

ปาฐกถาพิเศษ

"การรักษาด้วยรังสียุคใหม่" "The Modern Radiation Therapy"

โดย
Mr. Olivier Van der Borght
Ion Beam Applications
BELGIUM

THE MODERN RADIATION THERAPY

Olivier Van der Borght
Asia Area Manager, IBA
Chemin du Cyclotron, 3-1348 Louvain-La-Neuve, Belgium
E-mail: vanderborght@iba.be

- ➤ New tools for Brachytherapy
- **➤ IBA Proton Therapy System**
- > FDG Distribution Concept

New tools for Brachytherapy

Mission

- To offer innovative brachytherapy products (sources, delivery systems, and services) to improve the safety and effectiveness of the existing procedures
- To expand the indications for brachytherapy beyond the current applications

RadioMed/IBA "Claim"

What do we do?

We have an innovative design and manufacturing technology for radioactive sources used in brachytherapy.

The sources has received FDA approval.

Source Design Concept

- Based on Pd-103 radioisotopes.
- Naturally sealed in a fine, coiled wire design.
- Linear source so length can be adjusted in-situ without violating its "sealed" nature.
- Flexible, axially elastic so it can expand and shrink with the tissue.
- Delivers homogeneous dose to tissue.

Innovation and Expertise

The combination of RadioMed's innovative source design/manufacturing concept and IBA's unique accelerator technology, for the first time allows the introduction of a truly next-generation product for brachytherapy markets.

A Proton Therapy System for In-Hospital Operation

Ion Beam Applications, Louvain-la-Neuve, Belgium

Goal of Proton Therapy

To deposit the radiation dose more precisely in the target volume, with less dose in the surrounding healthy tissues.

Main Specifications of a "Proton Therapy System"

- Ability to reach the tumor
- Ability to reach the tumor in a supine pateint from any selected direction
- Ability to reach the tumor accurately
- Ability to verify and control the dose deposition

Accelerators parameters driving the technology choice

- Energy: defines the range in the patient (230 MeV enough)
- Energy definition: defines the range accuracy and the distal falloff
- Beam current : defines the dose rate (10¹¹ p/sec enough)
- Beam current stability and noise : defines ability to use wobbling and scanning
- Accurate and fast beam current control: needed for conformal therapy

Consequences of clinical considerations on facility design

- The most important elements defining the system performance are the Nozzle and the Pateint Positioner
- The Accelerator and the Beam Transport System have much less impact on the system performance
- The Accelerator should be transparent (ignored) at treatment level
- The simplest accelerator meeting the clinical specifications in a cost-effective way should be selected

Equipment proposed by IBA to meet the clinical specification

- 230 MeV Proton Accelerator (isochronous cyclotron + energy selection system)
- Beam Transport and Switching System
- Isocentric Gantries (typically 3) and on Fixed Beam Line
- Nozzles for scattering and wobbling (scanning compatibles)
- Robotic Patient Positioners
- Control System and Safety System

Three Methods of Beam Spreading

- Double scattering for small to moderate fields
- Wobbling for the largest and deepest fields
- Pencil Beam Scanning

Conclusion: Advantages of the IBA Proton Therapy System

- Meets state-of-the-art clinical specifications
- Specifically designed as an in-hospital system
- Fully automated system
- Intrinsic simplicity and reliability
- Fast access to internal parts
- Reduced costs:
 - lower building space requirements
 - fewer personnel
 - less operation and maintenance costs