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The tokamak equilibrium are usually ax-

isymmetric ones but with non-circular

cross-sections. The ideal MHD stability anal-

ysis of such system had been done in cylin-

drical approximation ( I D case) in detail"1.

For toroidal configuration, the high n- bal-

looning mode and the local mode (the Mercier

mode) can also be simplified as ID eigen-

mode equation12'. For low mode number large

scale perturbations, such as the kink mode,

the Alfven eigen-mode, their solutions can be

obtained numerically even for circular cross-

section case because of the mode coupling

between the neighboring modes. For non-cir-

cular cross-section case, the solution can on-

ly be carried out numerically. The numerical

treatment is also based on two procedures:

the first is to obtain corresponding eigen-

mode equation and the second is to use a

suitable coordinate system. These two proce-

dures are correlative because the corre-

sponding eigen-mode equations are different

in their forms and degree of difficulty to

solve. In Ref. [ 3 ], it discuss the coordinate

system with rectified field lines in analysis

of various small scale and large scale pertur-

bations. Analysis in Ref. [3] has the merit of

unification and being applicable to non-axi-

symmetric systems. However, just because the

use of non-orthogonal coordinate with recti-

fied field lines, the eigen-mode equation is

very complicated with many metric quantities

involved, lack of direct physical insight. In

addition, the transformation between coordi-

nates with the rectified field lines and that

used in obtaining the equilibrium solution is

very complicated as well.

In this paper, we introduce the unified

tokamak ideal MHD eigen-mode equation by

using the shear Alfven approximation'41. Then

we use a local toroidal coordinate system re-

lated to the equilibrium'5' and find its rela-

tion with rectified field lines. By using these

system alternatively, we can obtain the

eigen-mode equations both for the small

scale and the large scale modes. Then we

can analyze or numerically solve these equa-

tions for general tokamak ideal MHD stabili-

ty. In this part of the series analysis, we give

the eigen-mode equation for small scale

modes (the ballooning mode and the local

mode).
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1 The general form of tokamak
ideal MHD eigen-mode equation
for arbitrary cross-sections[41

In Ref. [4], we use an orthogonal coordi-

nate system related to the magnetic flux ( i f / ,

X, £), with tl/( R, Z) being the poloidal mag-

netic flux [ ( R, £, Z) the cylindrical coordi-

nates], the magnetic field is expressed as:

B =v£ x v <A + /?#jV£ o)
Introduce:

X= RBX^
>- n >-

(2)

script _L imply operations of gradient and diver-

we can ignore the variable Z by analyzing

the motion along the field lines. Then by us-

ing the shear Alfven approximation, i.e., for

case of the plasma pressure being not too

high, the perturbed magnetic vector potential

is dominated by its parallel component A \\,

correspondingly, variables X, U can be ex-

pressed by one variable <P

R d ̂
JB(, dv

U =
d 0

(3)

where J is the Jacobian. A general normal

mode equation is obtained in Eq. [4] as:

J d

yx

8F

with

= irB - V 0

(4)

(5)

and p\ is the perturbed pressure, / „ is the

parallel current density, operators with sub-

gence without ~:ry, and

A: =/? :v.i
R2 (6)

The eigen-mode Eq. (4) is written in the oper-

ator form so that it can conveniently be used in

different coordinate systems.

2 Equilibrium in local toroidal
system tsl

Assume there is only one magnetic axis

in tokamak equilibrium. Consider a local co-

ordinate ( r, 9, £), its relationship with the

cylindrical coordinate with the Z-axis along

the symmetric axis is

R = Ro + rcos0

Z = r s i n 0 (7 )

Furtherly we introduce a minor radius vari-

able p, then the poloidal flux and other mag-

netic surface functions are all function only

of varialbe p, every magnetic surface i//( R,

Z) = const can be expressed as:

= + n ' p ) cos/20 + b n ( p ) sin/10] (8)

The minor radius itself is the zero-th coeffi-

cient of this Fouries expansion:

2-n

= ̂ -\ d0(p,0) (9)

The sine part of this expansion will be zero

for up-down symmetric system.

To determine the transformation of the

( r, 6} coordinates and the ( p , ^) ones, an-

other restriction on % could be made. In the

treatment, we assume variable ^ is a periodi-

cal function with period 2ir.
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3 Eigen-mode equation of small
perturbations (ballooning mode
and local mode)

For tokamak plasma, the mode varying

slowly along the field line while the fast one

in perpendicular direction is the most dan-

gerous mode. Two kinds of such modes are

generally studied in detail. One is the flute

mode near the rational surfaces, another is

the ballooning. We firstly derive the balloon-

ing mode equation from the general Eq. (4).

3.1 High n ballooning mode

The general perturbation of such mode

can be expressed as:

X ( p , x, £) = X(p, *)exp[ -inS(p,x, £)1

(10)

where S(p, x> 0 is the eikonal, its concrete

form is

where qi is the local safety factor. Here the

high mode number means n^R/a^-l. I/

n can be used as the expansion parameter

while the usual small quantity e = a/ R plays

no role in derivation. It is noted that any

perturbed quantities when operated by d/d p,

d/d X-, d/d £ will upgrade to higher order in

n, except the operator B • V which does not

induce the change of quantity order. Retain

the lowest order in 1 / n, we find that contri-

bution from the d_//d p term (which is the

driving source of the kink mode and the

tearing mode) in Eq. (4) is a higher order

quantity so that is negligible. The perturbed

pressure term becomes

R_^_P]\ d I R dpi
dp\ Bt dx I dx\Bi dp

— n

d IR_
Br

(13)

This is the main driving source for the bal-

looning mode (the so-called unfavorable cur-

vature effect) . To study the second stability

regime, the related part should be written in

detail:

a IR
dp\Bt

dr
cos9 - — +

_ _
BX\B

R(B2
eY ( 2RBI

2 dR

(14)

\d$
(15)

where

a= -8TT/? (dp /dp ) /B? (16)

In Eq. (14) , terms containing a. are the main

factor leading to the second stability regime.

The initial term becomes

O) ~

r\
=n2-

V A

dp

In ballooning representation

P 1 d 0 , .
r = ~— exp( - i

qi dx

we obtain:

.17)

(18)
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RBr
= -n

— (qi/qo)

<P
exp( - inS) (19)

Substituting Eqs. (12) ~ (19) into Eq. (4)

results in the ballooning mode equation. This

is a second order differential equation for the

eigen-function <P(p, x} at a given magnetic

surface p = c within the region - <x< /^<oc.

This result completely coincides with Ref.

[2] and other related papers. In ballooning

representation the quantity V' £ can be re-

placed by V± • £± , then the perturbed pres-

sure could produce another term proportional

to the curvature, this more complicated situ-

ation will discussed elsewhere.

3.2 Local mode

Now we consider the local perturbation

around a rational surface qo = m/ nl31. In this

case the basic perturbation quantity should

be written in coordinates with rectified field

lines, i. e.,in ( p , a>, £):

/ ( p , a>, £) = exp i ( nuo - ng) {/ ( p ) +

f i ( p , « * ) } (20)

For this kind of perturbation, we have
D

B' V/ = i -:*• exp[i(ma> - ng) 1

Near the rational surface [ ^ ( p o ) = m/ n],

the safety factor q can be expanded, then

express the perturbed quantities in the

/c-representation:

"=~2-T£ t (22>Q OK

Note that the scale length of the perturbed

quantity is much smaller than the equilibri-

um one, so that in the basic Eq. (4), except

the parallel operator in Eq. (21), the other

perpendicular operators only act on the per-

turbed quantities and results in d/dp =

i k. The metric factors of system ( p , a>, £}

can be expressed in system (p, 0, £) . This

transformation can be easily done because

Eq. (4) is written in operator form. Then

terms in Eq. (4) can be expressed in the

following forms in the local representation:

• y\- mi.) „ ,
d k

L(0)~

q d (i)

CO)

- r O )

(23)

d k dk (24)

where { • • • / means averaging over d, and

2ir

LW=^~ f dBL2ir J
0

L= -[k2gu+2mkg}2+ m2g22} (26)

L ( [ } = L-L(0> (27)

2ir

h ( p ) =^- f d8(rdr/dp)/R (29)
ZTT 1

Quantities with superscripts (0) are their
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flute part or the equilibrium one depending

on p only. Quantities with superscripts (1 )

are the ballooning part of the mode or that

part of the equilibrium depending on 0. Term

containing the current gradient in Eq. (4)

appears in higher order, because of the con-

dition kp~^R/p,or x /p<Cp//?. However,

for more large scale perturbations when the

current gradient can play its role, the analy-

sis is still applicable, of cause, the derivation

is much complicated. At present, this case is

not considered.

To determine the contribution from the

ballooning part in above formulae, It is need-

ed to solve the ballooning solution <t> \\, from

the eigen-mode equation and in general, it is

rather complicated. For tokamak, further sim-

plification is possible. We note that the uni-

form part of the eigen value L is larger than

the ballooning part by a factor of ( R / p ) or

[ p/ a n ( p ) ] , then, we find that 4>\k/<I>k it-

self is a small quantity of order (m/kp).

Mean-while, the eigen value of K is in same

order with the ballooning part or even small-

er [see Eqs. (14), (15)], then we can de-

termine approximately <P\k as:

nq'
(32)

where

(30)

(31)

the required eigen-mode equation for the lo-

cal mode is

where

It can be seen that stability depends on the

pressure driven force. Similar to the balloon-

ing mode, stability of the local mode is relat-

ed to the curvature of the field lines. When

only terms proportional to A;2 in Z, ( 0 ) are re-

tained, the eigen function would have a form

of <P t °c k ~ ] / 2 , then the necessary condition

for stability becomes

U+l/4>Q (34)

This is the well-known Mercier criterion13'61.
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