形托卡马克中旋转等离子体阿尔芬波电流驱

动，采用单流体 MHD 模型，考虑磁剪切修正和等离子体旋转修正，

在等离子体圆柱模型下，导出阿尔芬波驱动电流密度的表达式，并

给出扰动场满足的波方程近似解。仅对极向模数 m = 0 的情况，分

别讨论了压缩阿尔芬波、剪切阿尔芬波和圆偏振波电流驱动。结果

表明：不考虑磁剪切时，剪切阿尔芬波和圆偏振波电流驱动效率与

旋转等离子体密度无关；负磁剪切和正剪切对阿尔芬波电流驱动的

作用相反，负磁剪切效应使驱动电流密度提高；旋转效应可以提高

阿尔芬波电流驱动效率。结果证明阿尔芬波有利于高约束先进托卡

马克等离子体电流驱动。
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ABSTRACT

    The current drive due to Alfven wave in tokamak reversed shear plasmas is

studied. In cylindrical geometry, an expression for driving current density Jz is given

by means of the single-fluid magnetohydrodynamic (MHD) model taking plasma

rotation and magnetic shear into account. The current drive due to the compressional

Alfven wave and the shear Alfven wave is considered, respectively. It is found that

the efficiency of the Alfven wave current drive without the magnetic shear is

independent of rotating plasma density. Moreover, it is shown that a higher

efficiency can be obtained in the presence of rotation. For the shear Alfven wave,

the magnetic shear has a more distinct effect on the current drive than one for the

compressional Alfven wave. The effect of the negative magnetic shear on the Alfven

wave current drive is opposite to the effect of the positive, and the negative shear

enhances the driven current density Jz. These results show that the Alfven waves

may be an excellent current drive candidate for tokamak fusion reactors.
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    INTRODUCTION

At the beginning of the eighties, one began to experimentally study the lower
frequency current drive, a large amount of the experimental current drive is efficient,
and the effect of trapped electrons is not so serious as one thinks. Up to the late
eighties Ohkawa[1] and others[2～4] pointed out that the efficiency IR/P (I and P are
plasma current and absorbed power, respectively, while R is the major radius) of the
current drive produced by Alfven wave helicity injection is independent of plasma
density. They also pointed out the Alfven wave current drive is more efficient than
the other conventional methods of radio frequency current drive, where the
efficiency degrades with increasing plasma density. Afterwards, Chan et al.[5] carried
out a detailed analysis of current drive within the framework of single-fluid and two-
fluid MHD model. They showed that for ω<< Ωi (Ωi is the ion cyclotron frequency)
circularly polarized waves can drive current far exceeding the current resulting from
linearly polarized. Further, the efficiency can be independent of plasma density. The
above stated author's results[1～5] motivates us to study the Alfven wave current drive
in advanced high confinement tokamak plasma.

An advanced tokamak means that it operates under the circumstances of high
confinement, high normalized beta (βN=β/(I/aB)) and a large bootstrap current
fraction. For future tokamak fusion reactors it is very significant and important to
improve the plasma confinement, make βN-value high, increase the fusion products
and decrease the scale and cost of the reactor. The safety factor q, one of the
important plasma parameters, has directly and accurately been measured in TFTR[6],
DIII-D[7] and JT-60U[8], and new reversed shear configurations were formed in
experiments. The reversed shear configuration, which has negative magnetic shear
in the inner region and positive magnetic shear in the outer region, has been
proposed as an advanced tokamak operation[9]. Confinement improvement and
formation of internal transport barrier in the negative shear region were observed.
On the other hand, the other factor making confinement improve, which is present in
all present-day tokamaks, is plasma rotation. It has shown that, in almost all the high
confinement regimes of tokamak, e.g., H (high confinement) mode, CH (core high
confinement) mode and recently observed enhanced reversed shear (ERS)
mode[6, 7, 10～12], plasma rotation is invariably present that is mainly responsible for the
suppression of turbulence and associated anomalous losses. The plasma rotation may
play an important role in creating or maintaining a thermal transport barrier[13, 14].
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However, not only an H-mode edge transport barrier but also the internal transport
barrier, formed in the negative magnetic region leads to good confinement, which is
favorable for future tokamak reactor. Therefore, we think of advanced high
confinement tokamak plasma as being a tokamak rotating plasma in a reversed shear
configuration. After the internal transport barrier has been observed in JT-60U
reversed magnetic shear lower current discharges, a dramatic improvement in
confinement and performance of tokamak plasma within the reversed shear
configuration has been proposed in JT-60U. Under sustaining the MHD stability,
enhanced plasma current by using radio frequency current drive is expected in order
to gain a good fusion performance. Recently, Avinash[15] for the first time studied
current drive due to plane polarized compressional Alfven wave in rotating plasma.
His results show that current drive efficiency that is as good as that due to circularly
polarized waves can be obtained, with a bulk current drive. He showed that the
plane-polarized wave could not drive plasma current in the absence of rotation. In
summary, Ohkawa et al.[1], Chan et al.[5], and Avinash[15] had pioneered the studies of
Alfven wave current drive (AWCD) in plasmas.

Of late years, both the experiments and the theories have shown that the
synergistic effects of the reversed (negative in core region) magnetic shear and the
rotation can remarkably enhance the core confinement of tokamak plasma.
Therefore, it is natural that we call the tokamak plasma with rotation and reversed
magnetic shear a high confinement advanced tokamak plasma. We think studying
the AWCD in this system to be significant to further enhancing the performance of
high confinement advanced tokamaks. In the present paper, we examine the effects
of the magnetic shear and rotation on the AWCD in cylindrical geometry.

1  MODEL

1. 1  Basic equations
Our study is based on the single-fluid MHD model. A single-fluid equation of

motion is given by

FBjV ++⋅∇−×=∇+ )(1
d
d ie

i ππ
tt

c
p

t
nm                 (1)

and Ohm's law is

 111)1( e
e 
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enencc
BjBVEj            (2)

Where n, V, j, B, and E are plasma density, velocity, current density, magnetic field
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and electric field, respectively. p and σ are plasma pressure and conductivity,
respectively. The second term on the right-hand side of Eq.(1), )( ie ππ

tt
+⋅∇ , is

defined as the viscosity force. F is related to electric-field force and other force
except for Lorentz one.

We consider current drive due to low-frequency waves—Alfven waves, ω<<Ωi.
In this paper the viscosity force related to plasma fluid expansion and deformation is
expressed in terms of ν∇2V, where ν is kinematic viscosity. In an advanced high
confinement tokamak plasma, plasma rotation in the poloidal and/or toroidal
direction is present owing to high-power neutral beam injection, biased electrode,
radio frequency wave, and so on. Because in all non-inductive current drive
experiments the plasma current is driven surely in the toroidal direction, we only
consider the poloidal rotation that has a constant angular frequency ΩΩΩΩ (i.e., Ω is
independent of the minor radius of plasma) as a first approximation. Therefore, for
the rotating plasma Eq. (1) can be written as following form with the viscosity force
and Coriolis force produced by the poloidal rotation

p
ct

∇−∇+×=×+ VBjVV 212
d
d ρνρρ ΩΩΩΩ                 (3)

Where ρ = nmi. In this paper, we can neglect the second, third and fourth terms on
the right-hand side of Eq. (2) because of well-known reason[15]. Then, Eq. (2) is
simplified as

BVEj ×+=
c
1η                            (4)

Where η =1/σ, the plasma resistivity. Eqs. (3) and (4) are the basic equations used to
study the current drive due to Alfven waves in an advanced high confinement
tokamak plasma.
1. 2  An expression for Jz in cylindrical geometry

The expression of driven current density due to Alfven waves, Jz, is obtained by
linearizing the Eqs. (3) and (4), and assuming that the variation of all linear
perturbation quantities with time is of the form exp(-iωt). We have assumed that the
plasma rotation, Ω , is a first approximation, the plasma fluid velocity is only the
perturbation quantity. The equilibrium magnetic field B0 is non-uniform. For the
sake of simplicity, the perturbation of plasma density and temperature are neglected
in this paper. The linearized version of Eq. (3) is

VBjBjVV δ∇+×δ+δ×=δ×+δ− 2
00

112i ρνρρω
cc

ΩΩΩΩ            (5)

Assuming that the last term with kinematic viscosity ν is proportional to (-ρνk2δV)
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and letting νωω 2ik+= , Eq. (5) became

00
112i BjBjVV ×δ+δ×=δ×+δ−
cc

ΩΩΩΩρωρ                  (6)

Through cross- and dot-product Eq. (6) by ΩΩΩΩ, we can get a relation of the
perturbation velocity δV and the perturbation current δj and magnetic field δB

[ ]

] [ ]
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    (7)

Substituting Eq. (5) into the Ohm's law, Eq. (4), and linearizing it, we have






 δ×δ+=δ+ )( )(1Re

2
1),(  0

(2)
0 rBrVErjj *

c
tηη              (8)

Where δB* is the conjugate plural. Obviously, the equilibrium electric field E0

produces the equilibrium current j0, while the second-order current (2)jδ  is driven by
the second term on the right-hand side of Eq. (8),






 δ×δ=δ )( )(1Re

2
1 (2) rBrVj *

c
η                     (9)

In this paper, we employ a cylindrical geometry with orthogonal unit vectors er , eθ

and ez . The equilibrium magnetic field is given by
( )θδ eeB z )(00 rB +=                         (10)

Where B0=constant, qRr /=δ , and q(r) is the safety factor. In this coordinate
system, the z-component of Eq. (9) becomes


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According to Eq. (7) in the cylindrical geometry, we have
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Letting the driven current density Jz ≡ )2(
zj  and substituting Eqs. (12) and (13) into Eq.

(11), we have
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Where )4( i
2
0

2
A nmBV π=  is the Alfven velocity, and
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For the magnetic field configuration shown as Eq. (10), from Maxwell field equation,
the equilibrium current density j0 is given by

j0r= j0θ=0                          (16.1)

r
rcB

j z
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4

0
0
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=                        (16.2)

Where )ˆ(2)
d
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d')( s
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q
r

Rq
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r
r −=−=≡ δδδ , which is related to the magnetic

shear that is defined as 
r
q

q
rs

d
d

ˆ = . In a tokamak plasma with reversed magnetic shear,

we notice that q has a maximum near the magnetic axis and a minimum at a certain
magnetic surface. We can see that ŝ <0 appears in the region with the negative
magnetic shear and ŝ >0 in the positive shear region. Therefore, Eq. (14) becomes
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     (17)

where zjjj δ−δ=δ δθθ
~ . If the effects of the rotation and the magnetic shear are not

considered, Eq. (17) reduces to


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which is the same as the expression given by Chan et al[5]. If the rotation effect is
considered and the magnetic shear effect does not, from Eq. (17) we can obtain


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This equation is the same as Eq .(5) in Ref.15. If we only consider the effect of
magnetic shear on the Alfven wave current drive, from Eq. (17) we have the
following expression of driven current density
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We conclude that the effect of the negative magnetic shear on the Alfven wave
current drive is opposite to the effect of the positive magnetic shear on it. For
compressional Alfven wave and shear Alfven wave, the driven current density with
the negative magnetic shear ( ŝ <0) is larger than that with the positive shear ( ŝ >0).
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1. 3  The wave equations
For the sake of simplicity, we only consider an approximate case: we assume

that both the rotation factor ωΩ2  and the shear factorδ are the first-order
corrections and neglect the effects of these two factors on the perturbation quantities
δj and δB in Eq. (17). Then, we have

)(
i 0

θθωρ
eeV rr jj

c
B

δ−δ=δ                      (21)

and

 )(
i1
2

2
0

0 θθωρ
eeBV jj

c
B

c rr δ+δ−=×δ                  (22)

According to Ohm's law and Maxwell equations, the wave equation for δB is
obtained

0)
 

(
 

)(
4

i)( 2
2

2
2

2
A

2

2
A

=
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eBBB ωω
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We express the ez-component of Eq. (23) as

zz B
V
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B δ





π

−−=δ∇
−1

2
A

2

2
A

2 )(
4

i1)( ωω
ω
ηωω                (24)

Assuming an zkm ziie +θ  dependence, the component δBz satisfy Bessel's equation and
is given by

zkm
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zrlbzrB ii
c e)(J),,( +=δ θθ                    (25)
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                  (26)

Where bc is a constant.
The r component of Eq. (23) is as follows
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And using Eq. (25), we obtain
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z
z
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zrb B
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kBr
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2
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θ              (30)

The perturbation magnetic field δB obeys
0=δ⋅∇ B                           (31)

If we define

z
z

z
r B
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k

m
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m
xx δ−δ=

d
diii)(ψ                     (32)

Where x=lbr. Eq. (30) is just as the Bessel's equation for ψ(x), so
)(J)( s xbx m=ψ                          (33)

Where bs is a constant. It is evident from Eqs. (25), (32) and (33) that
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
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From Eqs. (25), (34) and (31), we easily obtain the poloidal component of δB.
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Finally, we can use Faraday's law and Ohm's law to solve the corresponding electric
fields, yielding
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4
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


π
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                   (38)

There are a number of ways to characterize each branch of Alfven wave. The shear
Alfven wave is incompressible, so it has δBz=0 and 0≠δ⋅∇ E , while the
compressional wave has δEz=0 and 0=δ⋅∇ E . Therefore, 0s ≠b  represents the
sheared Alfven wave and 0c ≠b  does the compressional branch.

2  ALFVEN WAVE DRIVEN CURRENT AND EFFICIENCY

 In the cylindrical geometry, the total driven current can be evaluated by
rrJI

a

z d2
 

0 ∫π=                          (39)

Where a is the minor radius of the tokamak plasma.
    From Eq. (4) and neglecting the effects of the plasma rotation and the magnetic
shear on the first-order perturbation current density, we can obtain the relation
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between linear perturbation quantities

rr E

c
V

j δ
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Substituting Eqs. (40)～(42) into Eq. (17), we can obtain an expression of the
driven current density
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In the following, we only retain the terms up to the first-order of ωΩ2  or δ  in
Eqs. (17) and (43).
    In our system, the total power absorption is given by

{ }rrEjEjEjRVP zzr

a

r d)(Re4dRe *** 

0 

2 δδ+δδ+δδπ=δ⋅δ= ∫∫ θθ
*Ej        (44)

Then, the current drive efficiency is defined as

P
IR=η                            (45)

Now we can analyze in more detail the current drive due to the comperssional
Alfven mode, the shear Alfven mode, and mixing modes in tokamak rotating plasma
with magnetic shear, respectively.
    In this paper, we only consider m=0 in order to compare the Avinash’s[15] and
Chan et al.’s[5] results. We discuss three simple cases. Firstly, we consider a plane
polarized comperssinal mode given by δEz=0, propagating in the r-z plane. From the
solution of wave equations, Eqs. (25) and (34)～(38), we have
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z
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l
k

B i
0c e)(J

i '=δ                     (46.1)

 0=δ θB                           (46.2)
zk

zz
zrlbB i

0c e)(J=δ                       (46.3)
And

0=δ=δ zr EE                         (47.1)
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zk
z

z

zrlb
cl

E i
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θ −=δ                     (47.2)

For this mode, δjr=δjz=0, and
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l
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lcj i
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π4

'






+−=δ θ                  (48)

According to Eqs. (17), (39) and (44), the current driven by the plane polarized
compressional wave can be obtained
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And the absorbed power can be obtained
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In some reasonable approximations, the efficiency η  is given by
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This equation is dependent on the plasma density. It is clear that, in the cylindrical
geometry, the plane polarized compressional wave can drive current in tokamak
rotating plasmas with magnetic shear. If the magnetic shear is omitted in Eq. (51),
the efficiency is independent of the plasma density, which agrees with Avinash’s
result[15]. The effect of the magnetic shear makes the efficiency inversely
proportional to the density. However, the efficiency with the negative magnetic
shear is higher than that with the positive shear. Secondly, we consider a shear
Alfven branch, bc =0. For this case, we have δBr=δBz=0, and zk zrlbB i

b0s e)('J=δ θ
;

zkz
r

zrlb
c
Vk

E i
b0s

2
A e)('J

ω
=δ                     (52.1)

0=δ θE                           (52.2)
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z
zrlblcE i

b0sb e)(J
4π
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η

                   (52.3)

and
zk
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zrlbkcj i

b0s e)('J
4
i
π

−=δ                    (53.1)

0=δ θj                           (53.2)



12
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zrlblcj i
b0sb e)(J

4π
=δ                     (53.3)

The driven current due to the shear Alfven wave is obtained
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The absorbed power is
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then, the current drive efficiency is
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When 1)( 2
A

22 ≈Vk zω , i.e. it is close to the Alfven resonance, in some reasonable
approximations we have


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


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−+≈ )ˆ2(141
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s
RqkkcB zz ω

Ω
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η                   (57)

We find that the driven current efficiency due to the shear Alfven wave is not only
independent of the plasma density but also independent of the kinematic viscosity,
which is distinct from the compressional Alfven wave. However, it is the same as
the compressional Alfven wave that the effect of the negative magnetic shear on the
driven current is more efficient than the effect of the positive. Thirdly, we consider
the drive current due to circularly polarized wave which requires mode mixing,

δBr=iδBθ  , thus )(J)(J ''
0cb0s rl

l
k

brlb z
z

z= . According to Eqs. (25) and (34)～(38), for

the circularly polarized wave we have
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For this wave, the first-order perturbation current is given by
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Substituting Eqs. (58) and (60) into Eq. (17) and only retaining the terms up to the
first-order of ωΩ2  or δ , we have
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When 1)( 2
A

22 ≈Vk zω , we can obtain an approximate formula for the current drive
efficiency due to the circularly polarized wave
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It is thus clear that even if there are no rotation and shear, the circularly polarized
wave can drive current, which is in agreement with Chan et al.'s result (see Eq. (54)
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in Ref. [5]). In the present paper, we find that the efficiency of the driven current by
the circularly polarized wave is independent of the plasma density even though the
effects of the rotation and magnetic shear are taken into account. The effects of the
rotation and the negative magnetic shear make the efficiency higher.

3  CONCLUSIONS

    In this paper, we have studied the driven current of the Alfven waves in
tokamak rotating plasma with magnetic shear. In cylindrical geometry, an
expression of the driven current is obtained by means of single-fluid MHD model
taking the plasma rotating and the magnetic shear into account. For the poloidal
mode number m= 0 we have considered current drive due to the plane polarized
compressional Alfven wave, the shear Alfven wave and the circularly polarized
wave. If neglecting both the rotation and shear, our result reduces to the
corresponding result in Ref. [5]. When only the magnetic shear is not taken into
account, the present result reduces to the corresponding result in Ref. [15]. In the
presence of the magnetic shear, the efficiency of the current drive due to the plane
polarized compressional Alfven mode is dependent on the plasma density, but the
driven efficiency due to the shear and the circularly polarized Alfven waves is
independent of the density.

Our analysis shows that the negative magnetic shear is favorable to the
efficiency of the driven current by the shear Alfven wave. The plasma rotating is
always a good effect on the current drive efficiency with or without the magnetic
shear. Consequently, the Alfven wave current drive may be an excellent candidate of
current drive for high confinement advanced tokamaks.
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