RADIONUCLIDE¹¹¹In – ^{111m}Cd GENERATOR

D. V. Filossofov¹, N. A. Korolev¹, N. A. Lebedev¹, G. Y. Starodub², and A. F. Novgorodov¹

¹Laboratory of Nuclear Problems, JINR, 141980 Dubna, Moscow region, Russian Federation

² Flerov Laboratory for Nuclear Research, JINR, 141980, Moscow region, Russian Federation

A new method for obtaining ^{111m}Cd using ¹¹¹In as its generator is described. ¹¹¹In was produced at the U-200 accelerator (FLNR) using the reaction Ag¹⁰⁹ (α , 2n) ¹¹¹In at the beam energy of 30 MeV. The ¹¹¹In isolation from the Ag target and Cd was based on its co-precipitation with La(OH)₃. The following ¹¹¹In separation from La(III) has been performed by ion-exchange chromatography [1].

¹¹¹In -^{111m}Cd generator system was based on di-(2-ethylhexyl) orthophosphoric acid (HDEHP). ^{111m}Cd preparation with high specific activity ($\approx 10^3$ Ci/g) and high chemical yield (>95%) was obtained.

The value of electron absorption by the isomeric state of 111m Cd (396 keV) has been estimated by means of measuring 111 In decay. The calculated ratio was (6.01 ± 0.32)·10⁻⁵.

The preparation contained a negligible amounts of the parent radionuclide ¹¹¹In (<0.6%) and it was highly stable during 10 days of operation.

Reference:

1. D.V. Filossofov, N.A. Lebedev, A.F. Novgorodov, G.D. Bontchev, G.Y. Starodub, 2001. Appl. Radiat. Isot. **55**(4), 293-295.

P5-7