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Abstract

We study the "quantized calculus" corresponding to the algebraic ideas related to "twisted

cyclic cohomology" introduced in [12]. With very similar definitions and techniques as those

used in [9], we define and study "twisted entire cyclic cohomology" and the "twisted Chern

character" associated with an appropriate operator theoretic data called "twisted spectral data",

which consists of a spectral triple in the conventional sense of noncommutative geometry ([1])

and an additional positive operator having some specified properties. Furthermore, it is shown

that given a spectral triple (in the conventional sense) which is equivariant under the action of

a compact matrix pseudogroup, it is possible to obtain a canonical twisted spectral data and

hence the corresponding (twisted) Chern character, which will be invariant under the action of

the pseudogroup, in contrast to the fact that the Chern character coming from the conventional

noncommutative geometry need not be invariant under the above action.
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1 Introduction

Ordinary and entire cyclic cohomology theory are indeed some of the fundamental ingredients

of Connes' noncommutative geometry. A comprehensive account of this theory can be found

in [1] and the references cited in that book. Let us briefly recall how this theory is used to

define a noncommutative version of the Chern character. First of all, there is a canonical

pairing between the K-theory and the ordinary as well as the entire cyclic cohomology. Let A

be a Banach or more generally locally convex topological algebra, (.,.) : K*(A) x H*(A) —t C

and (.,.)e : if*(.4) x H*(A) ->• C be the canonical pairing (c.f. [1]) between the K-theory

and the periodic cyclic cohomology and the pairing between the K-theory and the entire cyclic

cohomology of A respectively. Given a Fredholm module (H, F) over A, or equivalently a spectral

triple (A,H,D), one constructs a canonical element ch*(H,F), called the chern character, of

H*(A) or H*(A), depending on whether the Fredholm module is "p-summable" for some p > 0

or it is only "0-summable", and * will stand for even or odd depending on whether the Fredholm

module is even or odd (i.e. equipped with a compatible grading or not). The map <j): K*(A) —> C

given by <f>(.) = (,ch*(U,F)) ( (,ch*(H,F))e for the O-summable case) actually takes integer

values, and can be obtained as an index of a suitable Fredholm operator.

For the finite summable situation, ch*(H,F) is given by (upto a constant) the cocycle

Tn(ao,...an) = Trs(ao[F,ai]...[F,an]),aj € A, where Trs is a kind of graded trace defined in

[1]. In terms of the associated spectral triple, under some additional assumption, one gets a

canonical Hochschild n-cocycle <f>w given by, <f>w(ao, ..an) = \n^(ao[D,ai]...[D, an]), where An is

a constant and ̂ (A) := Trw(A\D\~n),A € B{W}, where Trw{.) denotes the Dixmier trace and

n is suitably chosen to have \D\~n in the Dixmier-trace-class. The positive linear functional

A € a >-> Trw(a\D\~n) is a trace and can be thought of as the "noncommutative volume form"

associated with the noncomutative spin geometry encoded by the spectral triple. Furthermore,

if A is equipped with the action of a classical compact group G coming from a unitary rep-

resentation on V. and the spectral triple is G-equivariant (which means in particular that D

commutes with the (7-representation on %), then the above-mentioned cocycles are G-invariant

in the sense that Tn(g.ao, ....g.an) = r(ao, -an) and similar thing is true for <j)w. In particular, if

A is chosen to be an appropriate function algebra (containing the smooth functions) on a clas-

sical compact Lie group G and the canonical equivariant Dirac operator D is chosen, then the

above-mentioned volume form will (upto a constant) coincide with the integral with respect to

the Haar measure. The above-mentioned invariance of the cocycles makes it possible to consider

its lifting to the algebraic crossed-product in a canonical way.

However, things do drastically change when one replaces classical compact groups by non-

commutaive and non-cocommutative comapct quantum groups defined by Woronowicz ([16]).

The first major difference is that the canonical Haar state on such quantum groups are no

longer tracial, and if one considers an equivariant spectral triple such as the ones constructed



by Chakraborty and Pal (c.f. [5]), and constructs the Chern character as mentioned before, it

will no longer be invariant under the natural action of the quantum group. In particular, the

noncomutative volume form in these cases will not coincide with the Haar state, and in fact

need not be even faithful. The simplest and important case of SUq(2) (0 < q < 1) deserves

some discussion in this context. Prom the explicit description of the if-homology of SUq(2) in

[14], it is easily seen that the Chern character w (in the notation of the above-mentioned paper)

of the 1-summable generator of the odd if-homology is not invariant under the 5f7g(2)-action.

Had it been invariant, one would have u> * reven = w, which is not the case as it is shown in

[14] (here reven is as in [14] and * denotes the product described in that paper, which is the

combination of the shuffle product and the 5C/g(2)-coproduct). Thus, it is not possible to get

an invariant Chern character within the framework of conventional noncommutative geometry,

and this explians why the chern character obtained in [5] cannot be invariant. However, even if

one forgets the aspect of invariance, there are other strange properties observed in this example.

It can be shown (to be discussed in detail elsewhere) that some of the natural properties which

one almost always observes for a nice compact manifold such as the classcical SU(2) are not

valid. For example, there can be no odd 1-summable spetral triple for SUq(2) whose Chern

character (in HCl) is nontrivial and which also satisfies the property that the corresponding

Dirac operator D\ has compact resolvents, I-Dil"1 (to be interpreted as the inverse of the re-

striction of |Z>i| onto the orthogonal complement of the kernel of D{) is of Dixmier-trace-class,

and repeated commutators with |Z?i| is bounded for any element in the finite ^-algebraic span

of the canonical generators of SUq{2). It is interesting to remark that the equivariant Dirac

operator D in [5], whose associated Fredholm module is the generator of the odd if-homology

group, has the property that JD~3 is Dixmier-trace-class, and the Hochschild cohomology class

of the associated Chern character (when thought of as an element of HC3) vanishes, thus this

Chern character (which is in HC3) must be of the form ST for some r G HCl (where S is

the periodicity operator used in [1] in the exact couple relation between the Hochschild and

cyclic cohomology), and it is not clear whether it is at all possible to obtain this r as a Chern

character coming from some equivariant Dirac operator D' such that (D')~l is of Dixmier-trace-

class. Thus, it is not known whether one can describe the Hochschild class corresponding to

r € HCl by a suitable "local" formula involving Dixmier trace (we should note that it is indeed

possible to describe the periodic cyclic cohomology class of r by local formula involving residues,

as will be shown in [8]). In any case, all these facts seem to suggest that there may be some

incompatibility between the existing framework of noncommutative geometry and the theory of

compact quantum groups, since even for the simplest such quantum group a few anomalies seem

to occur, specially in context of invariance and the "local" formulae. We feel that the research

in this direction (i.e. towards finding a framework in which both noncommutative manifolds

and quantum groups are well fitted) is still at a beginning or rather somewhat experimental

stage, and it will take more time to reach a conclusive answer. Thus, at this moment, it may be



worthwhile to explore some alternative frameworks of noncommutative geometry too, and try to

compare the relative advantages and disadvantages of different approaches in the light of various

examples at hand. In the present article, we shall focus our attention on one such alternative

approach suggested in [12], based on what the authors have called "twisted cyclic cohomology".

We shall study the operator theoretic framework for that, and for some natural reason deal with

its "entire" version. We would like to point out here that we shall build some amount of general

theory only, which in particular will enable one to obtain an invariant (twisted) Chern character

in this context, but we shall leave the study of particular examples for future. Thus, apart from

the aspect of invariance, we do not know yet whether this alternative framework will help us

to understand SUq(2) and similar models better than the conventional theory; but we hope to

take up that issue later on.

Motivated by the fact that the Haar state on typical compact quantum groups are not tracial

and other things, the authors of [12] have found it somewhat natural to introduce "twisted cyclic

cohomology", which is indeed a module in the cyclic category (see. e.g. [1] or [13]). However,

they did not focuss on the "quantized calculus" related the twisted cyclic cohomology, which is

our goal in the present article. To be more precise, we shall discuss the twisted analogue of the

entire cyclic cohomology and show how one can obtain canonical J-L-0 type c.f. [9]) cocycles in

this twisted entire cyclic cohomology from a spectral triple and an additional positive operator

giving rise to the "twist". In fact, although we shall make a somewhat general theory, our main

focuss will be on the examples coming from the quantum group theory and we shall show that

a canonical "twisting" operator exists for a given equivariant spectral triple for the action of

compact matrix pseudogroups of Woronowicz. Let us remark here that in some special examples

of noncommutative manifolds studied in [3] and [4], the conventional theory of noncommutative

geometry was shown to be nicely applicable to certain Hopf algebras or associated homogeneous

spaces, but those Hopf algebras (e.g. SLq{2) for q complex of modulus 1) do not come under

the framework of topological quantum groups given by Woronowicz and others.

Before we enter into the main results, we should perhaps mention why we are interested

in the twisted version of the entire cyclic cohomolgy (hence J-L-0 type cocycles) rather than

the ordinary cyclic cohomology. This is motivated by our study of the example SUq(2) ([7],

and also [5]), where we have shown that the Haar state can be recaptured by the formula
e SUiQi where D is the equivariant Dirac operator and R is a suitable positive

operator, coming from the modular theory of SUq(2). It is also shown that there is no finite

postiive number d so that Tr(Re~tD ) = O(t~d). This in some sense indicates that the associated

Predholm module is not finite dimensioanl, or in other words in ©-summable, so that it is natural

to construct J — L — O type cocyles in the (twisted) entire cyclic cohomology.



2 Twisted entire cyclic cohomology and J-L-O cycles

2.1 Algebraic aspects

Let us develop the theory for Banach algebras for simplicity, but we note that our results extend

to locally convex algebras, which we actually need. The extnesion to the locally convex algebra

case follows exactly as remarked in [1, page 370]. So, let A be a unital Banach algebra, with

||.||* denoting its Banach norm, and let a be a continuous automorphism of A, cr(l) = 1. For

n > 0, let Cn be the space of continuous n + 1-linear functionals <f> on A which are a-invariant,

i.e. <f>(a(ao), ..cr(an)) = <^(ao,...an)Vao,...an G A; and Cn = {0} for n < 0. We define linear

maps Tn,Nn : Cn -+ Cn, Un:C
n -¥ Cn~x and Vn : C

n -f Cn+1 by,
n

{Tnf)(a0,...an) = (-l)nf(a{an),a0,...an-1),Nn = £ 2 * ,
3=0

(^n/)(tt0j---On-l) = ( —l)n / (O0,--- ,On_i , l ) ,

{Vnf)(ao, -On+i) = (-i)n+1f(ar(an+i)ao,ai,...,an).

Let Bn = Nn-xUn(Tn-I), bn = £g}T~^{"VnT|. Let 5 ,b be maps on the complex C = {Cn)n

given by B\c* = Bn,b\c*- =bn. It is easy to verify (similar to what is done for the untwisted case

, e.g. in [1]) that B2 = 0, b2 = 0 and Bb - -bB, so that we get a bicomplex (Cn>m = Cn~m) with

differentials dud2 given by d1 = (n-m + 1)6 : Cra'm -»• Cn+1'm, d2 = ̂  : Cn-m -»• Cn 'm + 1 .

Furthermore, let Ce = {(^2n)^ € N;(f>2n G C2nxin G iV}, and C° = {(̂ >2n+i)̂  G iV;^2n+i €

C2n+lVn G iV}. We say that an element ^ = (̂ >2n) of Ce is a cr-twisted even entire cochain

if the radius of convergence of the complex power series ^ ||<^2n||̂ r is infinity, where ||^2n|| :==

sup||o.||jt<1 \(j)2n(ao, •••-,o,2n)\. Similarly we define a-twisted odd entire cochains, and let C*(A, cr)

{C°(A, a) respectively) denote the set of cr-twisted even (respectively odd) entire cochains. Let
a

d = di + d2 , and we have the shrot complex Cf (A, a) d C°(A, a). We call the cohomology of

this complex the cr-twisted entire cyclic cohomology of A and denote it by H*(A, a).

Proposition 2.1 Let Aa = {a G A : a(a) = a} be the fixed point subalgebra for the automor-

phism a. There is a canonical pairing < .,. >0-!e: K*{Aa) x H*(A, a) -» C.

The proof is omitted, since it is very similar to the untwisted case, for example, as given in [1].

In fact, this pairing is nothing but the pairing between the JC-theory of Ac and the entire cyclic

(untwisted) cohomologies of Aa, as any element in the cr-twisted entire cyclic cohomology of

A can be viewed as an (untwisted) entire cyclic cocycle on Aa by restriction on Aa- Thus, the

arguments for the untwisted case apply to our situation to prove the above proposition.

2.2 Construction of the Chern character using the J-L-O cocycles

We begin with the following definition :



Definition 2.2 Let % be a separable Hilbert space, A°° be a subalgebra (not necessarily com-

plete) of B(Jl), R be a positive (possibly unbounded) operator in %, D be a self-adjoint operator

in % such that the followings hold :

(ii) R commutes with D,

(Hi) For any real number s and a G .4°°, &s(&) : = R~saRs is bounded and belongs to A°°. Fur-

thermore, a H> o~s(a) is an automorphism of A00 and for any positive integer n, supser_nni ||<TS(O)|| <

oo.

Then we call the quadruplet {A0O,'H,D,R) an odd R-twisted spectral data. Furthermore, if there

is a grading given by 7 € B(7i) with 7 = 7* = 7"1, and 7 commutes with A°° and R, and

anticommutes with D, then we say that we are given an even R-twisted spectral data. We say

that the given (odd or even) twisted spectral data is Q-summable if Re~tr>2 is trace-class for all

t>0.

Let us consider the case of even twisted spectral data only, as the odd case can be treated

with obvious and minor modifications as done in the untwisted case. Let us assume that we are

given such an even twisted spectral data specified by A°°,'H.,D,R,'y as in the above definition,

and fix any £ > 0. Let H = D2, A^ = e~sHAe~sH, A{s) = e~sHAesH for s > 0 and A € B{H).

Let us denote by B the set of all A E B{U) for which as{A) := R~SARS € B(H) for all real

number s, [D,A] G Btf-L) and s •-»• ||<7S(.A)|| is bounded over compact subsets of the real line.

We define for n € N an n + 1-linear functional F% on B by the formula

F£(A0,..An)= [ Tr{1AQA1{t1)..An{tn)Re-PH)dt1...dtn,
Jcrn

where an = {(ti,...tn) : 0 < £1 < ... < tn < j3}. That the above integral exists as a finite

quantity follows from the following lemma.

Lemma 2.3 F£ is well defined and one has the estimate

\F£(A0,..An)\ < ^TriRe-^U^Cj,

where Cj = sups6[_1)]L] | |CT S (^ ) | | .

Proof :-

The proof is very similar to that of Proposition IV.2 pf [9], so we only sketch the main ideas. We

use the same notation S\, ...5n+i as in [9], i.e. Sj = 3~J~l, with to = 0,tn+i = 0. Thus, (<i, ..tn)

in the integrand can be replaced by (5\, Sn+i) with the condition that dj > 0, J2$j = 1-

Then, as in [9], we have that

= Tr

= Tr



where in the last step we have used the fact that R and H commute, and 7 and R also commute.

Now, by the generalised Holder's inequality for Schetten ideals the desired estimate follows, not-

ing that \\(Re~pH)s\\s-i = Tr(Re~pH)5, as Re~eH is a positive operator.

For A G 13(11), let A denote ^(^4.(t))|t=o = —[H, A], whenever it exists as a bounded operator.

Clearly for A of the form A = B^s\s > 0, A G B(U).

Lemma 2.4 Let Ai,i = 0,1, ...,n be elements of B such that Ai G B(%yii. Let dA := «[£>, A].

Then we have the following :

(i) Forj = l,...,n,

(ii)
(in) F%+1(Ao,Au...,An+1) = F£(ai(An+1)A0,...,An) - Fg(A0, Au ..., AnAn+1).

(iv) Fg(A0,...,An) = Fi(al{An),AQ,...,An-.1) and F^(ai(^0), - ,^ i (^n) ) = Fg{AQ,..., An).

(vi) F£(dA0,...,dAn) = Y%=i{-

The proof of the above formulae are straightforward and very similar to the analogous formulae

derived in [9], hence we omit the proof.

Let us now equip .400 with the locally convex topology given by the family of Banach

norms ||.||*,n,n = 1,2,..., where ||a||*in := sup5e[_n)n](||crs(a)|| 4- ||[D,crs(a)]||). Let A denote

the completion of .400 under this topology, and thus A is Prechet space. We shall now construct

the Chern character in H*(A, a), where a = CTI, which extends on the whole of A by continuity.

Theorem 2.5 Let (jf = (fan) and <f>° = (<j>2n+i) be defined by

02n(ao, - , O2n) = /3~nJF^n(a0, [D, ax],..., [D, a2n]), «i E A,

1— 1 a

<f>2n+i(ao,-,a2n+i) = V2i/3~n"2i^n+1(7a0, [D, 01],..., [D, a2n+i]), o-i G A.

Then (b + B)<j)e = 0, (b + B)(j>° - 0, and hence tpe = ((2n)l<f>2n) G H°(A, a) and ^° = ((2n +

H°(A,a).

Proof :-

First we extend the definition of ^ n , 4>2n+i on the whole of multiple copies of B by the same

formula, which is clearly well defined. Let B°° denote the unital algebraic span of elements of

the form A^ for s > 0 and A <E A00. Let us denote by Cn(B°°) the space of all n + 1-linear

functionals on B°° (without any continuity requirements) and extend the definitions of 6 and

B on the complex C(B°°) = (Cn(B°°)n) by the same expression as in the case of Cn, i.e. for

functionals on A. This is possible because a = o\ is defined on the whole of B°°. Now, the

formulae (i) to (vi) of Lemma (2.4) are applicable for elements of B°°, and by a straightforward

calculation as in [9] we can show that (b + B)(4>*) = 0 on elements of B°°. Now, to prove the



same for elemenets of A°°, we note that for A G .A00, A^ -+ A, [D,A^] = [D,A]M -> [D,A\

and at{A^) —>• <7t(.A)Vi, as s -» 0+ and the convergence of operators is w.r.t. the strong

operator topology of B{%). By using the fact that Tr{BnC) ->• Tr(BC) if Bn -+ B w.r.t. the

strong operator topology and C is trace-class, we conclude that the integrand in the definition

of F£n{a{
Q

s\[D,a[s)], ...[£>, a$]) converges to that with ajs) replaced by Oj (for a,- € -4°°), and

finally, as \\a^ || < ||a||Va G 3(71), an application of the Dominated Convergence Theorem allows

us prove that (b + B)<j>e — 0 on elements of .A00, and hence by continuity the same thing holds

for A. Similarly the odd case can be done. The remaining part of the statement of the theorem

is straighforward, and follows exactly in the same way as in [1].

We shall call ip* in the above theorem the Chern character of the twisted spectral data

{A^iV-iD^R) (or (Aoo,'H,D,R,'y) for the even case). We remark here by an easy adaptation

of the techniques of [9] and [10], we can show that the above chern characters do not depend

on our choice of /5, namely cohomologous for all f3 > 0. Furthermore, invariance of the chern

character under some suitable homotopy of the spectral data can possibly be established along

the lines of the above mentioned references. We, however, would like to consider those issues

elsewhere.

3 Canonical twisted equivariant spectral data arising from ac-
tions of compact matrix pseudogroups

In this section we shall show how one can find canonical examples of twisted spectral data

from the theory of compact matrix pseudogroups of Woronowicz (c.f. [16]. Let S be such a

compact matrix pseudogroup, with the matrix elements %,n = 1,2, ...,i, j = 1,2, ...,dn, such

that for each n, Tn = {{t^))f^_x is a unitary element of Man(C) ® S, and the coproduct A

and the antipode K are given by A(i§) = Ek^k ® lkp K(*"j) = (**»)*• L e t & = L2(S,h) be

the GNS-sp&ce associated to the faithful Haar state h on S, and we imbed <S in B(JC) in the

natural manner. We recall from the theory of quantum groups that a unitary representation

of the quantum group S is given by a separable Hilbert space 7i and a unitary element V of

L{Ji <g> S) C B(H) ® B(JC) with additional properties (c.f. [15] and other relevant literature on

compact quantum groups, and note that C{J-i ® S) denotes the C*-algebra of adjointable linear

maps on the Hilbert module 7i<S>S), and we can equivalently think of the representation to be

given by a map V from % to the Hilbert module H'SiS given by V(£) = V(£ ® 1), where 1 is

the identity in S. For A G B(H), we define 5(a) = V(a <g> I)V* e B{U) ® B{K). Let us assume

that there is a subalgebra A00 of B(U) such that S(A°°) C A°° ®aig S°°, where <S°° denotes the

algebraic span of the matrix elements of S and their adjoints. Clearly, 8 : A°° —> A°° ®aig «S°°

is a coaction of the Hopf algebra S°°.

Lemma 3.1 Let <f>: S°° —> C is a multiplicative linear functional. We define a linear map F^ on

H with the domain consisting of all £ G 7i such that V'£ G %®a\gS°°, and F^) = {id®4>)(V'£)



for any £ in the above domain. Then we have that

(i) F<j, is densely defined,

(ii) For a € A°°, aDom{F^) C Dom{F,p) and J^(a£) = (cj) * o^F^) for £ <E Dom{F^), where

(<f>*a) :=

Proof :-

By the general theory % will be decomposed as "H = (&n>i,k=i,...,rnn,mn<oo W-nfa a Q d there exists

an orthonormal basis {e]'k}j=i,...tdn for Hn>k such that V'efk = I ^ e " ' * ® ^ . It is obvious that

Tin = ®k^n,k Q Dam{F^). This proves (i). For (ii), we first note that for £ <E Dom{F^)

and a £ A°°, we have V'(a£) = 5(a)V'£ (where an element of .4°° <g>aig <S is naturally act-

ing from left by multiplication on T-L <g> <S), which shows that a£ G Dom{F^). The fact that

F<t>{aO — (^ * °)-fV(O i s verified easily using the multiplicativity of (f>.

Let us now recall a few facts from the general theory of compact matrix pseudogroups as in

[16]. It is known that for each n, there is a unique dn x dn complex matrix Fn with the following

properties :

(i) Fn is positive and invertible with Tr(Fn) = Tr{F~1) = Mn > 0, say.

(ii) If h denotes the Haar state on S, then we have, M ^ % * ) = 'MZ^ikFniJ, 0> where 6ik is the

Kronecker delta.

(iii) For any complex number z, let 4>z be the functional on S°° denned by <f>z(t?j) = {Fn)
z(j,i).

Then each <j)z is multiplicative, (<f)z * 1) = 1 and for any fixed element a 6 <S°°, z •-»• <f>z * a is a

complex analytic map.

Let us now take R = F^ on %. With this choice, we have the following result. Note that

we call an m-linear functional x o n -4°° invariant (or simply invariant if no cinfusion arises) if

we have

x(ai(1),...,am(i))ai(2)...am(2) = x(ax , . . . ,am)ls,

where we have used the Swedler notation 6(a) = a^ <g> a^), with summation implied.

Theorem 3.2 Assume that (A°°,7i,D) is an odd equivariant spectral triple in the sense of [5],

i.e. D is a self adjoint operator on H which is S-invariant, in the sense that V'(Dom(D)) C

Dom(D) ®aJg S°° and V'D = (D <g> I)V on Dom{D), and furthermore, [D,a] € B{U) for

a € .4°°. Then (^4°°,?^,D,i?) is a twisted odd spectral data. Similarly, if we also have an

equivariant grading then we obtain a twisted even spectral data. Moreover, if Re~@D is trace

-class for all fi > 0, then the associated Chern characters are invariant.

Proof :-

Since the resolvent operators (iX — D)~x, X € R, of D are equivariant bounded operators, it is



clear that (iX — D) 1 = ® n ( / <8> Bnt\), where we have identified %n, which is a direct sum of

dn-dimensional Hilbert spaces, with T-Ln,i ® Cm™ (C°° := I2), and in this identification we have

Bn,\ € B(Cmn). Thus, D is also of the same form, with Bn>\ replaced by say £>n, which is a

self adjoint (possibly unbounded) operator on Cm". Now, by the definiton of R, it is of the

from ®n{rn\un,i ® -0> from which it follows that R and D commute. Other conditions in the

definition of twisted spectral data are verified easily using the facts about the canonical family

of functionals (j)z noted before.

Finally, we shall verify the invariance of the associated chern character. To this end, first note

that if Re~@D is trace class, then e~^Dn is also trace-class for each n, hence in particular has a

complete set of eigenvectors in Cmn. Thus, by renaming the orthonormal basis e^' if necessary,

we can without loss of generality assume that e~PD*efk = Xn,kefk and Re"'k = J2i Fn(j, l)^'k.

Let us now use the embedding of <S" in the GNS Hilbert space /C = I? (S, h) associated with

the Haar state h, and denote by 1 the identity of S viewed as the canonical cyclic vector in

K. We have, h(b) = (1,61)V6 € S. Let x(A) := Tr{ARe~pD2) be the normal positive linear

functional on B{%). Since the extension of h on B(K,) given by h(B) := (1, £1), B G B{K) is also

a positive linear normal functional, we can define the positive linear normal functional (x ® h)

on B(H) ® B{K). We claim that (x ® h)(V{a <g> 1)F*) = %(a) for any o 6 B{H). The proof of

this fact is very similar to a similar result obtained in the special case of SUq{2) in [7].

Proof of the claim :

We first note that V*(e^'k <g> 1) = £,• e^k ® (*£)*. Thus, we have,

(x®h)(V(a®I)V*)
i I)V* (Re-^2 (ef) ® 1))

Xn>iFn{j,r)e^ ® 1))

n,i,k

since Mn =

Now, it is easy to see that since V(D®I) = (D®I)V (viewing V as a unitary in B(H)®B(IC)),

for a £ A°° and s > 0, one has V(ae-sI>2 ®I)V* = 6{a)(e-sD2 ®I). For s0,..., sn > 0, let r\ be the
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n+1 linear functional on A°° given by 77(00,...,«„) = Tr(a0e-s°-D2[Z),ai]e~*ir|2...[D,on]e-SnI?2J?).

Clearly, as V commutes with (Z> ® 7), we have,

D, oi]e-'1272...[!>, an]) ® 7)F*

7), *(Ol)]...[(£> ® 7), 5(an))

<g> (ao(2)...afl(2)),

using the Swedler notation with summation implied. Hence, by what we have proved earlier, it is

easy to see that 77(00(1),..., an(i))Mao(2)---°n(2)) = v(ao> •••; °n)- Prom this the required invariance

of the odd chern characters follows, because by using the fact that /i*A = A(l)/ifor any bounded

linear functional A on S (where * is the convolution product of two linear functionals on <S, de-

fined for example in [16]), we get that 77(00(1), —,On(i))A(oo(2)—On(2)) = v(ao, ...,ore)A(l) for all

bounded linear functionals A on S. Similarly the case of the even chern characters can be treated.

Corollary 3.3 Let us consider the case A = S, A00 = S00, and T-L = L2(h), with V is the

operator associated with the canonical regular representationn of S in L2(h), and let R = Ffa

in L2(h). Given any positive operator L on L2(h) such that Lffij) = Ani^- and Yln^n^n < 00,

we can recover the Haar state by the following formula,

TrjaRL)
Ha) = -'

The proof of the corollary is immediate from the steps in the proof of the Theorem 3.2.

The above corllary generalizes a similar result obrained in [7] for SUq(2). We have already

remarked that for typical nonclassical examples of compact matrix pseudogroups, we are forced

to consider the ©-summable case rather than the finitely summable case. Now, we shall show

that this assertion can be made a bit more definitive.

Proposition 3.4 LetS be a compact matrix psedogroup with 71 be L2(h) as before, and suppose

that the corresponding operator R is not the identity, i.e. Fn is not equal to I. Assume that there

is an equivariant spectral triple {SOO,'H,D) satisfying [\D\, [|7J>|,a]] € B(U.)ia G <S°°. Then, there

cannot be any finite positive number p such that Limt^§+{tvTr{Re~tD )) = C,0 < C < 00, for

some suitable Banach limit Lim on the space of bounded functions on R+, as considered in [6]

and elsewhere.

Proof :-

Suppose that the assertion of the proposition is false, and we are indeed given an equivariant

sepctral triple (A°°,H,D) such that [|U|,[|D|,o]] € B{H)Va e S°° and Limt-+o+tpTr(Re-tD2) =

C,0 < C < 00,p > 0. Let 77(0) = Limt^Q+ T fR*-*^' ^ e "cnow fr°m o u r earlier results that
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rj(a) — h(a)Va € <S. We now claim that for a, b G <S°°, 77(06) = r](a(b)a), where a(b) = <j)\ * b.

Before we prove this claim, we argue how it leads to a contradiction and hence completes the

proof. It is known from [16] that h(ab) = h((4>i *b*(f>i)a), where (b*(j>) := (<fi®id)(A(b)). Thus,

we get that (cr{b) * (pi) = a(b)\fb € <5°°, and as a is an automorphism, b * (j>\ = b. But this is

possible only if Fn = Fin, which is contradictory to the assumption.

So, it is enough to prove that 77(06) = 77(cr(6)a). We have,

R[e-tD\a]

= -t f1Re-tsD2[D2,a]e-^-^D2ds
Jo

= -t f1 R
Jo

By standard estimates one can now show that tp times the above expression goes to 0 in trace-

norm as t —¥ 0+, and from this the claim is verified.

Remark 3.5 If we look at the proof of the Theorem 3.2 carefully, we can easily notice that

there is indeed some amount of flexibility in the choice of R. In fact, the conclusion of the

theorem will be valid if we replace the canonical R chosen by us by some operator of the form

i?i = RR', where R' is a positive operator having e"' 's as a complete set of eigenvectors with

R'(e™'k) = Mfcej' > wtth ^k 's be such that R\e~^D is trace-class for all ft > 0. In the context of

SUq(2), this flexibility of choice will play a crucial role. However, it should be noted that the

conclusion of Proposition 3.4 does no longer hold if we change R.

Remark 3.6 The twisted Chern character can be paired with the equivariant K-theory, i.e. the

K-theory of the subalgebra Ainv = {a € A : 5(a) = a® Is}- In fact, from the special from of a, it

is easily seen that Ainv Q Aa, hence we can restrict the pairing < .,. >a,€ on K*(Ainv)xH*(A, a)

to get the desired map. Furthermore, since the equivariant Dirac operator D decomposes into

a direct sum of operators D^, indexed by irreducible representations ir of S, and any projection

of Ainv also naturally respects this decomposition, one can consider the twisted Chern character

corresponding to the spectral data given by any fixed PVDPV, where Pv denotes the projection

onto the subspace corresponding to TT. The corresponding pairing assigns to each element of

K*{Ainv) a complex number depending on IT, and thus one gets a map from the set of irreducible

representations of S to the dual of the K-theory, which may be formally thought of some kind

of "character-valued index". However, any attempt to give this a rigorous meaning requires first

of all a generalization of equivariant entire cyclic cohomology as discussed, for example, in [11]

and related works of other authors, to the framework of compact quantum groups.

We shall conclude with some discussion on the case of SUq{2). We recall from section 2

that in general the twisted entire cyclic cohomology H* (A, a) pairs with the if-theory of only

a subalgebra Aa of A, and not with that of A. However, it may sometimes turn out that the
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subalgebra Aa is large enough to capture the if-theory of A itself. We shall see that this is

indeed the case if we consider SUq(2). Let us recall the notation of [5], where the generators of

SUq(2) were denoted by a,/?, and u = Ji(/3*/?)(/? — I) + I was choesn to be the generator of

Ki(SUq(2)) which is Z. Since the spectrum a(u) is a connected set (which can be easily verified

from the litarature on SUg(2)), and u is invertible, it is clear that the map from Ki(C*(u)) to

Ki(SUg(2)), induced by the inclusion map, is an isomorphism of the -KVgroups (where C*(u)

denotes the unital C*-algebra generated by u). Now our aim is to construct an appropriate

twisted spectral triple so that the associated fixed point subalgebra SUq(2)a will contain u. To

do this, we have to refer to the remark 3.5 made earlier. We consider any of the equivariant

spectral triple constructed by the authors of [5] and in the associated Hilbert space (which

is the canonical regular representation space of SUq(2)) choose R' to be the operator with

corresponding eigenvalues /ifc = q~2k, so that the new choice of R actually coincides with that

in [7]. It can be easily verified that for a corresponding to this choice of R, the fixed point

subalgebra SUq(2)ff is the unital *-algebra generated by /3, so in particular contians u, allowing

us to consider the pairing of the twisted Chern character with K\{C*(u)), and in turn with

Ki(SUq(2)) using the isomorphism noted before. The important question is whether we recover

the pairing obtained in [5] in our twisted framework, or if our pairing nontrvial. We conjecture

that this question has an affirmative answer, but to calculate the pairing we shall need to build

some more tools, analogous to the index theorem available for the untwisted or conventional

set-up. We however would like to postpone these issues for future works.

References

[1] A. Connes, Noncommutative Geometry, Academic Press (1994).

[2] A. Connes, "Geometry from the spectral point of view", Lett. Math. Phys. 34 (1995),

no. 3, 203-238.

[3] A. Connes and M. Dubois-Violette, "Noncommutative finite-dimensional manifolds. I.

Spherical manifolds and related examples", preprint (math. QA/0107070).

[4] A. Connes and G. Landi, " Noncommutative Manifolds the Instanton Algebra and

Isospectral Deformations", Commun. Math. Phys. 221 (2001) 141-159.

[5] P. S. Chakraborty and A. Pal, "Equivariant spectral triples on the quantum SU{2)

group", preprint (math.KT/0201004).

13



[6] J. Frohlich, O. Grandjean and A. Recknagel, "Supersymmetric quantum theory and

noncommutative geometry", Commun. Math. Phys. 203(1999) 119-184.

[7] D. Goswami, "Some Noncommutative Geometric Aspects of SUg(2)", preprint ( math-

ph/0108003), submitted to Rev. Math. Phys..

[8] D. Goswami, in preparation.

[9] A. Jaffe, A. Lesniewski, K. Osterwalder, "Quantum K-theory. I. The Chern character",

Comm. Math. Phys. 118 (1988), no. 1, 1-14.

[10] K. Ernst, P. Feng, A. Jaffe and A. Lesniewski, "Quantum K-theory. II. Homotopy

invariance of the Chern character.", J. Fund. Anal. 90 (1990), no. 2, 355-368

[11] S. Klimek and A. Lesniewiski, "Chern Character in Equivariant Entire Cyclic Cohomol-

ogy", K-Theory 4 (1991), 219-226.

[12] J. Kustermans, G.J. Murphy and L. Tuset, "Differential Calculi over Quantum Groups

and Twisted Cyclic Cocycles", preprint( math.QA/0110199).

[13] J. L. Loday, Cyclic homology ( Appendix E by Mara 0. Ronco.), Grundlehren der

Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],

301. Springer-Verlag, Berlin, 1992.

[14] T. Masuda, Y. Nakagami and J.watanabe, "Noncommutative Differential Geometry on

the Quantum SU{2), I: An Algebraic Viewpoint", K Theory 4 (1990), 157-180.

[15] S. L. Woronowicz, "Twisted 5£/(2)-group : an example of a noncommutative differential

calculus", Publ. R. I. M. S. (Kyoto Univ.) 23(1987) 117-181.

[16] S. L. Woronowicz, "Compact matrix pseudogroups", Comm. Math. Phys. I l l (1987),

no. 4, 613-665.

14


