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Ideal MHD stability analysis is a basic

theoretical tool to study the stability of the

magnetic confinement plasma. Based on this

framework, it is possible to introduce other

physical effects, to analyze or find some new

instabilities. In this paper, the ideal MHD

shear Alfven equation of motion1" is used to

study one of the important mode (i.e., the

toroidal Alfven mode) . This is a peculiar

mode in toroidal confinement system, it re-

lates closely with the Alfven continua, but is

quite different from the former in property. It

exists in the gap of two continua which split

each other due to toroidicity effect and has

discrete spectrum and global structure. The

early discovered one is the toroidal Alfven

eigen-mode, called the TAE mode (Toroidi-

city-induced Alfven mode)'2 '31 , attention has

attracted to this mode for long time due to

the possible excitation of such mode by fu-

sion alpha particles (now experimentally ob-

served'41), later, the non-circularity of the

tokamak equilibrium, especially when its e-

longation effect surpasses the toroidicity, is

found to be responsible for a new branch of

mode with discrete spectrum. It exists in the

gap between two Alfven continua that corre-

sponding to two poloidal mode numbers with

integer difference. The typical one is called

the EAE mode (ellipticity-induced Alfven

mode) I5! . Recently, experiments on toroidal

eigen-modes and their effects on energetic

particles have been an important area in toka-

mak physics.

1 General form of toroidal mode
coupling

Now we use coordinate system with recti-

fied magnetic field lines ( p , a), g ) to extend

the eigen mode equation. This equation used

as the starting equation, though derived from

an orthogonal coordinate system, is written in

operator form so that it is applicable in

non-orthogonal system directly.

This ideal MHD shear Alfven equation of

motion has the form"'61:
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function F and <P has the following rela-

tion:

7r = — B • V <P (2)

For Alfven waves, their real frequency co ~

a) \^> k 11 c a, the divergence part in perturbed

pressure is a small quantity in £/ R, can be

neglected.

In some previous publications'21, deriva-

tion procedure of the eigen-mode equation is

rather complicated, meanwhile the resultant

TAE mode equation is too simple to retain

all physical effects. In Ref. [3], this deriva-

tion is accomplished by considering the

electromagnetic variables and current conti-

nuity, results in a similar equation as the e-

quation (1), however, some physical effects

not retained yet.

Now we introduce magnetic coordinate

system. At first, we write the equilibrium

magnetic surfaces in coordinates ( p , 9, £),

assume an up-down symmetry, we have

r ( p , 6 ) = p + 2^an(p)cosn6 (3)

To extend Eq. (1) in coordinates with

rectified field lines ( p , CD, £), the perturbed

quantity has the form:

X(p,u>,£) = / Xm(p) exp[i(maj - n£) ]
m

(4)
For Alfven eigen-mode with poloidal mode

number m, only coupling between two neigh-

boring modes is important which we denote

as m, m + 1 or m, m + 2, the toroidal mode

number n is kept fixed. Let

lm = m/ q - n (5)

then

Fm-\lm<Pm (6)

The Jacobian of coordinates (p, at, g) can

be written as

J = ( V px V &> V £ ) ~ ' = R2ph(p) / Ro

(1)

where h. = 1 + 0( e2} and s denotes small

quantity of order a/ R or an/p. We assume

the particle density is a function of the mi-

nor radius so that the Alfven frequency is a

function of minor radius as well. Expanding

the initial term in Eq. (1 ) , according to reg-

ulations of differential operation in non-ortho-

gonal system and noting the definitions of

perpendicular divergence and gradient, ex-

pressing corresponding metric factors into

their Fourier series, to the order of e, we

have

R2 „ t ,, /?' ^\1 _ 1 d

dp

(8)

.

D+g -- r-
fto / p dp dp

dp

(9)

In Eq. ( 1 ) , the main term in its right part is

the third term

(10)- - B -V(A1F) =
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sm.,=^-f- p / m / m + ,
P dp l P dp

dp

where

Another two terms can be written as:

(12)

(13)

(14)
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V'q
(15)

*- (16)

To expand terms related with the curvature

of the magnetic field lines in Eq. (15) we

find that the main parts are those proportion-

al to cos 6, sin d, implying that the pressure

gradient appears in the coupling terms with

sidebands.

To the first order, the current gradient be-

comes:

d I

Combining Eqs. ( 8 ) ~ ( 1 7 ) , we obtain the

set of equations describing the coupling of

toroidal shear Alfven modes:

L m # r a + M m + i 0m + 1 =0 (18)

L m 0 m + 1 + M m < P m = 0 (19)

--~
p dp

-
dp

P'
ml m Ro . i

n J ?0PD&

with I ' m - - mq' / q2. By using

mRoj' 2ll

(20)

(21)

Eq. (20) can be rewritten as:

T" ,*. 1 d
Lm tf>m= — -3-p dp

d
-r-dp

(22)

M m + 1

where

2p l \ p

(23)

The form of Lm + \<Pm + ] is similar to Eq.

(22) with subscripts replaced by m + 1, the

form of M m0 m is similar to Eq. (23), but

the last term is negative.

In above equations, all coupling effects of

same order are retained so that it is more

correct than that in published literatures. Of

course, in practice, further simplification is

possible.

2 TAE mode
We first consider the cylindrical case,

rewrite the mode equation L m ^ m =0 into an

eigen equation about the displacement func-

tion, let

& = p£ (24)

we obtain

dp dp J
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(m2 - 1) dm - a)2) i;m -p(fo)2) '£m - 0 (25)
This means that condition

a>2 = <oll2
m (26)

determines the Alfven continua. For uniform

density, the spectrum varies with the minor

radius and is determined by the safety factor

profile. Two neighboring spectrums intersect

each other near the point where q — m/ n +

1 /2. Toroidal coupling makes split of these

two spectrums near this point, the TAE mode

exists at the gap.

Any further discussion needs more infor-

mation about the equilibrium. Though the

above results are generally for configuration

with non-circular cross-section, for TAE

mode, however, the main effects are from the

toroidicity and the Shafranov shift of an e-

qual circular configuration. All metric ele-

ments are related with these two effects on-

ly. Use the equation satisfied by the dis-

placement function cu(p)181, denoting by the

usual averaged poloidal ratio of pressure and

the internal conductance, we obtain

P
+y) (27)

Substituting these results into Eqs. (22),

(23), we obtain the general form of TAE

mode as:

a i a / ,
~T~\plp dp\H m i m + 1 idp

Ro a ' / l p dp dp
= 0

(28)

+ 1 CP m + 1 i l p / m / m + 1 ip dp \ dp

(2p__ ' ) [ J _ _ < L
I Ro a i I p dp

These equations consistent with that in Refs.

[2, 3, 6, 7], with more effects retained.

3 Alfven eigen-mode induced by
non-circularity[41

Non-circularity can induce mode cou-

pling. Ellipticity can induce coupling be-

tween the mode number m and m + 2 while

the triangularity can induce coupling be-

tween mode with m and m + 3. Generally,

couplings between mode with m and m + 1

exist at the same time. However, these cou-

plings happen at different mode frequency

and different space points so that when we

consider coupling between mode number m

and m + 2, we can put other coupling a-

side. If we only keep the second derivatives

in coupling operators, as we have done for

the TAE mode, a similar derivation will give

the corresponding equation of mode cou-

pling. Especially, for the EAE mode induced

by the ellipticity, we have

' j^ a 2 d
<Pm -j—

dp

' i

P dp

d&

(30)

dp
= 0 (31)

(29)

The mode frequency is near

0)0= (m+ 1) (a A/ n (32)

The way to determine the eigen frequency

and the eigen function in Eqs. (30), (31) is

similar to that used in TAE analysis, and

somewhat more simpler151.

Similarly, we can discuss the Alfven eigen
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mode equation induced by the triangulari-

ty. Its form is similar to Eqs. (30), (31), it

needs only some replacements of a 2 by 03,

<£ m + 2 by <£m + 3, the mode frequency is near

3\ 1
i,+—}/n\a>,l (33)

In fact, the ellipticity is larger than the tri-

angularity for most practical geometry so that

the EAE mode is more important.
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3. 4 Ion Flow at the Presheath Entrance in
Tokamak Scrape-off-layer

GAO Qingdi CHEN Xiaoping
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In controlled nuclear fusion devices like

tokamaks, plasma particles are confined by

closed magnetic flux surfaces. Outside the

last closed flux surface (LCFS), plasma is in

direct contact with a solid surface in the

scrape-off-layer (SOL) . In the simplest pic-

ture, the particles are removed by transport

along the magnetic field in the SOL to the

solid surface. Such flow results from the

pressure gradient which arises along B due

to the fact that the solid surface is a sink for

charged particles, which depresses the local

pressure.

At the interface between the plasma and

the solid surface, the quasineutral plasma is

shielded from a negative absorbing wall by a

thin positive space charge region (sheath)

with a thickness of several Debye lengths. For

a collisionless sheath, Bohm' ' ' has derived a

criterion that the ions must enter the sheath

region with a high directed velocity v,.> c» ,

here c « is the ion acoustic velocity. Conse-
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