CNIC-01545 CAEP-0076

锥筒聚焦提高"闪光-1"辐射强度研究 RESEARCH ON ENHANCING THE RADIATION INTENSITY AT THE FLASH-1 (In Chinese)

中国核情报中心 China Nuclear Information Centre

CNIC-01545 CAEP-0076

锥筒聚焦提高"闪光-1"辐射强度研究

曹文彬 焦 妤 程海春

(中国工程物理研究院流体物理研究所,四川绵阳,621900)

摘 要

讨论了强流相对论电子束(IREB)的气体金属锥筒聚焦机制和主要影响因素。应用锥筒聚焦原理,在"闪光-1"常规辐照方式运行下,附加"大气压浅锥筒"聚焦装置,使平均直径约 16 cm、宽约 3 cm 的粗环形束被压缩为直径约 9 cm 的近似实心束,经辐射转换靶后,窗口中心点照射量率从 3.87×10⁷ C/(kg·s) (1.5×10¹¹ R/s)提高到 1.29×10⁸ C/(kg·s) (5×10¹¹ R/s)。为加固元器件的考核验收、核探测器标定提供了高剂量率辐射模拟环境。

Research on Enhancing the Radiation Intensity at the Flash-1

(In Chinese)

CAO Wenbin JIAO Yu CHENG Haichun (Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900)

ABSTRACT

Focus mechanism and influential factors on the cone cylinder focusing of IREB are discussed. In conventional radiant operation of the Flash-1, "atmospheric shallow cone cylinder" focus set is used, coarse annular beam of average diameter 16 cm and width 3 cm is compressed to approximately solid beam of diameter 9 cm. Through radiant target, the irradiation rate on the window center has increased from 3.87×10^7 C/(kg·s) (1.5×10^{11} R/s) to 1.29×10^8 C/(kg·s) (5×10^{11} R/s). Radiant simulation environment of the high dose rate is provided to examine hardened components and to demarcate nuclear probes.

引 言

"闪光-1"强流脉冲电子束加速器在抗辐射加固技术研究中发挥了很大作用。抗辐射 加固技术的发展,要求提高"闪光-1"的辐射强度。

在不投资建造更大型的机器或较大规模改造"闪光-1"的情况下,近期可以通过一定的技术途径,适当压缩电子束打靶的面积,提高打靶的电流密度,达到提高二极管窗口近区较小辐照空间内剂量率的目

的。

强流相对论电子束(IREB)注入到 中性气体填充的金属锥筒,在一定 条件下,电子束可以被聚焦压缩地 传输。这是提高"闪光-1"辐射强度 的技术途径之一,其原理如图 1 所 示。

本课题在分析锥筒聚焦机制和 影响因素的基础上,结合"闪光-1"

图1 锥筒聚焦原理示意图

电子束特性,设计了相应的锥筒聚焦装置,进行了实验研究。在"闪光-1"充电 70 kV 常规辐照方式运行时,附加"大气压浅锥筒",使二极管窗口中心点照射量率提高到原来的三倍。为加固元器件的考核、验收提供了高剂量率辐射模拟源。

1 锥筒聚焦的物理机制

锥筒聚焦是 IREB 注入中性气体的传输物理学问题^[1]。关于 IREB 注入低压气体金属 锥筒的聚焦现象, C. L. Olson 曾提出轴向相关击穿的物理模型^[2, 3]。肖学政等也曾进行过 数值模拟方法的研究^[4]。

为了便于说明聚焦机制,假设有一束图 2 所示的电子束注入图 3 所示气体填充的金属锥筒。当注入束电流脉冲上升时间 t_r 、峰值电流 I_o 、峰值电流持续时间 $t_r \sim t_p$ 、电流脉冲持续时间 t_b 、束半径 r_b 、锥筒入口半径 r_b (假设束半径等于锥筒入口半径)、出口半径 r_L 、锥长 L、锥角 θ 和气体种类、气压等参数配合恰当时,注入束将引起锥筒中本底气体的具有强烈时间特征的电离。使在束电流上升阶段初期的某个时刻 T_N 达到束电荷中性化,并迅速发展为电子雪崩,等离子体电导率 σ 在 T_N 之后的某个时刻 τ 时急剧增大,导致锥筒轴向击穿,产生与入射电流方向相反的等离子体电流; 锥筒内净电流被"冻结"在 τ 时刻的束电流 $I_b(\tau)$ 上; 因而角向磁场也被"冻结"在 τ 时刻。注入束在角向磁场引起的洛仑兹力作用下,在整个锥筒空间和束的持续时间内获得了足够强的聚焦传输。图 2 中, τ_0 为对应锥筒入口(Z=0)处的电导率接通时间,图 3 中 $r_c(Z)$ 为锥筒 Z 处的半径。

显然,聚焦作用的建立发生在锥筒击穿时刻 τ 之后、电流脉冲达到峰值之前的 $\tau < t < t_r$ 阶段内。注入束、锥筒和本底气体参数的配合,应使锥筒入口处(Z=0)的击穿时刻 τ_0 不能太晚,否则,注入束"刚性"撞击到锥筒壁上,束流损失大; τ_0 也不能太早,否则,束流尚未上升到足够大,聚焦作用太弱。对应于 $t \ge t_r$ 的过长的锥筒是无效的。锥中聚焦作

用一旦建立,随着时间的推移,束流增长,沿 Z 轴聚焦增强。但是,在达到 t_r之前,锥 中净电流必须小于阿尔芬限制电流。否则,将限制束流的继续传输。当采用稠密气体锥 筒,例如大气压锥筒时,必须考虑电子束能量损失和束-等离子体不稳定性加剧。因此, 在可以获得一定的聚焦压缩比时,锥长 L 愈短愈好。

图 3 电子束注入中性气体填充的金属锥筒

此外,对于 Marx 发生器-脉冲形成线-二极管型的电子束加速器,在二极管主脉冲电压到来之前,存在较大的预脉冲电压。如果有较大的预脉冲电子束注入锥筒,将引起锥内预电离,破坏锥筒对主脉冲电子束的聚焦。因此,需要采取抑制预脉冲电压和减弱预脉冲电子束注入锥筒的措施。

2 "闪光-1" 锥筒聚焦装置的设计

2.1 "闪光-1" 辐照方式运行的电子束

"闪光-1"常规辐照运行于 Marx 发生器充电±70 kV, 二极管采用直径 ϕ 165 mm 半球 不锈钢阴极头, 平板阳极, 阴-阳极间距 18 cm。传输线电压 $V_B(t)$ 、二极管电流 $I_D(t)$ 波形 如图 4(a), (b)所示。传输线峰值电压约 6 MV, 扣除二极管电感压降后, 二极管峰值电压 约 5.6 MV; 二极管峰值电流约 75~80 kA, 前沿上升时间 35~40 ns, 无显著的峰值稳定 时间, 脉冲持续时间约 120 ns。达到阳极靶平面的时间积分的电子束截面形状如图 5(a)所 示, 主束斑呈粗环形, 环外径约 19 cm, 内径约 13 cm。二极管窗口中心点照射量率为 3.87×10⁷C / (kg·s) (1.5×10¹¹ R/s)。

(a) 传输线电压 V₈(t) 波形:时标 100 MHz, 峰值电压 6.0 MV (b) 二极管电流 I_D(t) 波形:时标 100 MHz, 峰值电流 78 kA

图 4 传输线电压波形图

(a) 到达阳极靶平面的时间积分的电子束截面形状(b) 锥筒出口端靶平面的时间积分的电子束截面形状图 5 电子束截面形状

2.2 对锥筒聚焦装置的要求

根据辐射加固实验用户、探测器标定用户对辐射场的要求,需要大幅度压缩束流打 靶的大小,辐射输出窗口中心点照射量率也要大大提高。

采用锥筒聚焦装置后,应保持"闪光-1"充电 70 kV 辐照运行方式不变;换靶时,不破坏二极管真空;附加装置的安装、换靶操作简便,保持辐照方式的运行效率。

2.3 锥筒聚焦装置的设计

为了达到上述要求,设计了图 6 所示的金属锥筒聚焦装置。根据要求的电子束截面 压缩比,确定了锥筒入口直径为¢280 mm,用 0.2 mm 厚的钛箔做成阳极膜-压力膜双层入 口窗,铝制锥筒的锥角为 35°,用增减锥形环的方法,锥长可变换为 9,11,13 cm 三种 长度。用带排气管和压力表的锥形环实现锥筒内气压的调节和监测。出口端采用碳化钨-钽片组合韧致辐射转换靶。

图 6 "闪光-1" 锥筒聚焦装置

1 阴极; 2 二极管锥形端盖; 3 阳极膜; 4 压力膜(受压后变形向左凸起); 5 锥形筒;
6 带压力表和排气管的锥形环; 7 锥形环; 8 靶座; 9 转换靶; 10 盲板。

3 实验研究结果

聚焦实验在"闪光-1"常规辐照方式下进行,将管口阳极靶用锥筒聚焦装置代替,锥筒入口阳极膜与阴极头间距 18 cm。在固定锥长改变气压和固定气压(大气压)改变锥长的两种情况下进行了实验。最后确定采用锥长 11 cm,封装自然大气的"大气压浅锥筒",得到以下实验结果:

(1) 锥筒入口阳极膜处的粗环形束经 锥筒聚焦后,在出口端靶平面上被压缩 为直径约9 cm 的近似实心束。时间积分 的束斑形状如图 5(b)所示;

(2) 锥筒出口端窗口中心点照射量率 达到 1.29×10⁸ C/(kg·s) (5×10¹¹ R/s)。用高 剂量率液晶探测器在窗口中心点前方 3 cm 处测得的 γ 波形如图 7 所示,半幅值 宽度平均照射量率为 1.11×10⁸ C/(kg·s) (4.29×10¹¹ R/s);

(3) 窗口平面上,高于中心点照射量 率 50%的范围为¢10 cm。

图 7 用液晶探测器测得的 γ 波形 时标: 50 ns/格; 半幅值宽度平均照射量率 为 1.11×10⁸C/(kg·s) (4.29×10¹¹ R/s)

4 结 论

采用"大气压浅锥筒",在"闪光-1"常规辐照方式下,使电子束得到有效的聚焦压缩,使辐射输出窗口中心点照射量率提高到原来的三倍以上,达到了提高"闪光-1"辐射强度的预计目的,为抗辐射加固研究和探测器标定提供了高 γ 剂量率辐射模拟环境。

采用"大气压浅锥筒",结构简单,牢固可靠,经济实用。由于电子束不是在二极管内聚焦,二极管内没有靶材料溅射,没有靶碎片对二极管有机玻璃绝缘环的烧蚀损伤,因而有效地保护了二极管。由于更换辐射转换靶时不破坏二极管真空,提高了运行效率。

由于锥筒聚焦依靠压缩电子束截面提高窗口近区辐射强度,因而辐射场分布的"前 冲"性变差,要求被照样品靠近窗口。

将锥筒底部的转换靶和盲板改为 0.2 mm 钛窗时,可以将锥筒聚焦后的电子束从窗口 引出。窗口平面上¢10 cm 范围内电子束能注量约 450 J/cm²。可用于电子束加载的材料结 构响应实验。

本工作是在有关实验用户协作配合下完成的, 谨致谢意。

参考文献

- 1 Miller B R. An Introduction of Charged Particle Beam. Physics, Chapter 5
- 2 Olson C L. Phys. Fluids, 1973, 16: 529
- 3 Olson C L. Phys. Fluids, 1973, 16: 539
- 4 肖学政等. 低气压金属锥筒对强流相对论电子束的聚焦. 高功率粒子束学术交流会文集, 1985. 11

曹文彬: 1964 年毕业于清华大学工程物理系, 主要从事脉冲功率技术和粒子加速器的应用研 究。

CAO Wenbin: Graduated from the Department of Engineering Physics, Tsinghua University in 1964. Majoring in the applications of pulse power technology and particle accelerators.