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요  약 

 

 원전 디지털 계측제어계통을 개발할 때 소프트웨어 요구명세의 정확도, 완전성과 

안전성 보장은 최종 시스템 개발성공과 인허가 획득에 아주 중요한 요소가 된다. 원전 
계측제어계통의 디지털화 추세에 따라 원자력산업의 특수성인 안전성 확보와 컴퓨터 
소프트웨어 안전성 심사 및 개발기준이 되는 국제표준 정립을 위해 국제원자력기구 
(IAEA), 국제전기기술위원회 (IEC), 국제전기전자공학회 (IEEE) 등에서 표준화 노력을 
기울이고 있으며 현재 한국원자력연구소에서는 소프트웨어 공통모드고장 문제에 대한 
대책의 일환으로 일련의 필수안전 소프트웨어 평가 방법론들을 개발하고 있다. 본 
보고서에서는 새롭게 개정되는 국제표준의 요건과 한국 원자력 안전기술원의 차세대 
원자로 안전 규제지침을 만족하고 소프트웨어 공통모드고장의 대책이 될 수 있는 차세대 
원자로 디지털 계측제어 소프트웨어 요구명세 평가 절차를 개발하였다. 현재 원자로 
안전 규제지침에서는 미국 원자력 안전규제 위원회 (NRC)의 규제지침 (Reg. Guide) 
1.172에 따라 원전 안전 소프트웨어 요구명세 관련 기준을 제시하고 있다. 이 보고서는 
차세대 원전 안전 소프트웨어 요구명세를 평가 할 때 상위법과 표준들에서의 요건의 
만족여부를 평가할 수 있도록 인도하는 지침서이다. 이 지침서 1장에서는 원전 
소프트웨어 요구명세 공학에 대한 소개와 정형적 요구 명세 기법과 요구명세 안전성 
분석 기법 등을 종합 정리하였다. 2장에서 차세대 원전 소프트웨어 요구명세를 평가하기 
위해 개발한 평가항목 별 평가 절차와 요구명세 단계에서의 안전성 분석을 위한 평가 
절차를 기술하였다.  
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Abstract 
 
The accuracy of the specification of requirements of a digital system is of prime importance 
to the acceptance and success of the system. The development, use, and regulation of 
computer systems in nuclear reactor Instrumentation and Control (I&C) systems to enhance 
reliability and safety is a complex issue. This report is one of a series of reports from the 
Korean Next Generation Reactor (KNGR) Software Safety Verification and Validation (SSVV) 
Task, Korea Atomic Energy Research Institute, which investigates different aspects of 
computer software in reactor I&C systems, and describes the engineering procedures for 
developing such a software. The purpose of this guideline is to give the software safety 
evaluator the trail map between the code & standards layer and the design methodology & 
documents layer for the software important to safety in nuclear power plants. Recently, the 
requirements specification of safety-critical software systems and safety analysis of them are 
being recognized as one of the important issues in the software life cycle, and being 
developed new regulatory positions and standards by the regulatory and the standardization 
organizations such as IAEA, IEC, NRC, and IEEE. For example, NRC endorsed the IEEE 
standard 830 by Regulatory Guide 1.172, Software Requirements Specifications for Digital 
Computer Software Used in Safety Systems of Nuclear Power Plants. We presented the 
procedure for evaluating the software requirements specifications of the KNGR protection 
systems. We believe it can be useful for both licenser and licensee to conduct an evaluation 
of the safety in the requirements phase of developing the software. The guideline consists of 
the requirements engineering for software of KNGR protection systems in chapter 1, the 
evaluation checklist of software requirements specification in chapter2.3, and the safety 
evaluation procedure of KNGR software requirements specification in chapter 2.4. 
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1. Software Requirements Engineering 

1.1 Introduction 
The accuracy of the specification of requirements of a digital system is of prime importance 
to the acceptance and success of the system.  It has been shown that a significant portion 
of the problems with software-based systems can be traced back to incorrect or incomplete 
requirements specification.  When the software-based system is a replacement for an 
existing analogue system, it is a mistake to just take the requirements specification for the old 
system and use it for the new digital system, since the latter system has different 
characteristics to the former.  The analogue system requirements specification can be used 
as a starting point, but the digital characteristics must be taken into account when preparing 
the new requirements specification. 
 

It is important to make sure that the requirements specification is accurate and 
complete. Software-based equipment brings with it unique opportunities and unique 
concerns compared to analogue equipment. Therefore, it is important to make sure that 
these differences are taken into account when the requirements specification is developed. 
 

The requirements specification needs to completely define the functions of the system 
and the qualification requirements, including acceptance criteria. The requirements 
specification must also address system issues including defining the external and internal 
interfaces and hardware-software interactions. 
 

We have developed an improved process for evaluating the requirements specification 
to assure correctness and completeness.  This includes making sure that the coverage of 
potential abnormal condition and events is adequate and properly addressed in the 
requirements specification. 
 

1.1.1 Classification 

Requirements can be classified from several kinds of viewpoints. The good 
classification of requirements can reduce the implementation and assessment cost of 
the software-based I&C systems. That is, the requirements must be well classified by 
the criticality level of the target system, by system structures, by subject areas, and by 
whom required them. First of all, by classification of criticality level, the requirements 
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can be classified as follows: 
 
z Requirements for software-based safety I&C systems 

9 Requirements for new software-based I&C systems 

9 Requirements for upgrades using software-based I&C systems 
z Requirements for software-based non-safety I&C systems 

9 Requirements for new software-based I&C systems 
9 Requirements for upgrades using software-based I&C systems 

 

This classification should follow the general classification scheme. The important 
factor to be cost-effective when implementing and assessing the requirements is the 
complete separation of these two requirements. 
 

Second, in general, the requirements can be classified by the system structures 
which consist of the software-based I&C system, as follows: 

z System functional requirements 
z Hardware requirements 
z Software requirements 
z Human factors(HMI) requirements 
z Interface requirements among above requirements 

 

Third, by subject areas, as follows: 
z Safety requirements 
z Reliability requirements 
z Availability requirements 
z Level of automation requirements 
z Security requirements 
z Timing requirements 
z Environmental requirements (EMI, RFI, Seismic) 
 

Last, by who’s requirements, as follows: 
z Utility requirements (e.g. EPRI URD) 
z Regulatory requirements (Member country’s) 
z IAEA/IEC requirements 
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1.1.2 Good requirements 

Characteristics of good requirements should be a) Correct, b) Unambiguous, c) Complete, d) 
Consistent, e) Ranked for importance and/or stability, f) Verifiable, g) Modifiable, h) 
Traceable. 

 

To the utilities, independent assessors, and regulators, a good SRS should provide 
several specific benefits, such as the following: 
 

9 Establish the basis for agreement between the customers and the suppliers on what 
the software product is to do.  

9 Reduce the development effort.  
9 Provide a basis for estimating costs and schedules.  
9 Provide a baseline for validation and verification.  
9 Serve as a basis for enhancement.  

 

1.1.3 Formal methods and tool support for requirements elicitation, 
specification, and validation 

A good practical formal method and its tool support can be a direct solution for the cost 
problem of the software-based I&C systems. But, according to my limited knowledge, I have 
not found such a practical and technically sound formal method for specifying the 
requirements of a safety-critical I&C systems. Under this topic, this chapter will cover the 
assessment of the existing formal methods and their available tools. There are many 
controversial factors in this topic, and so we will follow the definitions and requirements on 
formal methods in IEC 880 supplement 1.  

 
The objective of the section on formal methods is to discuss the impact the use of 

formal methods, in particular in the requirement phase, have on the assessment of a system. 
It is claimed that formal methods promote the finding of errors, inconsistencies and missing 
elements in the requirements. They also facilitate the understanding of the functioning of a 
planned system at an early stage. The problem which will be discussed in the chapter on 
formal methods is how the use of formal methods in an actual system specification will 
influence the assessment of the system. E.g. to which degree can one state that the use of 
formal method will increase the safety integrity level of a system, as claimed in certain 
standards an guidelines. A potential advantage of using formal specification methods is that 
they are often facilitated with tool support, and an evaluation of such tools should also be 
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included in the assessment process. 
 

 

1.2 Requirements Engineering for Software-based I&C Systems of 
NPP 
 
Software-based I&C systems of nuclear power plants must deal with continuous state 
changes as well as discrete and instantaneous state changes. Most of process control 
systems are hybrid systems where digital devices, usually modeled by finite automata, must 
sense the changes in analog physical phenomena, which is typically modeled by differential 
equations. It is the interaction of continuous and discrete changes that make hybrid systems 
interesting and nontrivial targets for formal analysis. Majority of hybrid systems also 
possesses real-time and safety-critical characteristics, as is the case for a 
computer-controlled safety system for a nuclear power plant. We refer to such systems as 
hybrid real-time safety system or HRTS in short. Safety is a system property, and the 
requirements should describe the program behavior as a relation between entities in the 
system's environment. Some of these entities are continuous and others are discrete, and an 
ideal safety analysis technique must be able to validate the logical contribution of the 
software elements to the physical hazard. 
 
   There are many problems associated with requirements engineering for HRTS, 
including problems in completeness, expressiveness, and analyzability. These problems may 
lead to poor specifications and the development of a system that is later judged 
unsatisfactory or unacceptable.  
 
    Requirements engineering can be decomposed into the iterative activities of 
requirements elicitation, specification, and validation. Most of the requirements techniques 
and tools today focus on the specification, that is, the representation of the requirements. 
This report concentrates instead on a conceptual specification that can be located between 
an elicitation and a quantitative specification, and a safety analysis by causality information 
that is produced from the conceptual specification. This safety analysis is one of the 
validation activities.  
 
   Requirements engineering is a key problem area in the development of complex 
HRTS. The development and modification of requirements specifications has long been 
identified as an important and difficult part of software development. Many of the problems in 
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creating and refining a system can be traced back to elicitation issues [Chri92]. Research 
efforts for software engineering should be directed towards methods and tools needed to 
improve the requirements analysis process, and, in particular, to those providing more 
support to the elicitation of requirements.  The list of ten elicitation problems given in one 
source [McDe89] could be classified according to this framework as follows: 
 

z Problems of scope 
 - The boundary of the system is ill defined 
 - Unnecessary design information may be given 

z Problems of understanding 
 - Users have incomplete understanding of their needs 
 - Users have poor understanding of computer capabilities and limitations 
 - Analysts have poor knowledge of problem domain 
 - User and analyst speak different languages 
 - Ease of omitting “obvious” information 
 - Conflicting views of different users 

- Requirements are often vague and untestable 

z Problems of volatility 
 - Requirements evolve over time 
 

1.3 Formal Methods for Requirements Engineering 
 
Formal methods are perceived by the community as a way of increasing confidence in 
software for safety critical systems. They are mathematically based techniques, often 
supported by reasoning tools, that can offer a rigorous and effective way to model, design 
and analyze computer systems. Evidence shows that effective ways of using formal methods 
for safety critical systems are still an open problem [Leve90, Barr92, and Liu95]. This is 
because during the process of software development for safety critical systems, not only the 
functional behavior of software has to be considered carefully, but we must also demonstrate 
that the developed software satisfies the overall safety requirements. 

 

It is possible to distinguish five types, or classes, of formal methods that can be 
roughly characterized as follows:  

 
1. Model based approaches --- giving an explicit, albeit abstract, definition of system 
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(program) state and operations that transform the state. 
2. Algebraic approaches --- giving an implicit definition of operations by relating the behavior 

of different operations without defining state. 
3. Process algebra --- giving an explicit model of concurrent processes and representing 

behavior by means of constraints on allowable observable communication between the 
processes. 

4. Logic based approaches --- a variety of approaches using logic to describe properties of 
systems, including low level specification of program behavior and specification of system 
timing behavior. 

5. Net based approaches --- giving an implicitly concurrent model of the system in terms of 
(causal) data flow through a network, including representing conditions under which data 
can flow from one node in the net to another. 

 
   There are significant differences between the expressive power and analyzability of 
the methods. Formal methods can be used in two distinct ways. First, they can be used for 
production of specifications that are then used as the basis of a fairly conventional system 
development. Second, formal specifications can be produced as above, and then used as a 
basis against which the correctness of the program is verified. 
 
   Formal methods can assist people to do requirements analysis thoroughly and to 
express precise requirements specifications. Many formal notations and methods have been 
used so far in industry for the purpose of requirements analysis and functional specification 
of safety critical systems. One of the main objectives for requirements safety analysis is that 
requirements specification does not allow executions that would lead to catastrophic failure in 
its intended operational context.  
 
   Demonstrating to the complete satisfaction that a method has achieved this 
objective is generally accepted to be impossible [Leve86]. In essence the difficulty is that we 
do not have any way of knowing that we have identified all the possible threats to, or failure 
modes of, the system so we can never be sure that our specifications are complete. However 
it is possible to apply techniques that reduce the likelihood that the specification is 
catastrophically flawed 
 
   We cannot have complete confidence that we have achieved safety integrity. 
Instead we need to achieve assurance, or confidence. Assurance is based on a number of 
issues including the level of trust we have in the individuals carrying out the development, etc. 
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However, one of the main contributing factors to assurance is the evidence produced during 
software development, and this in turn derives from the verification and validation activities 
that we carry out throughout the software development process 
 
   Safety assurance can be thought of as confidence based on objective evidence. We 
can say that the greater is our comprehension of some artifact, the greater is our confidence 
about the dependability of the artifact.  

 

   The results of requirements analysis are the primary basis for communication with 
the user and customer. For this reason it is desirable that the representation should be as 
precise as possible, e.g. formal. It is also necessary that requirements be intelligible to the 
customers as one of the primary forms of validation.  
 
   The use of formal methods in the requirements phase has added the possibility of 
animation to the already noted advantages of unambiguity, completeness and consistency 
[Jaff88]. Notations become more complete, addressing not only functionality but also 
non-functional requirements such as timing. However, they have not yet been able to 
combine power with expressiveness and intuitiveness, and there is still a long way to go to 
make the notations presentable to the user without loss of precision. 
 

1.3.1 Strengths of Formal Methods 

 
z Precision: Formal specifications can be very precise definitions because the semantics 

of the notations are well defined. The direct benefit of the precision is that it reduces, or 
even eliminates, the risk of ambiguity and misinterpretation of specifications.  

z Abstraction: Abstraction is one of primary intellectual tools for coping with complexity and 
it aids clarity by ‘drawing away from’ details that are not germane to our interests. 

z Concise: Clarity also arises from conciseness. Formal notations can be much more 
compact than equally clear natural language descriptions whilst normally being more 
precise. 

z Manipulability: There are well-defined rules for analyzing and perhaps transforming 
formal specifications. This manipulability property can be used to show consistency of 
specifications and to derive important consequences of specifications. 
 

Errors due to misunderstandings are reduced. As formal specifications are 
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unambiguous, communication between people involved in requirements analysis, 
specification construction, design and implementation via the formal specifications is 
enhanced. Therefore, errors due to misunderstandings are reduced.  

 
Validation of requirements specifications becomes easier. Because of the precision 

of formal requirements specifications, every task specified can be precisely interpreted thus 
enhancing the clients' ability to scrutinize the correctness of formal requirements 
specifications. 
 

1.3.2 Weaknesses of Formal Methods 

 
z Clearly it is extremely valuable to remove doubts associated with software development 

but, unfortunately, most evidence suggests that the primary source of (significant) 
software errors is the specification and safety critical systems are more prone to this sort 
of problem [Leve86]. This means that the mathematics, of itself, is insufficient to assure 
safety. It should be noted that we can use proof techniques to assist in validation, e.g. by 
deriving safety properties from a specification, but this simply reduces the ‘gap’ between 
formalisms and the ‘real world’, and doesn’t eliminate it.  

z Another major limitation is to do with interpretation of specifications. Formal 
specifications do not just have an interpretation in terms of the underlying mathematics, 
they are also interpreted by software engineers in terms of a computational model and 
by system users in terms of a model of the use of the system in its operational 
environment. The issue of ambiguity then becomes not one of the existences of a unique 
model for the specification in the underlying logic but of compatibility of interpretations 
made in different domains by individuals with differing backgrounds and knowledge.  

z Formal specifications are difficult to read. The reasons for this limitation are twofold. The 
first is that the majorities of people working in the computing industry at present are 
accustomed to traditional informal methods and are not well trained in formal notations. 
The second reason is that mathematical notations are usually more difficult to 
understand than informal descriptions.  

z Correctness proofs are resource-intensive. This is because considerable time is required 
to produce formal specifications. Furthermore, since there is intrinsic difficulty in 
performing correctness proofs automatically, proofs have to be done manually or 
interactively with machines, which is resource-intensive. Development costs increase. 
The main reason for this limitation is that many companies and projects need to invest 
more money for training their staff in formal methods technology.  
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z Formal specifications can still have errors. No formal method so far can provide 
automatic support to semantic consistency checking for formal specifications.  

z Environments to support the use of formal methods are not available. Tools to support 
the use of some formal methods do exist. However, none of them are powerful enough 
to support the whole activity of using formal methods.  

 

1.4 Related Works 

1.4.1 Formal Methods 

 
There are much kinds of formal notations, methods, and supporting tools for 

specifying and verifying the requirements of real-time systems. Most of them are methods for 
safety-critical, embedded, and reactive systems. There are pointers to information on formal 
methods available around the world on the World Wide Web (WWW).1 Many researchers 
had conducted the comparison and evaluation of existing methods [Barr92, Liu95, and 
Stol98]. According to the survey, the main conclusion was that most of the existing formal 
methods were both over-sold and under-used, and the major reason not to used widely in 
industry was their complexity and difficulty. The mathematics of a formal verification is not 
sufficient to assure the safety of the physical system because the primary source of software 
error is the requirements specification itself. We focus our survey into the subset of formal 
methods, those for hybrid real-time safety system, in this report.  
 
   More and more real-life processes, from elevators to aircraft, are controlled by 
programs. These reactive programs are embedded in continuously changing environments 
and must react to environment changes in real time. Obviously, correctness is of vital 
importance for reactive programs. Yet traditional program verification methods allow us, at 
best, to approximate continuously changing environments by discrete sampling. A 
generalized formal model for computing systems is needed to faithfully represent both 
discrete and continuous processes within a unified framework. Hybrid automata present such 
a framework.  
 
   A hybrid system consists of a discrete program within an analog environment. 
Hybrid automata are generalized finite-state machines for modeling hybrid systems. As usual, 
                                        

1  In the web address, http://www.comlab.ox.ac.uk/archive/formal-methods.html, there are 

pointers to information on formal methods available around the world on the World Wide Web (WWW). 
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the discrete transitions of a program are modeled by a change of the program counter, which 
ranges over a finite set of control locations. The global state of a system changes 
continuously with time according to the laws of physics. For each control location, the 
continuous activities of the environment are governed by a set of differential equations.  
 
   In a linear hybrid automaton, for each variable the rate of change with time is 
constant --- though this constant may vary from location to location --- and the terms involved 
in the invariants, guards, and assignments are required to be linear. An interesting special 
case of a linear hybrid automaton is a timed automaton [Male92]. In a timed automaton each 
continuously changing variable is an accurate clock whose rate of change with time is always 
one unit. Furthermore, in a timed automaton all terms involved in assignments are constants, 
and all invariants and guards only involve comparisons of clock values with constants.  
 
    Most of formal methods [Alur93, Chao91, Male92, Ravn93, Heit96a, Henz95, 
Henz95a, Ostr89, and Henz94] for requirements engineering of HRTS are effective in a 
partial correctness verification, but have cognitive problems in elicitation and specification 
including the problem of cognitively unbalanced steps in requirements engineering phase, as 
follows: 
z When system and software engineers elicit and specify the requirements of HRTS 

through the qualitative and causal thinking, the formal methods have a difficulty to be a 
communication tool for a mutual understanding of the target systems because they 
require rigorous and quantitative thinking. 

z In a process control loop for HRTS, because it is impossible to model mathematically the 
non-linear and continuous properties of the controlled process, an approximation 
approach is indispensable. A physical approximation approach by the qualitative physics 
is better than the mathematical approximation approaches by fuzzy, probability, and 
abstract interpretation in eliciting and specifying the physical properties of the controlled 
process and the controller in HRTS process-control loop. 

z The informal and semi-formal methods are cognitively appropriate for elicitation and 
specification. But, they can produce incorrect analysis result because of the cognitive 
burden in the validation and safety analysis. 

z Most of existing methods, such as Hybrid Automata [Alur93], Timed Automata [Male92], 
Statechart [Pnue89], RSML [Leve94], SpecTRM-RL [Leve97], Four-variable methods 
[Parn90] are based on the black box specification of the information hiding principle that 
is similar to the Whole-Part decomposition in a cognitive systems engineering. The 
Whole-Part decomposition emphasizes to elicit and specify the HOW from the WHAT 
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only. It is difficult to analyze the safety by tracing the Why information because the WHY 
is included in the WHAT implicitly. 

 
Formal methods for HRTS attempt to describe non-linear physical phenomena using 

quantitative differential equations and time functions [Ostr89, Alur93, Male92, Ravn93, 
Henz95a, Lemo96]. While these are effective in formal verification of the specification in part, 
they make the elicitation and specification difficult. The rigorous and quantitative formal 
languages are not appropriate for understanding the problem of HRTS in a conceptual 
requirements engineering phase. 
 
    In order to overcome the difficulty and the computational complexity problems, 
recently, many researchers are trying to approximate the quantitative formal methods. For 
example, Henzinger and Ho proposed the model checking and abstract interpretation 
strategies for the hybrid automata [Henz95b, Henz94]. Puri and Varaiya suggested the 
verification method for the hybrid system using abstraction [Parn90]. The duration calculus 
that requires the quantitative specification and analysis [Hans98, Ravn93] is approximated 
into the probabilistic duration calculus [Liu93]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Four-variable method  

     
The discrete approximation was the most successful technique in the practical 

industry. The Four-variable approach [Parn90], one of the SCR (Software Cost Reduction) 
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methods [Heit96a, Heit96b, Cour93, Wols93], has been used to state requirements for hybrid 
systems such as the Wolsong SDS2 and the Darlington shutdown system. Requirements are 
stated as mathematical relations involving the monitored (M), controlled (C), input (I), and 
output (O) variables as shown in Fig. 1. 
 

While NAT describes any constraints on behavior, such as those governed by 
physical laws, REQ defines the additional black-box constraints to be enforced by the 
controller. There are three additional relations, IN, OUT, and SOF, relevant to the controller 
specification [Parn90], and the proposition (1) can be rewritten as follows:  

 
NAT(M) and OUT(SOF(IN(M))) Æ REQ(M)  (2) 

 
There is a common semantic basis among Four-variable model, Hybrid Automata, 

and QFM. That is, all these approaches provide a tool to describe the physics of the plant, 
NAT relation in the Four-variable approach, quantitative differential equations in HA, and 
qualitative differential equations in QFM. NAT must be carefully interpreted whenever it is 
modeled by a discrete approach like SCR by Heitmeyer, or continuously modeled by HA, or 
qualitatively approximated by QFM. 
 
    Parnas [Cour93] and Heitmeyer [Heit96a] successfully used a modified 
Four-variable approach in which discrete approximation is used where tabular and formal 
notations are used to document the REQ relations. The same approach has been used to 
document the Wolsong SDS2 requirements. Recently, Heitmeyer and her colleague [Bhar97] 
tried to perform model checking of hybrid systems using timed automata and PVS [Arch97]. 
They, however, need human guidance in model checking for reasoning about 
non-deterministic automata. 
 
    These approaches are primarily intended to reduce a computational complexity by 
approximating the continuous physical phenomena mathematically. The QFM, however, tries 
to approximate the physical phenomena of HRTS qualitatively and physically, by using the 
idea of qualitative reasoning based on the physical knowledge on HRTS, in order to reduce 
not only the computational complexity but also the difficulty.  
 
    Our work is motivated by Coombes and Moffet’s causal logic-based approaches 
[Coom93, Coom95, Moff96]. Causal reasoning is an effective and natural approach [Find96] 
when documenting and analyzing behavior for complex systems. Cognitive approach to 
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system engineering task has been the subject of extensive research as documented in 
[Rasm94]. Software engineering researchers have recently begun to investigate cognitive 
aspects of requirements engineering, and the intent specification approach, proposed by 
Leveson [Leve98, Modu96], is such an example. The QFM is an approach where we try to 
combine advantages offered by formal specification and qualitative reasoning techniques in 
order to allow systematic software safety analysis in the early phases of requirements 
engineering for HRTS. The causal reasoning techniques in qualitative physics domain are 
introduced in next chapter. 
 
In summary, a formal method for HRTS should have the following features in order to be a 
good formalism for specifying and validating the software requirements; 
 
z Formality 

In order to have the precision of the specification and the analysis, a method should 
have an appropriate formality. However, a formal method should have a different formality for 
each phase of the software development. It can be classified as informal, semi-formal, and 
formal. 
z Cognitive approach 

A formal method should be balanced cognitively in each phase of the requirements 
engineering: elicitation, specification, and validation. It should be easy to use, but precise 
enough to catch all the important information required at the phase. For example, there are 
cognitive approaches for requirements elicitation and specification, such as goal-based 
approach, intent specification, causality-based specification and analysis. 
z Abstraction 

Abstraction is one of primary intellectual tools for coping with complexity. Because it 
is impossible to model mathematically the non-linear and continuous properties of the plant, 
an approximation approach is indispensable. The physical approximation approach is better 
than a mathematical approximation one because it do not need re-interpretation of the 
approximated specification and analysis.  
z Completeness 

A formal method for HRTS should have the ability to model the continuous plant and 
the discrete controller at the same time, and the ability to validate the satisfaction of the 
proposition (1). Furthermore, it must have the mathematical rigorousness to analyze the 
timing property and its safety property of the HRTS. 
z Integrated approach 

A formal method for HRTS should be able to integrate with other formal analysis 
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methods such as FTA semantically or procedurally. 
 

Even though the formal methods for HRTS have their own usage and purpose, we 
can roughly compare the existing methods using above features as follows: 

 

Table 1 Comparison of formal methods for HRTS 
   Features 

Notations 
Formality Cognitively

Balanced 
Abstraction Completenes

s 
Integratio

n 
DC HH LL LL HH HH 
HA HH L LL HH L 

Linear HA H L L HH L 
Abstracted HA H L M HH L 

TA H L M HH L 
Petri nets M H H H H 
Statechart M H H M H 

FSM M H H M H 
FVA L H H M L 
QFM H HH HH HH H 
NL LL LL HH LL L 

 
HH: High-High, H: High, M: Medium, L: Low, LL: Low-Low 
DC: Duration Calculus 
HA: Hybrid Automata 
TA: Timed Automata 
FVA: Four Variable Approach 
QFM: Qualitative Formal Method 
NL: Natural Language 

 
 

1.4.2 System and Software Safety Analysis Techniques 

 
A significant problem of developing software for safety critical systems is how to guarantee 
that the functional behavior of developed software will satisfy the corresponding functional 
requirements and will not violate the safety requirements for the associated overall system. In 
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order to solve this problem, it is important to analyze thoroughly the safety properties of the 
overall system, to achieve accurate software functional requirements and to verify properly 
the implementation of the software. 
 
   The interface between system and software, requirements analysis, is a key activity 
in the process of software development for achieving the safety goal of systems. The quality 
of requirements analysis determines the quality of requirements specifications, which directly 
affects the quality of the developed system. 
 
   It is hard to bound precisely the environment that should be considered in 
requirements analysis, but it should cover at least those systems that interact directly with the 
target system. In the case of safety critical systems the environment model should cover 
sources of threats to the system and other systems or equipment in which hazards could 
arise due to failure in the target system. 
 
   We believe that identification of appropriate safety requirements is a prerequisite for 
any useful safety critical application of formal methods. Therefore, safety analysis methods 
must be incorporated in the lifecycle of formal methods applications. It is important to realize 
that formal methods are not alternatives to safety analysis; the latter gets as close to 
analyzing physical reality as possible, while the former deals in models and abstractions.  
 

Because software safety can be analyzed from the relationship between a logical 
fault of software and a physical hazard of a system, the software safety process should be a 
subset of the system safety process. However, current approaches for analyzing the software 
safety, originated from system safety techniques, do not provide formal basis of conducting 
systematic safety analysis of software, in particular, for HRTS software requirements.  
 

Several techniques for safety analysis have been used by industry for decades, and 
some have attracted great attention in the research community. They include Fault Tree 
Analysis (FTA), Failure Modes, Effects and Criticality Analysis (FMECA), Failure Propagation 
and Transformation Notation (FPTN), Hazard and Operability (HAZOP), and Preliminary 
Hazard Analysis (PHA). In Leveson’s book, “Safeware” [Leve95], there is an excellent 
summary on techniques for system safety and computers. It is important to recognize that no 
analysis technique can guarantee completeness. FTA provides one single structure for 
specifying software, hardware, and human actions and interfaces with the system. Because 
FTA is already familiar to system engineers, we have chosen it as a basic tool for CRSA. 
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Fault Tree Analysis (FTA) is an analytical technique used in the safety analysis of 

electromechanical systems. An undesired system state is specified, and the system is then 
analyzed in the context of its environment and operation to find credible sequences of events 
that can lead to the undesired state. A fault tree thus depicts the logical inter-relationships of 
basic events that lead to the hazardous event.  
 

FTA has been used for the assessment of system reliability and safety for decades 
and has been developed into an well-understood, standardized method with wide 
applications throughout the discipline of safety and reliability engineering. A comprehensive 
introduction to fault tree analysis is the extensive and authoritative Fault Tree Handbook 
[Vese81].  
 

Traditional fault tree analysis is a probabilistic method in which potential causes of 
some failure (“top event”) are organized in a tree structure reflecting causality. High-level 
events can be caused by various combinations of lower-level events, with the principal logical 
connectives used in the tree being AND and OR gates, which have meanings analogous to 
those traditionally used in electronic circuit design. Priority-AND gates, exclusive-OR gates 
and INHIBIT are also available for use. 

 
Existing software FTA techniques can be grouped as their application phases of the 

software lifecycle. That is, FTA of software requirements [Hans94 and Liu96], FTA of the 
software design specification [Cha91, Fene93 and Subs95], and FTA of the software code 
[Frie95, Clar93, Leve83, Leve87, Cha88]. However, its industrial practice depends heavily on 
technical expertise of human analysts, the understandability of the system physics, and is 
often ad hoc. 

 
Leveson and colleagues [Leve83] were the first to apply fault trees to the safety 

analysis of software at a statement level. Software fault trees are derived from the software 
(programs) based on the semantics of statements (e.g. sequential, conditional and iteration 
statements). Unfortunately, the informal nature of the technique is its major weakness 
because the success of the technique is highly dependently on the ability of the analysts.  
 

Template-based FTA [Cha88] is given for each major construct in a program, and the 
fault tree for the program (module) produced by composition of these templates. The 
templates are applied recursively, to give a fault tree for the whole module. As they are 
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applied, the fault tree templates are instantiated, e.g. in the above template the expressions 
for the conditions would be substituted, and the event for the THEN part would be replaced 
by the tree for the sequence of statements in the branch. Software FTA can go back from a 
software hazard, through the program, and stop with leaf events that are either “normal 
events” representing valid program states, or external failure events. If the hardware failure 
event probabilities are known, then the top event probability can be determined. Note that 
this does not rely on a statistical analysis of software reliability.  
 

The semantics of fault trees is closely linked to that of Dijkstra's weakest precondition 
(wp) calculus [Clar93]. One of the practical advantages of software FTA seems to be that it 
has the rigor of the wp calculus, but it is presented in a form that is familiar to safety 
engineers. The difficulty with sequential composition is thus a major drawback, although the 
links to wp calculus suggest there may be a fruitful area of research in linking formal 
verification and fault tree analysis. A recent book [Frie95] treats sequential composition in a 
rather different way, which may effectively address this semantic problem using the concept 
“program segment prefix”, but there is still a challenge. They interpret the semantic of FTA as 
a Hoare’s logic [Best96] rather than Dijkstra’s wp calculus [Dijk76]. 
 

Clark and McDermid proposed a more traditional view of the application of fault trees 
to software [Clar93]. It is suggested that weakest preconditions are used for program 
specification and validation, and software fault tree analysis is employed for a system-wide 
analysis of hazards. The scope of software fault trees can be increased to include, for 
example, compiler errors, control errors, and memory errors, as well as logical errors. Thus a 
more realistic view of the software's role in system hazards can be given.  
 

Hansen and colleagues have recently developed fault trees into a notation for 
describing software safety requirements for design specifications [Hans94]. Specifications 
are given in a real-time, interval logic, based on a conventional dynamic systems model with 
a state changing over time. Fault trees are interpreted as temporal logic formulae giving a 
cause effect relationship between states. It is shown how such formulae can be used for 
deriving safety requirements for design components. Similar work on formalization of fault 
trees is also described in [Gors95].  
 

Fenelon and colleagues proposed an integrated safety analysis method that consists 
mainly of Hierarchical FTA (HFTA) and Failure Propagation and Transformation Notation 
(FPTN) [Fene93]. They insist that while Leveson’s template-based FTA is a depth-first and 
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bottom-up approach, HFTA is a top-down and breadth-first method although compatible with 
Leveson’s methods. FPTN is a new notation to integrate software FTA and FMECA, and is 
somewhat analogous to traditional data flow-based design notations, although instead of 
showing normal data flow between elements in a system, it describes the propagation and 
transformation of failures. 

 
Subramanian and colleague proposed ideas to analyze the safety of software in 

requirements and design phases, Software Requirements Safety Analysis (SRSA) and 
Software Design Safety Analysis (SDSA) [Subs95]. SRSA and SDSA are also software FTA 
techniques based on the statechart models [Hare86, Hare87]. They suggested a lot of rules 
to generate and verify the fault trees, but there are still questions how to verify the 
completeness and consistency of the rules. Also there is a limitation to apply these ideas to 
HRTS domain because the statechart is a discrete model.  

 
Liu and McDermid also proposed a model-based software FTA method [Liu96]. They 

modeled the physical system behavior using an entity-relationship concept. But, there is a 
drawback of this approach in analyzing the causality of failure behavior, the causal relations 
of system behavior are modeled by the structural information of system and static relations 
between components, such as connection, contain, control, input, output, and so on. 
 
Current approaches for analyzing the software safety, originated from system safety 
techniques, do not provide formal basis of conducting systematic safety analysis of software, 
in particular, for HRTS software requirements. Because software safety can be analyzed from 
the relationship between a logical fault of software and a physical hazard of a system, the 
software safety process should be a subset of the system safety process. Also, because the 
behaviors of HRTS are determined by the interaction between the continuous plant (P) and 
the discrete controller(C), we must consider the causal relations between the behavioral 
properties of the controller software and the behavior of the combined models (P and C). 
 

In summary, a safety analysis method for HRTS should have the following features in 
order to be a good solution for analyzing the safety of the requirements; 

 
z Formality 

In order to have the precision of the analysis, a method should have an appropriate 
formality. However, a safety analysis method should have a different formality for each phase 
from system to software development.  
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z Cognitive approach 
A safety analysis method should be cognitively balanced in each phase from system 

to software, and also in requirements, design, and coding phases of the software. It should 
be easy to use, but precise. For example, there are cognitive approaches such as 
goal-based approach, causality-based safety analysis. 
z Model-based systematic approach 

A safety analysis method for HRTS software should provide a model-based 
approach because the safety of software is tightly related with the plant and controller model. 
It is also preferable to provide a systematic solution such as template-based FTA. 
z Behavioral safety analysis 

Most of the software safety analysis methods based on fault tree analysis are 
recognized as static method. However, the safety analysis method for HRTS software should 
be a dynamic analysis method in order to be able to find the cause of the physical hazard of 
the system from the behavioral aspects of the software. 
z Integrated approach 

A software safety analysis method should be able to be integrated in all dimensions  
  
 Following is the result of the comparison on the existing software fault tree analysis 
methods according to the above features. 

Table 2 Comparison of software fault tree analysis methods for HRTS 
Features 

Approaches 
Formality Cognitively

Balanced 
Model-Based
Systematic 

Behavioral 
Analysis 

Integrated

[Leveson83] L H L L L 

[Cha88] M M H L L 
[Clarke93] H M L L M 
[Hansen94] H L H H L 
[Gorski95] H - - - - 
[Fenelon93] M H H L H 
[Subramanian95] M M H M M 
[Liu96] M M H H M 
CRSA H H H H H 

 
H: High, M: Medium, L: Low, -: Not applicable 
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2. Evaluation Procedure for Software Requirements 

Specification (SRS) 

2.1 Introduction 
A Software Requirements Specification (SRS) should establish the requirements for a 
software system. A Software Requirements Safety Analysis (SRSA) should confirm that the 
requirements do not pose a system hazard. 
 

The SRS can be viewed as a bridge, or connection, between the overall safety 
system design and the software. The design of the safety system can be expected to impose 
certain requirements on the software. The SRS can be viewed as a translation of these 
requirements into language understandable to software engineers, and the addition of 
specific software requirements necessary to achieving the desired behavior of the software 
system. 
 

There are two safety issues involved in a SRS. First, it is necessary to ensure that 
all system hazards that the software is expected to handle are indeed covered by the SRS. 
Second, it is necessary to ensure that the SRS does not add additional hazards to the 
system. The SRSA is one means of analyzing these safety concerns. 
 

2.2 Review Techniques 
There is no single assessment method that can, by itself, provide an adequate level of 
confidence in a SRS or a SRSA. Therefore, we recommend that two or more methods be 
used, where the methods are selected to compensate for one another’s weaknesses. 
One method that should always be used is that of requirements reviews and requirements 
safety reviews. Other possible methods are: 
 
z Requirements modeling 
z Prototyping 
z Formal analysis 
z Metrics 
z Requirements testing 
z HAZOP analysis 
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The results of all the analyses can be combined into a single assessment of the 
quality and safety of the SRS. In general, this will be a qualitative result; in a few cases, a 
quantitative result may be possible. 
 

2.2.1. Reviews 

Reviews can be carried out using checklists. One such list for a SRS, based on the U.S. 
Standard Review Plan, BTP-14, is given in Section 3 below. In addition, there are questions 
about a safety analysis report in Section 4. The SRS review includes questions about safety. 
The first set of questions can be used to examine the SRS for desirable safety properties. 
The second set of questions, on the SRSA, can be used to examine a safety analysis that 
has been carried out on the SRS. Thus, two levels of analysis are possible. In a specific case, 
some choice should be made as to which sets of questions are to be used, based on the 
actual circumstances. 
 

2.2.2. Requirements Modeling 

Models can be used to acquire understanding of an SRS, and to demonstrate that the SRS 
has been correctly constructed. Such models abstract particular aspects of the requirements 
for more intense examination. Different models use different abstractions, and thus yield 
somewhat different sorts of information about the SRS. The following types of models are 
frequently used; details can be found in books on software engineering2. 
 
z Data flow diagrams 
z Finite state machines 
z Petri nets 
z Queueing models 
z Decision trees and decision tables 
z Entity-relationship models 
z Sequence diagrams 
z Use-case diagrams 
z Formal methods 

 

                                        
2 See, for example, Dean Leffingwell and Don Widrig, Managing Software Requirements: A 

Unified Approach, Addison Wesley,2000. 
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The Unified Modeling Language (UML)3 can be used to create models combining 
several of these separate techniques. A valuable use of UML modeling is the activity of 
creating the model. If this can be done, and the result is sensible, then the portion of the 
requirements included in the model is likely to be correct. In any case, the action of creating 
the model is very helpful in understanding the requirements. 
 

We recommend that the requirements review process include modeling of the SRS, 
and suggest that a UML model is appropriate. Creating such a model without adequate tool 
support is difficult, so such a tool should be acquired. 
 

2.2.3. Prototyping 

For a reactor safety system, prototyping is likely to be most useful in modeling data 
communications, particularly if a potential problem is anticipated. This might be the case 
where many separate computers share a single network; a prototype can be constructed of 
the network in order to ensure that there will be sufficient network capacity under worst case 
conditions. Specific guidance on data communications systems is presented in BTP-21. A 
communications system prototype is one method of demonstrating that the guidance here 
has been satisfied. 
 

We recommend the development and use of a prototype only if necessary to 
accomplish the goals set forth in BTP-21. If these goals can be accomplished by some other 
form of analysis, then that will be sufficient. 
 

2.2.4. Formal Methods 

Mathematical analysis of requirements can be quite helpful in determining if requirements 
have been stated with precision and in discovering subtle inconsistencies. There are three 
primary methods in use: Vienna Definition Method (VDM), Z and Parnas Tables. If formal 
methods are used, we recommend the third. This has been used on reactor safety systems 
(at Darlington) with some success.  
                                        

3 See the following books for more information on UML: (1) Grady Booch, James Rumbaugh 

and Ivar Jacobson, The Unified Modeling Language User Guide, Addison Wesley, 1999; (2) James 

Rumbaugh, Ivar Jacobson and Grady Booch, The Unified Modeling Language Reference Model, 

Addison Wesley, 1999; and (3) Bruce P. Douglass, Real-Time UML: Developing Efficient Objects for 

Embedded Systems, Addison Wesley, 2000. 
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The Darlington effort was extremely expensive, but this was at least partially a result 

of imposition of the formal method after the code was finished. This has been found to be 
generally true of formal methods – they need to be used initially and then followed 
throughout the development, or they become too expensive and time consuming to be worth 
while. Perhaps because of the after-the-fact imposition, Parnas added many features to his 
method that appear unnecessary. We believe that a simplified version of this could prove 
helpful in verifying the functional characteristics of the requirements if a formal verification is 
used. 
 

The functions required for reactor safety systems are often described in terms of 
Boolean equations before the software requirements are written. If this should occur, these 
equations are themselves formal mathematical descriptions, and nothing further should be 
necessary. The Boolean equations themselves, of course, are subject for formal verification. 
 

A primary value of translating a requirements specification into any formal language 
is whether or not this can be done. If it can, then the requirements are probably correct. If not, 
or if there is difficulty, then the requirements need some additional work. 
 

We are not recommending that formal methods be used for requirements analysis 
since we are not convinced that the resulting increase in safety is worth the cost when 
compared to other methods of analysis. Be aware, however, that this opinion is not widely 
shared in the academic safety community. 
 

2.2.5. Metrics Collection and Analysis 

We recommend that a small amount of metric information be collected during the 
requirements review activity. This will serve primarily as a baseline for further work, and can 
be useful in assessing the increasing capabilities of the reviewers and in comparing the 
efforts of different sets of verifiers. We suggest that the following three primitive measures be 
collected. 
z Size of the requirements, which may be calculated using full function point analysis, 

number of pages, or any other method which can be used consistently 
z The number and criticality of defects found by each assessment activity 
z The number of staff-hours spent on each assessment activity 

 
From the above it is possible to calculate several derived measures, defect density 
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and review efficiency. Defect density is defined to be the number of defects (of each level of 
criticality) per unit of software size. For example, if function points are used as a size 
measure, then a derived measure could be number of safety-critical defects per function 
point. There is some ambiguity in interpretation of defect density. A low number might mean a 
good requirements specification, or a poor review team. (On the other hand, a high number 
always means a poor specification.) Consequently, some care is required in interpreting this 
number. 

 
Review efficiency is defined to be the number of staff hours spent in reviews per 

defect found. There is also some ambiguity here, in that a high number might mean few 
defects (so that a long time is required to find each), a poorly written specification (so that it 
takes a long time to understand the specification well enough to identify defects) or a poor or 
inefficient review team. 
 

Be particularly careful to focus on the insights gained from collecting metrics, not on 
the numbers. Early collection of metric information, particularly the derived measures, are 
useful mostly to establish a baseline from which to determine future process improvement (or 
the lack thereof). Effort is required in order to penetrate behind the numbers in order to 
discover what the numbers mean. Without a commitment to making this effort, metric 
collection is pointless and should be omitted. 
 

2.2.6. Requirements Testing 

At the end of development, the implementation of the software requirements will be validated 
by some type of testing. This can be very difficult if the requirements are not written so as to 
be testable. We recommend that, as part of the requirements verification activity, one or more 
specific test cases be written for each software requirement. This test should be able to 
objectively determine whether the requirement has been met or not – that is, it should be 
possible to write a test driver that will execute the software for each requirement, and 
compare the result with a pre-determined answer. 
 

The generation of validation tests is independent of whether the software is 
developed in house by the vendor, whether pre-developed software is used, or whether 
Commercial Off-the-Shelf (COTS) software is used. The validation process is much the same 
in concept, though the test driver will be different in each case. It doesn’t really matter if the 
tests generated through this activity are the actual tests used later on, though of course it is 
to be hoped that most of them are usable. The important thing is to determine whether such 
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test cases can, in fact, be developed for the requirements specification. 
 

At this point, the test designer should not worry about practicalities such as the cost 
of carrying out the tests, whether some tests are redundant or about detailed test case 
definitions. For example, a test that a specified degree of reliability has been met may be 
very expensive to run, but the definition of such a test can reveal faults in the specification. 
 

Tests can be generated in concept for the functional requirements (accuracy, 
functionality, reliability, robustness, safety, security and timing). The process characteristics 
discussed in BTP-14 are characteristics of the requirements specification itself, not 
characteristics of the resulting software, so are not testable in the sense meant here. 
 

2.2.7. HAZOP Analysis 

Hazard analysis is used extensively in reactor designs, and can be extended to the software 
design elements with some care. Little extensive experience with software hazard analysis 
has been reported in the literature. John McDermid, York University, U.K., has reported 
success in using HAZOP analysis on software systems, and I wrote a report in 1995 for the 
U.S. Nuclear Regulatory Commission proposing the use of this form of analysis on reactor 
safety systems.4 
 

Software requirements hazard analysis investigates the impact of the SRS on 
system hazards. The analysis recommended in the cited report is to ask HAZOP-type 
questions about the requirements document, as the first step in the software hazard analysis. 
For example, the following questions should be asked about sensor input: 
 
z What should the software do if the sensor is stuck at all zeros? 
z What should the software do if the sensor is stuck at all ones? 
z What should the software do if the sensor is stuck somewhere else? 
z What should the software do if the sensor is below the minimum allowed range? 
z What should the software do if the sensor is above the maximum allowed range? 
z What should the software do if the sensor is within range, but wrong? 
z What should the software do if the physical units are wrong? 

                                        
4 See J. D. Lawrence, Software Safety Hazard Analysis, NUREG/CR-6430, U. S. Nuclear 

Regulatory Commission, February 1996. 
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z What should the software do if the sensor data has a wrong data type or data size? 
 

Similar types of questions should be asked about other functional properties of the 
software requirements. For more information on this topic, see the report. 
 

2.3. Review Topics – Software Requirements Specification 
Acceptance criteria for a SRS are divided in BTP-14 into two sets: functional characteristics 
and process characteristics, as shown in the following table.  
 

Table 3. Review Topics of Acceptance Criteria of SRS 
Functional characteristics Process characteristics 
Accuracy Completeness 
Functionality Consistency 
Reliability Correctness 
Robustness Style 
Safety Traceability 
Security Unambiguity 
Timing Verifiability 

 
An SRS that exhibits the functional and the software development process 

characteristics listed below should be produced. Reg. Guide 1.172, "Software Requirements 
Specifications for Digital Computer Software Used in Safety Systems of Nuclear Power 
Plants," which endorses IEEE Std 830, "IEEE Recommended Practice for Software 
Requirements Specifications," describes an acceptable approach for describing software 
requirements. 
 

The remainder of this section gives each review topic, a discussion of the topic as 
quoted in BTP-14, and review questions that may be asked in order to determine if the topic 
has been satisfied. Some questions are accompanied by quotations from various sources 
and other comments. 
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2.3.1. Functional Characteristics 

2.3.1.1. Accuracy 

Accuracy requirements should be provided for each input and each output variable. Accuracy 
requirements should be stated numerically, and appropriate physical units and error bounds 
should be supplied. Accuracy requirements should include a description of data type and 
data size for each input and output variable. 
 
z Does an accuracy requirement exist for each output variable that has a numerical 

value? 
z Is each accuracy requirement stated quantitatively? 
z Are the physical units stated for each accuracy requirement? 
z Does each accuracy requirement include permissible error bounds? 
z Do all accuracy requirements include data type and data size information? 

 
Simple data types include integer, fixed point and floating point. These can be 

combined to create more complex data types - for example, vectors and matrices. Data size 
is generally given as the number of bits required to accurately represent the variable 
throughout its range. 
 
z Does an accuracy requirement exist for each input variable that has a numerical 

value? 
 

2.3.1.2. Functionality 

Functionality requires that the operations that must be performed for each mode of operation 
be completely specified. Functions should be specified in terms of inputs to the function, 
transformations to be carried out by the function, and outputs generated by the function. 
 
z Are termination requirements specified? Such as power down and shut-down 

sequences. 
z Does the Software Requirements Specification specify completely the functional 

requirements for all modes of operation identified in the System Design Description 
and Safety Analysis Report? Such as refueling, system installation and 
commissioning, test, normal operation, start-up and shut-down, off-normal operation 
and emergency operation. 

z Do functional requirements include starting conditions and system status at the 
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initiation of each function? 
z Do functional requirements specify the input and output variables required by each 

function? 
z Do functional requirements include task sequences, actions and events required to 

carry out each function? 
z Do functional requirements include termination conditions and system status at the 

conclusion of each function? 
z Do functional requirements include directly or indirectly the relevance of each 

function to system reliability and safety? 
z Does the Software Requirements Specification identify those variables in the 

physical environment  that the software must monitor and / or control? 
z Such as temperatures and pressures. 
z Does the Software Requirements Specification represent variables in the physical 

environment by mathematical variables? 
z Does the Software Requirements Specification define the required behavior of the 

controlled variables in terms of monitored variables with the use of mathematical 
functions? Monitored variables are those the software has to measure, and 
controlled variables are those the software is intended to control. The entire set of 
monitored variables must be covered by these mathematical functions. 

z Do functional requirements include the purpose of each function? 
z Do functional requirements include trigger conditions which cause each function to 

operate? 
z Are initialization requirements specified? Such as initial value of variables, start-up 

sequences and power up sequences. 
 

2.3.1.3. Reliability 

Reliability requires that all requirements for fault tolerance and failure modes be fully 
specified for each operating mode. Software requirements for handling both hardware and 
software failures should be provided, including requirements for analysis of and recovery 
from computer system failures. Requirements for on-line in-service testing and diagnostics 
should be provided. 
 
z Are software reliability requirements derived from the reliability requirements of the 

System Design Description? 
z Are software reliability requirements defined quantitatively? 
z That is, in terms of failure rate or mean time to fail criteria. 
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z Are requirements for fault tolerance and graceful degradation defined? 
z Are reliability and availability criteria given for each mode of operation? 
z Does the Software Requirements Specification contain requirements for on-line 

in-service testing and diagnostics? 
 

2.3.1.4. Robustness 

Robustness requires that the behavior of the software in the presence of unexpected, 
incorrect, anomalous and improper (1) input, (2) hardware behavior, or (3) software behavior 
be fully specified. Of particular concern is the behavior of the software in the presence of 
unexpectedly high or low rates of message traffic. 
 
z Does the Software Requirements Specification specify the behavior of the software 

in the presence of unexpected rates for message traffic? This includes both 
unexpectedly high rates and unexpectedly low rates. 

z Does the Software Requirements Specification specify the behavior of the software 
in the presence of unexpected, incorrect, anomalous and improper input data and 
other anomalous conditions? 

z This includes unexpected data types, formats, physical units, accuracies, sampling 
intervals, ranges, options, timing, and frequency of occurrence. 

z Does the Software Requirements Specification specify the behavior of the software 
in the presence of unexpected, incorrect, anomalous and improper hardware or 
software behavior? The following factors must be considered: failures shall be 
identified to a reasonable degree of detail and isolated to the most narrow 
environment; fail-safe output shall be guaranteed as far as possible; if such a 
guarantee cannot be given, system output shall violate only less essential safety 
requirements; the consequences of failures shall be minimized; remedial procedures, 
such as fall back, re-try, system recovery should be considered for inclusion; 
reconstruction of obliterated or incorrectly altered data may be tried; and information 
on failures shall be provided to the operating staff.  

z Does the SRS require (1) the checking of status after exit from any procedure where 
the status is provided and (2) appropriate action if an incorrect status is detected? 

 

2.3.1.5. Safety 

Safety requires that the software functions, operating procedures, input, and output be 
classified according to their importance to safety. Requirements important to safety should be 
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identified as such in the SRS. The identification of safety items should include safety analysis 
report requirements, as well as abnormal conditions and events as described in Reg. Guide 
1.152. 
z Are the software conditions which can lead to a hazardous state identified in the 

Software Requirements Specification? 
z Does the SRS specify the input conditions and the calculations necessary as a 

prelude to the software initiating protective actions? 
z Does the Software Requirements Specification identify and define safe and unsafe 

(i.e., hazardous) reactor states? 
z Are requirements for validity checks on operator and sensor inputs defined in the 

Software Requirements Specification? 
z Does the Software Requirements Specification classify sensors and actuators 

according to their safety criticality? 
z Does the Software Requirements Specification specify software actions which are 

necessary to prevent plant damage, including the necessary calculations and their 
physical background? 

z Does the Software Requirements Specification classify software functions according 
to their safety criticality? 

z Does the Software Requirements Specification specify software actions which are 
necessary to carry out emergency shutdown of the reactor, including the necessary 
calculations and their physical background? 

z Are software actions specified for potential common mode failures as required by the 
System Design Description and Safety Analysis Report? 

 
The following factors are relevant to avoiding common mode failures [IEC 880]: 

defense-in-depth, graceful degradation, management of failures in general, functional 
diversity and (if necessary) software diversity, spatial separation and modularization, 
decoupling, logical separation. 
 

2.3.1.6. Security 

Security requires that security threats to the computer system be identified and classified 
according to severity and likelihood. Actions required of the software to detect, prevent, or 
mitigate such security threats should be specified, including access control restrictions. 
 
z Does the Software Requirements Specification impose requirements to prevent 

unauthorized personnel from interacting with the software system? 
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z Does the Software Requirements Specification impose access restrictions on 
operators, managers and other personnel? 

z Are the security requirements, taken as a whole, mutually consistent? 
z Are potential security threats to the computer system identified, classified according 

to severity and likelihood, and documented? 
z Does the Software Requirements Specification impose requirements to prevent 

unauthorized changes to the software system? 
z Does the Software Requirements Specification specify requirements to address 

security threats? 
 

2.3.1.7. Timing 

Timing requires that functions that must operate within specific timing constraints be 
identified, and that timing criteria be specified for each. Timing criteria should be provided for 
each mode of operation. Timing requirements should distinguish between goals and 
requirements. Timing requirements should be stated in such a way that the time delay 
between stimulus and response for safety actions is deterministic under normal and 
anticipated failure conditions. BTP HICB-21 provides additional guidance on real-time 
performance. 
 
z Does the Software Requirements Specification specify storage tolerances? 
z Does the Software Requirements Specification specify the time-critical functions and 

the timing criteria for each? Timing criteria include minimum times, maximum times, 
sampling frequencies, time intervals and timing tolerances, as appropriate. Criteria 
may differ according to the different modes of operation 

z Are volume and throughput expectations given for the software? 
z Do memory size requirements state explicitly which are merely target figures or goals 

and which are absolutely necessary for the software system? 
z Is the software system required to have deterministic timing? 
z Do timing requirements state explicitly which are merely target figures or goals and 

which are absolutely necessary for the software system? 
z Does the Software Requirements Specification specify timing tolerances? 
z Are timing requirements specified for each mode of operation? 
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2.3.2. Process Characteristics 

2.3.2.1. Completeness 

Completeness requires that all actions required of the computer system be fully described for 
all operating modes and all possible values of input variables (for example, the complete 
span of instrument inputs or clock/calendar time) * . The SRS should describe any actions 
that the software is prohibited from executing. The operational environment within which the 
software will operate should be described. All variables in the physical environment that the 
software must monitor and control shall be fully specified. Functional requirements should 
describe (1) how each function is initiated; (2) the input and output variables required of the 
function; (3) the task sequences, actions, and events required to carry out the function; and 
(4) the termination conditions and system status at the conclusion of the function. User 
interfaces should be fully described for each category of user. 
 
z Are operator interfaces fully defined? Operator interface definitions can be given in 

terms of keyboard inputs; control panels; positioning and layout of controls and 
displays; human reaction and decision times; use of colors, bold face, underlining 
and blinking of displays; menu techniques;  

z Does each functional requirement describe how the function is initiated? This 
includes the trigger conditions that cause the function to operate, the starting 
conditions at the initiation of the function and the required system status at the 
initiation of the function. The requirements should be written in such a way that a 
single requirement specifies no more than one function. 

z Can the required safety-related functions be correctly implemented within the 
existing, available resources? Resources include budget, schedule, manpower, 
equipment, software tools. 

z Are the specified models, algorithms and numerical techniques practical and within 
the state of the art? 

z Are the quality attributes specified for the software achievable both for each software 
unit and the complete integrated software system? Such as accuracy, adaptability, 
availability, clarity, completeness, consistency, correctness, deterministic timing, 
integrity, maintainability, modularity, reliability, robustness, safety, security, 
serviceability, simplicity, stability, testability, traceability, understandability, uniformity, 
usability and validity.  

z Is the relationship between the monitored and input variables, and the relationship 
between the output and controlled variables, precisely described? 
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z Are error conditions described, including required corrective actions? 
z Do requirements exist to permit the operator to verify that basic system functions are 

operating? 
z Do requirements for the use of colors, positions of information on the display screen, 

icons, flashing signals and alerting signals follow a consistent scheme? 
z Are the variables in the physical environment that the software must monitor and 

control completely specified? The required behavior of the controlled variables shall 
be specified in terms of the monitored variables with the use of mathematical 
functions. 

z Is there a requirement that the computer system will report its own defects and 
failures to the operator? 

z Are requirements for control panels and display layouts specified? 
z Are procedures required for introducing, modifying and displaying parameters to the 

operator exactly defined? 
z Are requirements for human reactions to software-generated messages specified, 

including the amount of time available for making decisions? 
z Is there a requirement that manual interactions shall not delay basic safety actions 

beyond specified safe limits? 
z Is each possible input from each sensor completely described? The description 

should be in terms of the appropriate items in the following list: type of sensor 
(analog, digital); possible range of values; units of measurement; resolution of 
measurement; error bounds on measurements for the range of measurement; 
instrument calibration; and conversion algorithms. Examples of conversion patterns 
include analog to digital and bit patterns to physical units. 

z Does the Software Requirements Specification specify the behavior of the software 
for anomalous inputs? This includes inputs received before startup, inputs received 
after shutdown and inputs received when the computer is temporarily disconnected 
from the process. The purpose is to cover spurious inputs which appear to come 
from the process under computer control, but do not actually come from there. 

z Does each functional requirement specify the input and output variables required by 
the function? 

z Are the actions required of the computer system for error recovery completely 
described? 

z The description should include the type of error, the procedure (if any) for notifying 
the operator of the error, and the means of restoring service. The recovery procedure 
should not compromise safety; simply halting is generally not a satisfactory 
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response. 
z Does each functional requirement specify task sequences, actions and events 

required to carry out the function? 
z Does each functional requirement specify the termination conditions and system 

status at the conclusion of the function? 
z Are all output variables from functions completely described? The description should 

be in terms of the appropriate items in the following list: data types, formats, physical 
units, accuracies, update intervals, valid ranges, available options, timing, frequency 
of occurrence, message error rates and types, alerting signals and method of access 
by the software.  

z Is each possible output to each actuator completely described? The description 
should be in terms of the appropriate items in the following list: type of actuator 
(analog, digital); possible range of values and units; units of measurement; resolution 
of measurement; calibration requirements; and conversion algorithms. 

z Is each category of operator specified, including expected experience level for each 
category? The experience mentioned in the question refers to computer experience, 
not reactor experience. Less experienced computer operators may require fuller 
explanations on screens, less technical help messages, etc. The expected 
experience level can affect screen design, so should be mentioned in the SRS. 

z Does the Software Requirements Specification completely specify the software 
interfaces? This includes interfaces to hardware, predeveloped software, commercial 
off-the-shelf software and operators. 

z Are the actions required of the computer system for which fail-safe action must be 
taken completely described? 

z Are all the operating modes within which the software must perform listed and 
described? 

z Does the Software Requirements Specification describe the operational environment 
within which the program must run? 

z Does the Software Requirements Specification state what the software must not do? 
The SRS must not contain requirements unless they are imposed explicitly or 
implicitly by the SyDD or the SAR. All requirements imposed by the SyDD and the 
SAR that specify actions which the software must not do must be contained in the 
SRS. Any "requirements" that the software not do something which are not contained 
in higher level documents are unlikely to be detected by the auditors. 

z Are all actions required of the computer system for every mode of operation 
completely described? This includes start-up, shut down, initialization, termination, 



 42 

normal operation, off-normal operation, degraded operation, emergency operation, 
etc. 

z Are all inputs variables to functions completely described? The description should be 
in terms of the appropriate items in the following list: data types, formats, physical 
units, accuracies, sampling intervals, valid ranges, available options, timing, 
frequency of occurrence, alerting signals and method of access by the software.  

 

2.3.2.2. Consistency 

Consistency requires that the contents of the SRS be consistent with the safety system 
requirements, the safety system design, and documented descriptions and known properties 
of the operational environment within which the safety system software will operate. 
Individual requirements should not contradict other requirements. Timing requirements 
should be consistent with thermohydraulic analyses performed in the system safety analysis. 
Uniform and consistent terminology, notation, and definitions should be used throughout the 
SRS. 
 
z Are the models, algorithms and computational techniques specified in the Software 

Requirements Specification mathematically mutually compatible? 
z Are the accuracies required of input, computational and output data mutually 

compatible? 
z Are the individual requirements consistent with the System Design Description and 

the Safety Analysis Report? 
z Are requirements for similar functions mutually consistent? 
z Do requirements for the use of color, positions of information on display screens, 

icons, flashing signals and alerting signals follow a consistent scheme? 
z Has the SRS been analyzed for internal contradictions and has this analysis been 

documented? 
z Do models, algorithms, and numerical techniques specified in the Software 

Requirements Specification agree with standard references where applicable? 
z Are input and output specifications in the Software Requirements Specification 

consistent with interface requirements imposed by the hardware or predeveloped 
software? 

z Specifications include data type, data size, data rate, accuracy, error bounds, and 
physical units. 

z Are the individual requirements consistent with documented descriptions and known 
properties of the operational environment into which the program must fit? 
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z Have uniform and consistent terminology and definitions been used throughout the 
Software Requirements Specification? 

 

2.3.2.3. Correctness 

Correctness requires that the description of actions required of the computer system be free 
from faults and that no other requirements be stated. The operational environment within 
which the software will operate should be accurately described. All variables in the physical 
environment that the software must monitor and control should be properly specified. 
Functional requirements should accurately describe (1) how each function is initiated; (2) the 
input and output variables required of the function; (3) the task sequences, actions and 
events required to carry out the function; and (4) the termination conditions and system 
status at the conclusion of the function. 
 
z Has an independent analysis of the algorithms specified in the SRS been done to 

verify the correctness of those algorithms? 
 

2.3.2.4. Style 

Style requires that the contents of the SRS be understandable. The SRS should differentiate 
between requirements placed on the software and other supplementary information, such as 
design constraints, hardware platforms, and coding standards. A precise definition of each 
technical term should exist, either in the SRS or in a separate dictionary or glossary. Each 
requirement should be uniquely and completely defined in a single location in the SRS. 
 
z Does the Software Requirements Specification differentiate between requirements 

placed on the software and other supplementary information? Such as design 
constraints, hardware platforms, and coding standards. 

z Is the functional requirements portion of the Software Requirements Specification 
organized in such a way that the requirements for each operating mode are grouped 
together? 

z Is each requirement uniquely and completely defined in a single location in the 
Software Requirements Specification? 

z Does the Software Requirements Specification contain a precise definition of each 
technical term and mnemonic that occurs in the Software Requirements 
Specification? Reference to a dictionary or glossary containing the required 
definitions will satisfy the intent of this question. 
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z Does the Software Requirements Specification conform to standards imposed by the 
reactor vendor or software developer? 

z Does the Software Requirements Specification distinguish between requirements 
and design constraints? 

z Is there written justification for each design and each implementation constraint 
contained in the Software Requirements Specification? Factors which limit the 
designer's options include, but are not limited to, regulatory and other legal policies; 
hardware limitations; interfaces to other applications; audit functions; use of specific 
operating systems, compilers, languages, and database management systems; use 
of specific communications protocols; critical safety considerations; and critical 
security considerations.  

z Is the Software Requirements Specification complete in the sense that it contains no 
blank sections or paragraphs? 

 

2.3.2.5. Traceability 

Traceability requires that a two-way trace exist between each requirement in the SRS, and 
the safety system requirements and design. There should be a two-way trace between each 
requirement in the SRS and the software design, as well as a forward trace from each 
requirement in the SRS to the specific inspections, analyses, or tests used to confirm that the 
requirement has been met. 
 
z Can each requirement be traced backward to specific elements in the System 

Design Description or Safety Analysis Report? The preferred technique is a 
requirements tracing matrix which identifies each requirement, the system 
component implementing the requirement, the system design element which 
generated the requirement, and the test used to confirm that the requirement has 
been met. 

z Can each requirement be traced forward to specific tests or validation criteria which 
will be used to confirm that the requirement has been met? 

z Can each requirement be traced forward to specific design elements? 
 

2.3.2.6. Unambiguity 

Unambiguity requires that each requirement, and all requirements taken together, have one 
and only one interpretation. 
 



 45 

z Can every requirement be interpreted in one and only one way? 
 

2.3.2.7. Verifiability 

Verifiability requires that it be possible to construct a specific analysis, review, or test to 
determine whether each requirement has been met. 
 
z Is each timing requirement testable? 
z Is each security requirement testable? 
z Is each reliability and availability requirement testable? 
z Is each functional requirement testable? 
z Is each safety requirement testable? 

 

2.4. Review Topics – Software Requirements Safety Analysis 
The software safety plan describes the safety analysis implementation tasks that are to be 
carried out by the applicant/licensee. The acceptance criterion for software safety analysis 
implementation is that the tasks in that plan have been carried out in their entirety. 
Documentation should exist that shows that the safety analysis activities have been 
successfully accomplished for each life cycle activity group. In particular, the documentation 
should show that the system safety requirements have been adequately addressed for each 
activity group; that no new hazards have been introduced; that the software requirements, 
design elements, and code elements that can affect safety have been identified; and that all 
other software requirements, design, and code elements will not adversely affect safety. 
Review topics are divided into several sets. 
 

2.4.1. Requirements Hazard Analysis 

 

Software requirements hazard analysis investigates the impact of the software requirements 
specification on system hazards. Requirements can generally be divided into sets, each of 
which addresses some aspect of the software. These sets are termed qualities which are  to 
be considered during software hazard analysis: accuracy, capacity, functionality, reliability, 
robustness, safety, and security. Some variations may be required to match special 
situations. 
 

The general intent of software requirements hazard analysis is to examine each 
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quality, and each requirement within the quality, to assess the likely impact on hazards. There 
are also numerous traditional qualities generally considered necessary to an adequate 
software requirements specification Completeness, consistency, correctness, traceability, 
unambiguity and verifiability are, of course, necessary, but should be handled as part of 
requirements analysis and verification, not as part of hazards analysis. However, software 
requirements hazard analysis will be hampered if the software requirements specification 
does not possess these qualities. 
 

2.4.1.1 Inputs to Software Requirements Hazard Analysis 

   The following information should be available to perform the requirements hazard 
analysis. 
z Preliminary Hazard List 
z Preliminary Hazard Analysis 
z Safety Analysis Report 
z Safety System Design Description 
z Software Requirements Specification 

 

2.4.1.2 Analysis Procedures 

The following steps may be used to carry out the requirements hazard analysis. The steps 
are meant to help organize the process. Variations in the process, as well as overlap in time 
among the steps, is to be expected. 
 

1. Identify the hazards for which software is in any way responsible. This identification 
includes an estimate of the risk associated with each hazard. 

2. Identify the software criticality level associated with each hazard and control 
category. 

3. Match each safety-critical requirement in the software requirements specification 
(SRS) against the system hazards and hazard categories in order to assign a 
criticality level to each requirement. 

4. Analyse each requirement using some guide.  
5. Document the results of the analysis. 

 
The information collected during this hazard analysis can be of considerable use later 

during software development. The combination of critica1ity level assigned to the various 
software requirements provides information that might affect the assignment of resources 



 47 

during further development, verification and testing. It can also suggest the need for redesign 
of the application system to reduce software-affected hazards. 
 

It is possible that the Software Requirements Hazard Ana1ysis leads to the 
conclusion that some changes should be made to the system design. For example, it might 
be discovered that some system requirements assigned to software can be better met 
through hardware. 
 

It is likely that the hazard ana1ysis wi11 conc1ude that some requirements do not 
pose hazards that is, there are no circumstances where failure to satisfy the requirements 
can cause a hazard. Such requirements probably do not need to be considered in 
subsequent analyses. 

 
There are many ways to carry out the analysis of step 4. The technique most 

prominently documented in the literature is Fault Tree Analysis (FTA). Event Tree Analysis 
(ETA) should a1so be considered as top events in the tree and expanding the tree to 
consider consequences. The choice of technique depends on what information is known to 
the analyst and what information is sought. 
 

2.4.1.3 Outputs of Software Requirements Hazard Analysis 

   The products of the requirements hazard ana1ysis consist of the following items: 
z A list of software hazards. 
z A criticality level for each hazard that can be affected by the software. 
z A critica1ity level for each software requirement. 
z An analysis of the impact on hazards of the software when it operates correctly or 

incorrectly with respect to meeting each requirement. 
 

2.4.1.4 Review Topics for Requirements Hazard Analysis 

 
z Does a software hazard list exist? This list should identify the hazards for which 

software is in any way responsible, and should include an estimate of the risk 
associated with each hazard. 

z Has the degree of control been determined for each safety-critical requirement? 
 

For example: (1) software exercises autonomous control over potentially hazardous 
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events such that failure of the software to prevent the event leads directly to the occurrence 
of the hazard; (2) software exercises control over potentially hazardous events, but there is 
time for independent safety systems to mitigate the hazard; (3) software displays information 
requiring immediate operator action to mitigate the hazard, and software failures will permit 
or fail to prevent the hazard's occurrence; (4) software issues commands over potentially 
hazardous events, but human action is required to complete the control function and 
independent safety measures exist for each hazardous event; (5) software generates 
information of a safety-critical nature used to make safety-critical decisions, but the software 
does not directly affect hazards (Mil-Std 882C). Another classification scheme is given in IEC 
1226, as follows: (A) Functions, systems and equipment which play a primary role in the 
achievement or maintenance of nuclear power plant (NPP) safety, (B) functions, systems and 
equipment that play a complementary role to the category A items in the achievement or 
maintenance of NPP safety, and (C) functions, systems and equipment that play an auxiliary 
or indirect role in the achievement or maintenance of NPP safety.  
 
z Has each safety requirement been matched against the system hazards and 

degrees of control in order to assign a criticality level to each requirement? A thread 
analysis should be performed on several requirements. "Criticality level" refers to the 
importance of the requirement with respect to safety. Standards in this area are 
ambiguous. 

z Has each software requirement been analyzed to ensure that the requirements, 
taken both individually and as a whole, do not conflict with the system safety goals 
and requirements? Test the analysis on several requirements for reasonableness. 

z If a conflict exists between the software requirements and the system safety goals, 
have mitigation measures been identified and carried out to resolve the conflict? The 
conflicts and their mitigation should be documented and the proposed mitigations 
should be reasonable. If no such conflicts exist this fact should be documented also. 

 

2.4.2. Requirements Properties 

z Have the safety analysts ensured that the safety-related software requirements are 
complete? 

z The method used to assure completeness should be documented and plausible. 
z Have the safety analysts ensured that the safety-related software requirements are 

consistent with the System Design Description and the Safety Analysis Report? 
z The method used to assure consistency should be documented and plausible. 
z Have the safety analysts ensured that the safety-related software requirements are 
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internally consistent? 
z The method used to assure consistency should be documented and plausible. 
z Have the safety analysts ensured that the safety-related software requirements are 

correct? 
z The method used to assure correctness should be documented and plausible. 
z Have the safety analyst ensured that the safety-related software requirements are 

unambiguous? 
z The method used to assure lack of ambiguity should be documented and plausible. 
z Have the safety analysts ensured that the safety-related software requirements are 

accurate? 
z The method used to assure accuracy should be documented and plausible. 

 

2.4.3. Requirements Safety Analysis 

z Have the safety analysts evaluated software safety requirements related to reliability 
by suitably rigorous methods? 

z Have the safety analysts evaluated software safety requirements related to 
robustness by suitably rigorous methods? 

z Have the safety analysts evaluated software safety requirements related to security 
by suitably rigorous methods? 

z Have the safety analysts evaluated software safety requirements related to timing 
and sizing by suitably rigorous methods? 

z Have the safety analysts evaluated software safety requirements related to 
functionality by suitably rigorous methods? 

z This includes functionality relating to all modes of operation. 
z Have the safety analysts evaluated software safety requirements related to 

instrumentation interfaces by suitably rigorous methods? 
z Have the safety analysts evaluated software safety requirements related to operator 

interfaces by suitably rigorous methods? 
z Has an ergonomic analysis been performed on safety-related information display 

requirements? 
z Have acceptance criteria been defined for each safety-critical requirement? 

 
IEEE 10.4 requires the acceptance criteria to be consistent with (1) results obtained 

from similar computer programs, (2) solutions of classical problems, (3) accepted 
experimental results, (4) analytical results pub. in tech. lit. and/or (5) solutions of benchmark 
problems. 
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2.4.4. Requirements Safety Analysis Results 

z Have all safety-related deficiencies in the software requirements specification 
identified by analysts been formally discussed with the development team and 
formally documented? 

z Have all safety-related deficiencies in the Software Requirements Specification been 
identified and have they all been corrected in such a way that the specification no 
longer has such deficiencies? 

z This correction should not impact the functionality of the specification. All corrections 
should be documented. 

z Was the safety analysis activity itself well documented? 
z The analysis should follow the safety plan. 
z Is there evidence that all specified corrective actions have actually taken place? 

 

2.4.5. Safety Documentation and Records 

z Is the safety process embedded in all of the software requirements documentation 
and not just tacked on with the software safety plan? 

z This includes the following documents; others may be required in specific cases: 
project management; software requirements; software development standards, 
practices and conventions; and software requirements verification and validation 
documentation. 

z Is the person responsible for software safety requirements records known by name 
and does he understand his job? 

z Are all necessary requirements safety records under configuration control? 
z This includes results of safety analyses, information on suspected or verified safety 

problems that have been detected in requirements technical documents, results of 
audits performed on software requirements safety activities, results of safety 
analyses carried out on the software requirements, and records on training provided 
to software safety personnel and software development personnel that relate to 
requirements activities. Verify that several documents, such as deficiency reports or 
other safety records, are preserved as configuration items. 

z Do the requirements safety records identify the means used to track each hazard, 
the means of handling the hazard and the status of the hazard through the software 
requirements activities? 

z Check several such hazards for proper identification, tracking, handling and status. 
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2.4.6. Safety Organization and Responsibility 

 
z What are the names of the individuals who performed the requirements safety 

analysis? 
z Talk with at least one such individual to find out his qualifications for this work and if 

he is conversant with some or all of the results. 
z Were the analysts that carried out the Requirements Safety Analysis well qualified to 

undertake the analysis? 
z Are the formal lines of communication for the Requirements Safety Analysis 

documented? 
z This includes communication between system safety organization and software 

safety organization (if they are not the same); software safety organization and 
software development organization; software safety organization and software V&V 
organization; and software safety organization and software CM organization. These 
lines of communication should be consistent with the software safety plan. 

z Do the software safety analysts have the authority to enforce software requirements 
compliance with system safety requirements and practices? 

z The authority should be documented and unambiguous and should have adequate 
management authority behind it. 

z Does a single individual have overall responsibility for the conduct of the 
Requirements Safety Analysis? 

z Were sufficient resources made available to carry out Requirements Safety 
Analysis? 

z Resources include financial, schedule, personnel, computers and other equipment 
and tools. 
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 3. Conclusion  

The accuracy of the specification of requirements of a digital system is of prime 
importance to the acceptance and success of the system.  It has been shown that a 
significant portion of the problems with software-based systems can be traced back to 
incorrect or incomplete requirements specification.  When the software-based system is a 
replacement for an existing analogue system, it is a mistake to just take the requirements 
specification for the old system and use it for the new digital system, since the latter system 
has different characteristics to the former.  The analogue system requirements specification 
can be used as a starting point, but the digital characteristics must be taken into account 
when preparing the new requirements specification. 
 

It is important to make sure that the requirements specification is accurate and 
complete. Software-based equipment brings with it unique opportunities and unique 
concerns compared to analogue equipment. Therefore, it is important to make sure that 
these differences are taken into account when the requirements specification is developed. 
 

The requirements specification needs to completely define the functions of the system 
and the qualification requirements, including acceptance criteria.  The requirements 
specification must also address system issues including defining the external and internal 
interfaces and hardware-software interactions.  
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