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3.5 Neoclassical Kinetic Theory
for the Shaped Tokamaks

WANG Zhongtian

Key words  Neoclassical kinetic theory

Recent experiment studies on START, the
low-aspect-ratio tokamak, have shown signifi-

[']'in physics behaviour: the na-

cant changes
tural exhaust system because of the presence
of X points on the plasma boundary and the
freedom from the major disruption may offer
significant advantages to the reactor conce-
pt . The new phenomena in the low-aspect-
ratio tokamak must be related to equilibrium,
instabilities, and transport. Traditionally, neo-
classical kinetic theory is studied under the
condition of the circular plasma and the
large-aspect-radio approximation'®! . In this
paper, the kinetic theory for the shaped toka-
maks is investigated for a set of Soloveev's
configurations'*. Using the Hamiltonian for-
malism, the diffusion coefficient is derived

for plateau regime. The diffusion coefficient

A. Nicolai @

Shaped Tokamaks  Transport coefficients

is inversely proportional to connection length.
Near the plasma boundary where X points
exist, the connection length is much longer
compared to the one of a circular cross-sec-
tion plasma. So, the diffusion coefficient is
greatly reduced. However, the diffusivity de-
fined by Solano and Hazeltine'® does not
change considerably, which is slightly in-
creased with toroidality and reduced by e-
longation and triangularity. Both toroidal and
poloidal rotation speeds are calculated. For
the low-aspectradio tokamak, for example,
START the formalism may be valid in a nar-

row range of collisionality.

1 Hamiltonian formalism of orbit
theory

Using the area-conserved transformation,

@ Institute fur Plasma Physik, Forschungszentrum Julich GmbH, Ass. EURATOM-KFA, D-52425, Julich, Germany.
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we get the following gyroaveraged Hamiltoni-

an for particle motion in a tokamak configu-

ration!®):

H=%R%A %&) ;zﬁp

( - IixRo

)[P¢+e‘I’(X,P,)]2+e¢ (1)

where the momenta
%.sz , Ps=Rvs—e v , P.=2Z.

are conjugate to «, the gyrophase, ¢, the

toroidal angle, and X, expressed as:

X=(20Roln—§—°~ (2)
0

where R. and Z. are the coordinates of the
guiding center in a cylindrical system, p is
the Larmor radius, ¥ is the poloidal flux, @
and {2 is the

toroidal gyrofrequency. Subscripts O refer to

is the electric potential,

the magnetic axis. Because there is no a and
¢ dependence in the Hamiltonian, P. and
Py are constants of motion. The particle
mass 1s taken to be an unity for simplicity.
Arguing with the conservation of the
canonical momentum in toroidal direction, we
get a set of equations of motion for the guid-

ing center:

dR Bn( Run)

At Bs\R R}

dZ _Bs{u Rug 1 ( u?

dt—Bd,(R )+(20R0 'QP+R8)
(4)

du B uz) E,

At "B\t Ry ) YR

u=Rvs , up= —R} gi (5)

where the subscript c, indicating the guiding
center, is omitted for simplicity.
Eqs. (3) ~(5) are the extension of the

equations of motion derived by Balescu!".

2 Transport coefficients for a to-
kamak configuration
The drift kinetic equation is given'®) by

dF
% =C(F) (6)

where C(F) is the Fokker-Flanck collision
operator. F can be expressed as:

F=F.(H, P,) + g (7)
where the first term is the Maxwellian form
with H-e® in the place of kinetic energy
and Pj in the place of ¢, the second term is
the correction for collisions.

Now, we introduce a real tokamak confi-

guration given by Soloveev *):

=, (R2+y)b—2+—1—(R2
___E -9
b=ta-p7 0 Y"1-¢ ¥

R3)?

where E and @ are related to the elongation
and triangularity. Now a set of coordinates
related to the configuration can be construct-

ed in the form:

Xi=(¥/ W)
_ 2Z(R*+y) 2
X2= —arc tg b(R:-R2)
X3:¢ (9)

and the Jacobian for the transformation from
(R7 d)y Z) to (Xl, X2a X3) iS

) bX, X
S Ri+ 2, cos Yot 92 Ry 0 (10)

The drift kinetic equation is
dg wveRy dg
Jod Xz X Jod Xe

W cosX> —



vl 98 vi=cm -2L (1)

Jo 0 X, Jdt
where, wb:m
_ r Bao _ I
9°T RoBy 2W,R}

Bpo=2WoX1, r= Xl/Ro
We can expand Fr in the form:

oF u
M - 12
Fm Fm ar Ro .on ( )

where (2, is the poloidal gyrofrequency re-
lated to Byo. The Krook collision operator is
used with a shift. We divide g into two parts:
g=go+ g (13)
whrer go is independent of X, and g satis-

fies the following equations:

~_ 1 [ ~JodXs _
<g>_2'n'§g L 9

L= ,h=R/Ro

1 [ JodXz
21T§ h

8F+wbh a(g/h) _.._]l_ B(vdg"/h)
Jat Jo 0 X rlo 20X,

cosXz — }0 9 (vz r/h) sinX ; —

va O&o ( Pu )
= - —gmn— 7 Fnt
T ar sinXa vlgo—g T g

dF. u
gm ar Roﬂpo (14)
Averaging Eq. (14), we get
oF 1 9 ( _Pu
a1 2L ar TvegY) “v\gemgn g Fa
(15)

g>=:‘1_r— § Sian’Udg/thz

From the zero order of Eq. (15), we get

g0=gm+P—Tl|LFm (16)

Then, from Eqgs. (14) and (16), we have, for

the next order,

Lod (g /h) +AGG/h) = ve 080 LosinX;

Jo o X- WL or Joh
_ vl _1
A— @ andLo—zTr #’JodXz (17)
We set
1
6=1-|Lax, (18)
The solution of Eq. (17) is
~= vy 980 Zsi[Asin(kO) ~ kcos (k@) 1
Wy Jr P Ar+k?
(19)
with the Fourier coefficients
LoSian o .
P L et 2 R n 20
INE ,;s:;smkﬁ (20)
) 1 A
In the plateau regime, o AZ4E?

%5(wl,).The solution in Eq. (19) is put

into Eq. (15), then we get

ZSI:SI‘ (21)

Integrating over H and Ps which are inde-

= T4

pendent coordinates with X, and X, then,

we get

-"ilt‘-+}a—"’r(rr> =0 (22)
SRR AL S

D= fq%pzw.nG

w =2, L.=LgRo, G= S Sf;“ (23)
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where G has been calculated. If A=1.20, E =
2,and Q= -0.1, we get G=1.25 for ¥/
Y,=0.95, when A=5, E=2, and Q= -
0.5, G =1.03 on plasma boundary.
According to equilibrium Eq. (8), ¢o is
proportional to (1 + 5%) /252 For a large e-
longation, ¢o is reduced to half, so is the dif-
fusivity, that seems to be in agreement with
Solano and Hazeltine '*',
The parameter P can be determined from

collisional momentum conservation, which

guarantees the ambipolarity:

rorie= o234 -

T;
p(Ee3F) /G R) o

According to Egs. (23) and (24), D> D.,

we get

r-oll (BT} 3] o

3 Rotation speed

Since we have calculated the distribution
function, the rotation speeds are easily ob-
tained by integrating over velocity space,
considering the equations of motion (3) and

(4), and the diamagnetic drift:

_ _AT_[nl 3 T!_eE,
e eBpoln; * 2 T T. (26)
v :——LhBP : v W _B_/ _2_'. Zh'
b 4Bp0LT I Bp RO !
Li=[-(InT)']" (27)

where the second term in Eq. (27) arising
from particle drift is significant only near an
X point where B, goes to zero. v4 and v, are

essentially the same as the ones given by
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Hazeltine and Meiss '°!.

4 Conclusion and comments

The neoclassical kinetic theory for the
shaped plasma has been investigated for the
plateau regime. The radial flux and the rota-
tion speeds are calculated. A set of Soloveev s
configurations is used, which can facilitate the
procedure of rigorous derivation and demon-
strate the effects of toroidality, elongation
and triangularity. For the low-aspect-ratio
tokamak, the trapped particle fraction, [2&/
(1+ &)'*], is more than 90% at ¥/ ¥, =
0.95. In spite of this, there is a narrow pa-
rameter range in which the formalism may be
valid. For START the aspect ratio, A =1. 3,
the plateau regime is located in the range of
0. 8<v. <1, where, v..= v/ w,, v is the 90°
deflection frequency and . is the transit fre-
quency. In this regime, the detrapping rate is
high, but does not reach Pfrisch-Schluter
regime. The paper deals with the shaped
plasma and there is no assumption on the as-
pect ratio, therefore, it might be helpful to un-
derstand the behaviour of the low-aspect-ratio
tokamak. For a banana regime, the kinetic

theory will be considered in a coming paper.

The authors wish to thank Prof. PENG
Dianyun for his numerical analysis which
helps in understanding the insight of the pa-

per.
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3.6 Design of the Air-core Transformer in

Sperical Tokamak

WANG Zhongtian

Key words  Spherical tokamak

Spherical tokamak has not been paid
much attention until START successfully op-
erated. There are two unpredicted features in
the spherical tokamak. First, there is natural
diverter configuration. Secondly, there is no
major disruption in first 30 000 ohmic dis-
charges.

A modified variational principle combined
with climbing mountain method 1s used for
the design of air-core transformer in the Chi-
nese first spherical tokamak, SUNIST. The
stray field by air-core transformer in the
plasma region is less than 0. 1% of toroidal
magnetic field. Integer turn in each coil is

convenient for power supply.

1 Modified variational method

The magnetic energy of stray field by
air-core transformer in plasma region 1s writ-

ten as:

_[ B
]*-L; 2o dr (1)

JIAN Guangde

LI Fangzhu ~ MAO Guoping

Air-core transformer

where
B=V¥xVe (2)
Since there is no coil in plasma region, ¥
satisfies
v- Vr‘f' =0 (3)

J can be rewritten as:
J= =24 wB - d (4)
Mo J i
where I 1s the boundary of the plasma re-
gion, [ 1s clockwise.

The air-core transformer is composed of
coils { ¢} as seen in Fig. 1. {ri, z:} are the
centers of coils. Minimization of magnetic
energv J can obtain current density in each
coil, ji=1:/s.

The flux ¥ in Eq. (2) can be expressed

as:

P,

Y= ZJ,J{ Y dxdy (5)

87



