

ARTIFICIAL RADIOACTIVITY AND ELEMENTAL CONTENT OF SAMPLES FROM BLACK SEA

N. PAUNESCU, D. BREBAN, J. MORENO-BERMUDEZ¹, R. MARGINEANU, B. CONSTANTINESCU

National Institute of R&D for Physics and Nuclear Engineering.

Bucharest-Magurele, Romania. paunescu@ifin.nipne.ro

International Agency for Atomic Energy. IAEA's Laboratories Seibersdorf.A-2444. Austria

This paper presents results on the concentration of 137 Cs, 90 Sr, 3 H in water samples from 5 locations in NW Black Sea collected in 1999. In sediment samples, 137 Cs, Pu radionuclides and 241 Am were determined as well as some major and minor elements by X-ray fluorescence. After chemical separation by applying a combined sequential procedure, $^{230+240}$ Pu, 238 Pu and 241 Am were measured by high-resolution alpha-spectroscopy. Liquid Scintillation Counting was applied for mesuring of 241 Pu. For the surface water samples, 137 Cs concentration varied between (26.3 \pm 3.4) mBq/l and (41.2 \pm 5.6) mBq/l. The concentration of 90 Sr was of about 11 mBq/l. The concentration of tritium was low between 24 and 7 T.U. Higher radioactive concentrations in sediment were found in the samples collected from the stations located close to Danube river. For 137 Cs values up to (128 \pm 6) Bq/kg were found, in agreement to results for NW Black Sea in previous years. The measured concentrations of $^{230+240}$ Pu, 238 Pu radioisotopes are within the range of the values reported in earlier research for the Western Black Sea and Bulgarian Black Sea Coast

Key words: Black Sea, water, sediment, radioactivity