The Synthesis, Structure and Decay of Super-Heavy Nuclei

PETER NORMAN

Monash University, Vic. pnorman@gu.com.au

SUMMARY. Super-heavy nuclei are those transuranic nuclei with more than 106 protons. The underlying nuclear structure of super-heavy elements may be visualized as 5 concentric closed layers of alpha particles. This structure is an extension of layered alpha particle models of common nuclei based on Bernal's model of a drop of a monatomic liquid. It will be shown that all super-heavy nuclei with atomic numbers in excess of 107 may be thought of as having a fifth closed layer of 16 alpha particles which decays because of its inherent instability.

1.Introduction

The lighter transuranic nuclei were first artificially synthesized during the 1940s and 50s by using cyclotrons to fuse either fast neutrons, hydrogen or helium nuclei with heavy target nuclei. The heavier transuranic nuclei were first produced in the 50s, 60s and 70s by accelerating boron, carbon, nitrogen or oxygen nuclei with linear accelerators to fuse with curium or californium targets. Since 1981 superheavy nuclei containing up to 112 protons have been created by fusing chromium, iron, nickel or zinc with lead or bismuth. Recently nuclei with 118 protons have been fused from krypton and lead.by Ninov et al (1)

2. Synthesis

The specific nuclear reactions used to synthesise the lighter, heavier and super-heavy transuranic nuclei are listed below in Tables 1, 2 and 3 respectively

Z (T½)	NAME (Date)	SYNTHESIS	
93	Neptunium	n + U238	
24d	1940	→ γ+β+Np239	
94	Plutonium	H2 + U238	
864y	1941	→2n+β+Pu238	
95	Americium	2n + Pu239	
433y	1945	→γ+β+Am241	
96	Curium	He4+Pu239	
163d	1944	→n+Cm242	

kelium 49 ifornium 50	He4+Am241 →2n+Bk243 He4+Cm242
ifornium	/=== ==== ==
	He4+Cm242
	He4+Cm242
50	
~ ~	\rightarrow n+Cf245
	·
steinium	Thermonuclear
52	\rightarrow Es253
mium	Thermonuclear
53	\rightarrow Fm255
	He4 + Es253
ıdelium	→n+Md256
	ndelium 55

TableL.ighter	trans-uranic	elements
---------------	--------------	----------

Z (T½)	NAME (Date)	SYNTHESIS
102	Nobelium	C12+Cm244
2.3s	1958	→4n+No252
103	Lawrencium	B10+Cf251
4.3s	1961	→3n+Lr258
104	Rutherfordium	C12+Cf249
3.4s	1969	→4n+Rf257
105	Dubnium	N15+Cf249
1.5s	1970	-→4n+Db260
106	Seaborgium	018+C f2 49
0.9s	1974 ັ _ວ	→4n+Sg263
Table 2	. Heavier trans-u	ranic elements

Z (T½)	NAME (Date)	SYNTHESIS
107	Bohrium	Cr54+Bi209
102ms	1981	→n+Bh262
108	Hassium	Fe58+Pb208
1.8ms	1984	→ n+Hs265
109 3.4ms	Meitneri um 1982	Fe58+Bi209 →n+Mt266
110	110	Ni62+Pb208
0.2ms	1994	→n+110.269
111	111 1994	Ni64+Bi209 →n+111.272
112	112	Zn70+Pb208
0.2m,s	1996	→n+112.277
114	114	Ca48+Pu244
39ms	1999	→3n+114.289
118	118 1999	Kr86+Pb208 →n+118.293

Table3. Super-heavy elements

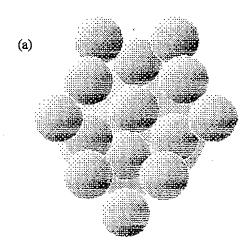
3. Nuclear Structure

The underlying nuclear structure of heavy elements may be visualized as 5 concentric layers of alpha particles. This structure is an extension of layered alpha particle models of common nuclei based on Bernal's (2) model of a drop of a monatomic liquid in which hard spheres representing atoms are densely packed. This model successfully explained many properties of such liquids as well as those of metallic glasses. Norman (3) showed how Bernal's model may be used to account for the size, density, quadrupole moment and binding energy levels of many nuclei if the hard spheres are alpha particles. Accordingly an oxygen 16 nucleus is modeled as a single tetrahedral layer of 4 alpha particles. A second layer of 10 alpha particles models nickel 56; a third closed layer of 12 alphas forms the core of all nuclei containing at least 52 protons, and a fourth

layer of 12 additional alphas forms a basis for those nuclei with 76 or more protons. Norman (4),(5) has also shown that this latter structure of 38 alphas constitutes the stable end point of the radioactive decay of heavy nuclei such as uranium. Furthermore, when a uranium nucleus undergoes fission induced by thermal neutrons it forms a light fragment with a core of no less than 2 alpha layers and a heavier daughter with a core of rarely less than 3 alpha layers.

The alpha particle models of super-heavy nuclei with 108 or more protons indicate that they have a core consisting of a <u>closed</u> fifth layer of 16 alpha particles surrounding the inner 4 closed alpha layers. This structure is indicated in Figure 1. On the basis of this modeling it would appear that the synthesis of all transuranic elements involves the closure of the fifth layer of alpha particles.

If the inter-nucleon bond between two adjacent nucleons in a nucleus is mediated by the exchange of virtual mesons then the meson bond (MB) energy may be calculated in the following way. Assume that 6 equal meson bonds strongly bind the 2 protons and 2 neutrons of a He4 nucleus (alpha particle) into a tetrahedral structure. The total meson bond energy, Em, of the He4 nucleus is defined as the empirically determined binding energy, Eb, of this nucleus corrected for the Coulomb repulsive energy, Ec, so that: Em = 6 MB = Eb + Ec where Eb = 28.3 MeVand Ec = 0.8 MeV. Therefore 1 MB = 4.84 MeV. The total number of meson bonds in any nucleus is equal to the value of Em for that nucleus divided by 4.84 MeV. The values of Eb, Ec, Em and the number of MB for some transuranic nuclei are provided in Table 4. The details of the meson bond structure of Hassium (z=108) are given in Table 5.


A	Еь	Ec	E _m	MB
U235	1784	909	2693	553
U236	1790	908	2698	554
U237	1796	9 0 7	2703	555
U238	1802	905	2707	556
U239	1806	904	2710	557
Np239	1807	924	2731	561
Pu240	1813	943	2756	566
Pu241	1819	941	2760	567
Am242	1823	960	2783	572
Am243	1830	959	2789	573
Cm244	1836	978	2814	578
Cm245	1841	976	28 17	579
Bk246	1845	996	2841	584
Bk247	1852	994	2846	585

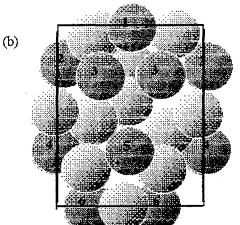

Cf248	1858	1014	2872	590
C£249	1863	1013	2876	591
Es250	1867	1032	2899	595
Es251	1874	1030	2904	596
Fm252	1879	1050	292	601
Fm253	1884	1049	2933	602
Md254	1888	1069	2956	607
Md255	1894	1067	2961	608
No256	1899	1087	2986	613
No257	1904	1086	2990	614
Lw258	1907	1107	3014	619
Lw259	1914	1104	3018	620
Rf260	1918	1125	3043	625
R£261	1924	1123	3047	626

Table 4. Binding, Coulomb and meson bond energies of transuranic nuclei. Note that 1 more meson bond for each additional neutron and 5 more meson bonds for each extra proton.

Energy	Bonds	P	N	Layer
Level	/ Nucleon			
1s _{1/2}	6	2 4	2	
1p _{3/2}	8	4	2 4 2	
$1p_{1/2}$	8	2 6	2	1
1d _{5/2}	7	6	6	
$2s_{1/2}$	6	2 4	24	
1d _{3/2}	6	4	4	
1f _{7/2}	6	8	8	2
$2p_{3D}$	6	4	4	
1f _{5/2}	5	6	6	
$2p_{\nu_2}$	5	2	2	
1g _{9/2}	5	10	10	
1g _{7/2}	5	8	8	3
$2d_{52}$	5	6	6	
2d _{3/2}	5	4	4	
$3s_{1/2}$	5	2.	2	
$1h_{11/2}$	5 5 5 5 5 5 5 5 5 5 5 5	12	12	4
1h _{9/2}	5	10	10	
$2f_{7/2}$	5	8	8	
2f _{5/2}	2 5	}	6	
3p _{3/2}	5	4	4	
3p _{1/2}	2		2	
li _{13/2}	4	4	14	5
$2g_{9/2}$	1		10	
l1 _{11/2}	1		12	
3d _{5/2}	1		6	
7	1		3	

Table 5. The 5 alpha layers in 108 Hs 157 Note that in Table 5 the number of meson bonds per nucleon is the number of bonds binding that nucleon to separate contiguous nucleons. For this reason the total number of meson bonds in a single energy level is equal to the sum of the products of half the listed number of bonds with the number of protons and neutrons respectively. For example, in the $1s_{1/2}$ level the total number of bonds is = 3x2+3x2=12 bonds.

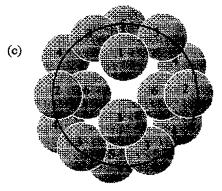


Figure 1. (a) The 38 alphas of Os densely packed as 4 layers. (b) The 54 alphas of Hs consisting of a closed fifth layer of 16 alphas shown in elevation as numbered darker spheres. (c) A plan view of these 16 alphas indicating their cylindrical hexadecapole structure about 3 equivalent orthogonal axes This model conforms with hexadecapole moment data according to V.Ninov (private communication).

4. Radioactive Decay

The decay of super-heavy nuclei usually involves the removal of the fifth layer of alpha particles in a delayed series of alpha and beta emissions as illustrated in Table 6 for element 112 (A=277). By contrast element 114(A=289) undergoes spontaneous fission after losing only 3 alphas.

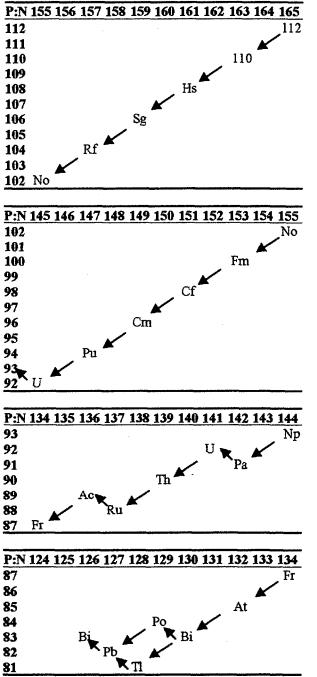


Table 6. The decay chain of elent 112(A=277)In each **a decay** (\checkmark) the energy released by the decrease in the total Coulomb repulsion energy breaks 6 meson bonds and imparts kinetic energy to the α particle.

In each β decay (\checkmark) the increased Coulomb repulsion energy is counteracted by the formation of 4 additional meson bonds and the energy released by the decaying neutron.

5. Conclusion

Super-heavy nuclei are those transuranic nuclei with more than 106 protons . The underlying nuclear structure of super-heavy elements may be visualized as 5 concentric closed layers of alpha particles. This structure is an extension of layered alpha particle models of common nuclei based on Bernal's model of a drop of a monatomic liquid. It has been shown that all super-heavy nuclei with atomic numbers in excess of 107 may be thought of as having a fifth closed layer of 16 alpha particles which decays because of its inherent instability.

6. References

- (1) Ninov, V et al. (1999) Phys. Rev. Lett. 83, 1104.
- (2) Bernal, J.D. (1960) Nature, (London), 185, 68.
- (3) Norman, P. (1993) Eur. J. Phys., (Bristol), 14, 36.
- (4) Norman, P (1997) Proc. ANA, 97, (Sydney), 131-4.
- (5) Norman, P. (2000) Proc. 18th, NUPP (Adelaide), 77.

7. Appendix

The bond structure of the layered models of nuclei with closed layers compared with the total number of bonds based on calculations of E_{m} .

Layer	1	2	3	4	5
Alphas/	4	10	12	12	16
Layer					
MB in	4x6=	10x6=	12x6=	12x6=	16x6=
Layer	24	60	72	72	96
MB ex	4x3/2=	4x3+6x4	12x4=	12x5=	16x6=
Layer	6	= 36	48	60	96
MB	24+6=	60+36=	72+48=	72+60=	96+96=
in + ex	30	· 96	120	132	192
Closed	8 0 8	28Ni28	52 Te76	76 Os 116	108Hs157
Nucleus					
MB	-	-	24x2=	40x2=	49x1=
N-Z			48	80	49
MB	30	30+96=	126+120	246+132	378+192
Core		126	=246	=378	=570
MB	30	126	48+246	80+378	49+570
Total			=294	=458	=619
(Model)					
MB	29.1	127.1	296	456	646
Total					
(Data)					